论文中文题名: | 基于UWB的井下移动目标定位算法研究 |
姓名: | |
学号: | 20307223006 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085400 |
学科名称: | 工学 - 电子信息 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2023 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 无线通信 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2023-06-15 |
论文答辩日期: | 2023-05-30 |
论文外文题名: | Research on Coal Mine Moving Target Location Algorithm Based on UWB |
论文中文关键词: | |
论文外文关键词: | Ultra wideband ; coal mine positioning ; Non-line of sight ; Kalman filter ; Time difference of arrival |
论文中文摘要: |
随着定位技术的快速发展,基于超宽带(UWB) 定位技术在井下定位领域应用具有十分重要的研究意义与实际价值。井下环境中存在诸多干扰以及障碍物,使得UWB信号传输过程中产生多径干扰以及非视距(NLOS)误差,从而影响定位精度。因此本文针对井下NLOS环境下基于UWB的移动目标定位算法展开研究。 针对井下环境,UWB定位使用到达时间差(TDOA)算法存在的波束指向性低以及多径误差等问题,基于经典TDOA算法进行改进。改进的方法首先计算信号的到达时间差,对多条路径进行分离和重构,以解决不同参考节点对测距结果的影响,在无需参考节点的情况下就能实现异步时钟下的测距;引入动态滤波修正异常值,运用双边滤波算法对测距值进行优化。实验结果表明改进后的TDOA算法能够有效减小测距误差,满足井下定位对实时性和可靠性要求。 为解决经典TDOA井下测距算法在NLOS环境中测距精度低、误差较大的问题,对卡尔曼滤波算法进行优化。优化方法首先引入经典卡尔曼滤波算法对测距值进行视距重构,减小非视距对测距精度的影响。对初次估计值进行NLOS误差判别,依据判别结果进行视距重构;同时将仅受视距(LOS)误差影响的历史值用来更新卡尔曼滤波的协方差阵;基于卡尔曼滤波算法更新协方差阵,通过对接收信号进行处理并迭代,达到米级的移动目标定位精度。在NLOS环境下,优化后算法的均方根误差(RMSE)值为0.6196m,相较于其他相关算法,能够更有效地提高测距精度,减小测距误差。 为解决经典Chan算法在井下复杂环境中存在NLOS误差导致定位精度低的问题,以及初值不准确使得Taylor级数展开法无法收敛的问题进行改进。改进的算法首先利用Chan算法得到TDOA差值并进行NLOS误差鉴别和修正,然后再次估计标签节点的位置坐标;利用这个修正后的位置坐标作为Taylor算法的初始值进行迭代;最后,通过设置合理的加权系数来修正最终的估计值。这种算法能够在井下复杂环境中有效提高定位精度,实验结果表明,井下NLOS环境下,优化后的定位算法相较于对比算法表现出更好的定位性能,RMSE值为0.9365m。 |
论文外文摘要: |
With the rapid development of positioning technology, the application of ultra wideband (UWB) positioning technology in the field of coal mine positioning has significant research significance and practical value. There are many interferences and obstacles in the coal mine environment, which cause multipath interference and non-line of sight (NLOS) errors during UWB signal transmission, thereby affecting positioning accuracy. Therefore, this article focuses on the research of UWB based mobile target localization algorithm in the coal mine NLOS environment. In view of the coal mine environment, Time difference of arrival (TDOA) algorithm for UWB positioning has problems such as low beam directivity and multipath error, which are improved based on the classic TDOA algorithm. The improved method first calculates the Pseudo-range multilateration of the signal, separates and reconstructs multiple paths to solve the impact of different reference nodes on the ranging results, and can achieve the ranging under asynchronous clock without reference nodes; Dynamic filtering is introduced to correct Outlier, and bilateral filtering algorithm is used to optimize ranging values. The experimental results show that the improved TDOA algorithm can effectively reduce ranging errors and meet the real-time and reliability requirements for coal mine positioning. The Kalman filter algorithm is optimized to solve the problem of low precision and large error of the classical TDOA downhole ranging algorithm in NLOS environment. The optimization method first introduces the traditional Kalman filter algorithm to reconstruct the line of sight (LOS) of the ranging value, so as to reduce the impact of non-line of sight (NLOS) on the ranging accuracy. Perform NLOS error discrimination on the initial estimated value, and reconstruct the line of sight based on the discrimination results; At the same time, the historical value affected only by LOS error is used to update the covariance matrix of Kalman filter; The covariance matrix is updated based on the Kalman filter algorithm, and the received signal is processed and iterated to achieve the meter level mobile target positioning accuracy. In the NLOS environment, the Root-mean-square-error (RMSE) value of the optimized algorithm is 0.6196m. Compared with other related algorithms, it can effectively improve the ranging accuracy and reduce the ranging error. In order to solve the problem of low positioning accuracy caused by NLOS error in the traditional Chan algorithm in the complex coal mine environment, and the problem of Taylor Series expansion method unable to converge due to the inaccuracy of the initial value, improvements were made. The improved algorithm first uses the Chan algorithm to obtain the TDOA difference and perform NLOS error identification and correction, and then estimates the position coordinates of the label nodes again; Use this corrected position coordinate as the initial value of the Taylor algorithm for iteration; Finally, correct the final estimated value by setting reasonable weighting coefficients. This algorithm can effectively improve positioning accuracy in complex coal mine environments. Experimental results show that in the NLOS environment, the optimized positioning algorithm exhibits better positioning performance compared to the comparative algorithm, with an RMSE value of 0.9365m.. |
参考文献: |
[1]李琦.简析煤矿井下辅助运输的现状与发展趋势[J].当代化工研究,2021,No.90(13):13-14. [2]韩杰.煤矿高效辅助运输成套系统研究与应用[J].内蒙古煤炭经济,2021,No.321(04):117-118. [3]张文军.浅析煤矿轨道运输治理措施[J].中国石油和化工标准与质量,2020,40(07):87-88. [4]薛金平.井工煤矿辅助运输系统分析及发展趋势[J].石化技术,2020,27(02):186-187. [5]张治贵.煤矿轨道运输治理措施分析[J].矿业装备,2020,No.109(01):66-67. [6]刘伟.煤矿辅助运输系统的改造与实施[J].矿山机械,2020,48(10):37-40. [7]张宇新.新形势下煤矿辅助运输的关键技术及发展研究[J].矿业装备,2020,No.112(04):142-143. [8]常凯,刘志更,袁晓明等.煤矿辅助运输系统智能化现状分析及框架设计研究[J].工矿自动化,2022,48(06):27-35. [9]张玮.基于ZigBee通信的煤矿机车定位与状态监测研究[J].煤炭技术,2017,36(06):225-226. [10]栗荣洁.浅谈王庄煤矿井下辅助运输现状及发展方向[J].能源技术与管理,2020,45(01):133-134. [11]王兴友.煤矿井下辅助运输自动化管理系统设计[J].低碳世界,2021,11(08):76-77. [12]韩雅洁.煤矿运输安全智能监控信息系统的设计[J].山东煤炭科技,2020,No.233(01):167-169. [13]金纯,马金辉,方天恩等.基于时空相似模型的蓝牙室内定位RSSI指纹插值方法[J].科学技术与工程,2016,16(28):264-268. [14]苗旺龙.基于RFID技术的铁路车轮堆垛机定位控制系统[J].自动化技术与应用,2023,42(05):31-34+132. [17]范立,王中元,汪云甲等.Wi-Fi与PDR自适应加权的CKF融合定位算法[J].中国科技论文,2018,13(08):950-955+960. [18]张强,高颂.基于红外同步的室内超声定位系统的设计[J].国外电子测量技术,2017,36(10):86-91. [19]张兴红,陈然,张志忠等.基于TOA算法的超声波定位节点布局研究[J].重庆理工大学学报(自然科学),2022,36(04):162-169. [21]方文浩,陆阳,卫星.基于区域判定的超宽带井下高精度定位[J].计算机应用,2018,38(07):1989-1994. [22]李小亭,郎月新,韦子辉等.基于改进双向双边测距的超宽带定位技术及应用研究[J].中国测试,2019,45(10):21-27. [23]张慧文,田多宝.煤矿井下车辆定位与信号控制技术[J].陕西煤炭,2021,40(02):124-126+136. [25]曹永刚.基于射频识别技术的煤矿井下人员定位系统设计应用[J].机械研究与应用,2021,34(02):194-196. [27]肖开泰.基于UWB超宽带的煤矿定位系统设计[J].煤矿安全,2020,51(08):128-131. [28]李浩.基于WIFI技术的煤矿井下人员定位安全系统的研究[J].机械管理开发,2020,35(08):226-228. [30]张楠.基于RSSI测距的煤矿井下传感网目标定位仿真[J].计算机仿真,2020,37(10):456-460. [31]聂睿. 一种基于UWB定位的误差抑制TDOA算法研究[D].海南大学,2020. [32]沈郭浩,马永涛,刘开华等.非视距环境下室内RFID标签定位算法研究[J].计算机工程与科学,2016,38(03):454-459. [33]许英教.浅谈超宽带通信传输技术[J].数字通信世界,2018,No.159(03):220. [34]王锦涛,皇甫一鸣,李哲舟等.基于UWB测距技术的室内定位研究[J].通信电源技术,2018,35(05):50-53+56. [37]胡荣,李琴.基于渐近线选择的TDOA定位算法[J].兵器装备工程学报,2019,40(11):222-226. [38]曾玲,彭程,刘恒.基于信号到达时间差的超宽带室内定位算法[J].计算机应用,2018,38(S1):135-139. [39]乔欣,孔兵.井下巷道TOA和TDOA联合估计的UWB定位算法[J].煤炭技术,2022,41(05):168-171. [40]赵越,李赞,李冰等.TDoA定位盲区分析与节点部署策略研究[J].通信学报,2023,44(01):1-13. [41]薛卫星.RSSI在室内定位中的测量特性及应用研究[J].测绘学报,2022,51(12):2558. [42]刘世森.基于UWB的矿井人员精准定位技术[J].煤矿安全,2019,50(06):118-120. [44]蒋锐,虞跃,徐友云等.基于CHAN的改进卡尔曼滤波室内定位算法[J].通信学报,2023,44(02):136-147. [46]范强,张涵,隋心.UWB TW-TOA测距误差分析与削弱[J].测绘通报,2017,No.486(09):19-22+50. [47]王夕予,许晓明,陈亚军.非理想连续干扰消除下非正交多址接入上行传输系统性能分析[J].电子与信息学报,2019,41(12):2795-2801. [48]刘翌祥.卡尔曼滤波在目标跟踪中的应用研究[J].电子世界,2021,No.624(18):61-62. [49]李新春,阳士宇,张玉琛等.削减NLOS误差的UWB室内定位算法[J].重庆邮电大学学报(自然科学版),2022,34(05):758-765. [50]王立玲,苏华强,马东.基于改进能观性的扩展卡尔曼滤波机器人定位[J].机床与液压,2021,49(15):17-23. [51]张彦泽,于斌超,马大智等.自适应扩展卡尔曼滤波机械臂末端定位[J].组合机床与自动化加工技术,2022,No.584(10):150-153+158. [52]吴俊康,张烈平,匡贞伍等.非视距环境下UWB节点的LS定位算法[J].桂林理工大学学报,2022,42(03):736-741. [55]鲍晶晶,蒋志迪,刘尉悦等.基于Chan和粒子群的超短基线协同定位算法[J].科技通报,2022,38(01):32-36+44. |
中图分类号: | TN915.04 |
开放日期: | 2023-06-16 |