- 无标题文档
查看论文信息

论文中文题名:

 一类带有Matukuma型源的k-Hessian方程径向正解的性质研究    

姓名:

 刘晋宇    

学号:

 21201103010    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0701    

学科名称:

 理学 - 数学    

学生类型:

 硕士    

学位级别:

 理学硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 理学院    

专业:

 数学    

研究方向:

 偏微分方程    

第一导师姓名:

 王彪    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-14    

论文答辩日期:

 2024-06-04    

论文外文题名:

 Asymptotic behavior of positive radial solution to the k-Hessian equation with a Matukuma-type source    

论文中文关键词:

 k-Hessian方程 ; 径向正解 ; 存在性 ; 唯一性 ; 渐近行为    

论文外文关键词:

 k-Hessian equation ; positive radial solution ; Existence ; Uniqueness ; asymptotic behavior    

论文中文摘要:

当k>=2时,k-Hessian算子是完全非线性的,该算子有两个特殊的情形分别为k=1时的Laplace算子和k=n时的Monge-Ampère算子。对于这两类算子已有比较完善的研究结果,包括其所对应方程的解的存在性、唯一性、渐近性态以及稳定性。k-Hessian方程作为连接这两类算子对应方程的桥梁,在完全非线性偏微分方程理论研究中扮演着重要的角色,同时该方程解的性质在数学物理和微分几何学科中具有重要应用。 
本文应用先验估计、泰勒公式以及Hopf分岔理论等方法研究了一类带有Matukuma型源的k-Hessian方程径向正解的性质。研究表明该方程的径向正解可以分为两种不同的类型:E型解和M型解,它们分别为正则解和奇异解,其中奇异解包含正则部分和奇异部分。在研究E型解在原点附近的渐近行为时,本文利用泰勒展开式进行循环迭代逐步改进E型解在原点附近的渐近展开式的精度。由于该类型的解为正则解,每次迭代只会出现新的正则部分,即提高了其渐近展开式的精度。
基于上述研究所得到相关结果以及循环迭代的思想,本文研究了M型解在原点附近的渐近行为。在k-Hessian方程的研究历程中,对于M型解的研究是相对较少的,且与E型解相比,它具有更加丰富的性质。因此在M型解的研究过程中,本文将以p为主指标的区间分为四个子区间并分别利用不同的方法进行研究。对于该指标的超临界情况,首先将子区间再次分为三个小区间,其次建立先验估计,最后利用相应的积分微分方程和泰勒公式进行循环迭代逐步提高M型解渐近展开式的精度。在子区间的次临界情况中,与k=1的情况相比,本文多次使用了泰勒公式并给出了相关参数更精确的范围以保证提高M型解的渐近展开式的精度。由于该类型的解为奇异解,在研究过程中需要反复进行迭代直到有正则部分的出现,之后的处理方法与E型解类似。对于该指标的临界和次临界情况,此时上述的积分微分方程不再成立,本文利用渐近自治的Lotka-Volterra系统和相应的逆变换得到了M型解的渐近展开式。

论文外文摘要:

The k-Hessian operator is completely nonlinear at k>=2 , which has two special cases: Laplace operator of k=1 and Monge-Ampere operator of k=n . The results of these two types of operators have been well developed, including the existence, uniqueness, asymptotic properties and stability of the solutions of the corresponding equations. As a bridge connecting the corresponding equations of these two types of operators, the k-Hessian equation plays an important role in the theoretical study of completely nonlinear partial differential equations, and the properties of the solution of the equation have important applications in mathematical physics and differential geometry.
In this paper, the properties of radial positive solutions of a class of k-Hessian equations with Matukuma-type sources are studied by using prior estimation, Taylor's formula and Hopf bifurcation theory. The results show that the radial positive solution of the equation can be divided into two different types: E-type solution and M-type solution, which are regular solution and singular solution, respectively, and the singular solution contains a regular part and a singular part. In order to study the asymptotic behavior of the E-type solution near the origin, this paper uses the Taylor expansion to perform cyclic iteration to gradually improve the accuracy of the Asymptotic expansion near the origin of the E-type solution. Since this type of solution is a regular solution, only a new regular part appears in each iteration, which improves the accuracy of its asymptotic expansion.
Based on the relevant results obtained from the above research and the idea of cyclic iteration, the asymptotic behavior of the M-type solution near the origin are studied. In the course of the study of the k-Hessian equation, the M-type solution is relatively rare, and it has more abundant properties than the E-type solution. Therefore, in the research process of M-type solution, this paper divides the interval of p as the main indicator into four subintervals and uses different methods to study them. For the supercritical case of the index, firstly, the subinterval is divided into three subintervals, then a priori estimation is established, and finally the accuracy of the asymptotic expansion of the M-type solution is gradually improved by using the corresponding integral differential equation and Taylor's formula. In the subcritical case of the subinterval, compared with the case of k=1, Taylor's formula is used several times and a more precise range of relevant parameters is given to ensure that the accuracy of the asymptotic expansion of the M-type solution is improved. Since this type of solution is a singular solution, it is necessary to iterate repeatedly in the research process until a regular part appears, and then the treatment method is similar to that of the E-type solution. For the critical and subcritical cases of this indicator, the above integral-differential equations no longer hold, and the asymptotic expansion of the M-type solution is obtained by using the asymptotic autonomous Lotka-Volterra system and the corresponding inverse transformation.

参考文献:

[1]柏爽爽. k-Hessian方程解的存在性研究 [D]. 北京: 华北电力大学, 2022.

[2]Wang X J. The k-Hessian Equations, Lecture Notes in Mathematics [M]. Germany: Springer, Berlin Heidelberg, 2009.

[3]Trudinger N S, Wang X J. The Monge-Ampère equation and its geometric applications, Handbook of Geometric Analysis [M]. Boston: International Press, 2008.

[4]Escudero C. Geometric principles of surface growth[J]. Physical Review Letters, 2008, 101(19): 196102.

[5]Escudero C. On poly harmonic regularizations of k-Hessian equations [J]. Nonlinear Analysis, 2015, 125(1): 732-758.

[6]Batt J, Faltenbacher W, Horst E. Stationary sperically systemetric models in stellar dynamics [J]. Archive for Rational Mechanics and Analysis, 1986, 93(2): 159-183.

[7]Deng Y B, Li Y, Yang F. A note on the positive solutions of an inhomogeneous elliptic equation on [J]. Journal of Differential Equations, 2009, 246(2): 670-680.

[8]Liu Y, Li Y, Deng Y B. Separation property of solutions for a semilinear elliptic equation [J]. Journal of Differential Equations, 2000, 163(2): 381-406.

[9]Li Y, Ni W M. On conformal scalar curvature equations in [J]. Duke Mathematical Journal, 1988, 57(3): 895-924.

[10]Ni W M. On the elliptic equation , it's generalizations and applications in geometry [J]. Indiana University Mathematics Journal, 1982, 31(4): 493-529.

[11]Ni W M, Yotsutani S. Semilinear elliptic equations of Matukuma-type and related topics [J]. Japan Journal of Applied Mathematics, 1988, 5(1):1-32.

[12]Batt J, Li Y. The positive solutions of the Matukuma equation and the problem of finite radius and finite mass [J]. Archive for Rational Mechanics and Analysis, 2010, 198(2): 613-675.

[13]Li Y, Ni W M. On the existence and symmetry properties of finite total mass solutions of the Matukuma equation, the Eddington equation and their generalizations [J]. Archive for Rational Mechanics and Analysis, 1989, 108(2): 175–194.

[14]Noussair E S, Swanson C A. Solutions of Matukuma’s equation with finite total mass [J]. Indiana University Mathematics Journal, 1989, 38(3): 561–577.

[15]Yanagida E. Structure of positive radial solutions of Matukuma type [J]. Japan Journal of Industrial and Applied Mathematics, 1991, 8(1): 165-173.

[16]Wang B, Zhang Z C, Li Y. The radial positive solutions of the Matukuma equation in higher dimensional space: singular solution [J]. Journal of Differential Equations, 2012, 253(12): 3232-3265.

[17]Li Y. Asymptotic behavior of positive solutions of equation in [J]. Journal of Differential Equations, 1992, 95(2): 304-330.

[18]Wang B, Zhang Z C. Asymptotic behavior of positive solutions of the Hénon equation [J]. Rocky Mountain Journal of Mathematics, 2018, 48(8): 2717-2749.

[19]Wang B, Zhang Z C. Asymptotic behavior of positive solutions for quasilinear elliptic equations [J]. Nonlinear Differential Equations and Applications, 2022, 29: 44.

[20]Gidas B, Spruck J. Global and local behavior of positive solutions of nonlinear elliptic equations [J]. Communications on Pure and Applied Mathematics, 1981, 34(4): 525-598.

[21]Kwong M K, Li Y. Uniqueness of radial solutions of semilinear elliptic equations [J]. Transactions of the American Mathematical Society, 1992, 333(1): 339–364.

[22]Batt J, Pfaffelmoser K. On the radius continuity of the models of polytropic gas spheres which correspond to the positive solutions of the generalized Emden-Fowler equation [J]. Mathematical Methods in the Applied Sciences, 1988, 10(5): 499-516.

[23]Kawano N, Yanagida E, Yotsutani S. Structure theorems for positive radial solutions to in [J]. Funkcialaj Ekvacioj, 1993, 36(3): 557–579.

[24]Matukuma T. Sur la dynamique des amas globulaires stellaires [J]. Proceedings of the Imperial Academy, 1930, 6(4): 133-136.

[25]Li Y. On the positive solutions of the Matukuma equation [J]. Duke Mathematical Journal, 1993, 70(3): 575-589.

[26]Yanagida E, Yotsutani S. Global structure of positive solutions to equations of Matukuma type [J]. Archive for Rational Mechanics and Analysis, 1996, 134(3): 199–226.

[27]Li L, Lei Y T. On integral equations of Matukuma type [J]. Journal of Differential Equations, 2023, 377(suppl): 888-933.

[28]Alarcón S, Quaas A. Large number of fast decay ground states to Matukuma-type equations [J]. Journal of Differential Equations, 2010, 248(4): 866-892.

[29]Felmer P, Quaas A, Tang M. On the complex structure of positive solutions to Matukuma-type equations [J]. Annales de l'Institut Henri Poincaré C, Analyse non linéaire, 2009, 26(3): 869-887.

[30]Morishita H, Yanagida E, Yotsutani S. Structure of positive radial solutions including singular solutions to Matukuma's equation [J]. Communications on Pure and Applied Analysis, 2005, 4(4): 871-888.

[31]Brandolini B. On the symmetry of solutions to a -Hessian type equation [J]. Advanced Nonlinear Studies, 2013, 13(2): 487-493.

[32]Gavitone N. Isoperimetric estimates for eigenfunctions of Hessian operators [J]. Ricerche di Matematica, 2009, 58(2): 163-183.

[33]Gavitone N. Weighted eigenvalue problems for Hessian equations [J]. Nonlinear Analysis: Theory, Methods & Applications, 2009, 73(11): 3651-3661.

[34]Nakamori S, Takimoto K. A Bernstein type theorem for parabolic -Hessian equations [J]. Nonlinear Analysis: Theory, Methods & Applications, 2015, 117: 211-220.

[35]Pietra F D, Gavitone N. Upper bounds for the eigenvalues of Hessian equations [J]. Annali di Matematica Pura ed Applicata, 2014, 193(3): 923-938.

[36]Wei W. Uniqueness theorems for negative radial solutions of -Hessian equations in a ball [J]. Journal of Differential Equations, 2016, 261(6): 3756-3771.

[37]Zhang Z J. Boundary behavior of large solutions to the Monge-Ampère equations with weights [J]. Journal of Differential Equations, 2015, 259(5): 2080-2100.

[38]Sánchez J, Vergara V. Bounded solutions of a -Hessian equation involving a weighted nonlinear source [J]. Journal of Differential Equations, 2017, 263(1): 687-708.

[39]Miyamoto Y, Sánchez J, Vergara V. Multiplicity of bounded solutions to the -Hessian equation with a Matukuma-type source [J]. Revista Matemática Iberoam-ericana, 2019, 35(5): 1559-1582.

[40]Zhang Z J, Zhou S. Existence of entire positive -convex radial solutions to Hessian equations and systems with weights [J]. Applied Mathematics Letters, 2015, 50(3): 48-55.

[41]Wang X J. A class of fully nonlinear elliptic equations and related functionals [J]. Indiana University Mathematics Journal, 1994, 43(1): 25-54.

[42]Sánchez J, Vergara V. Bounded solutions of a -Hessian equation in a ball [J]. Journal of Differential Equations, 2016, 261(1): 797-820.

[43]Thieme H R. Asymptotically autonomous differential equations in the plane [J]. Rocky Mountain Journal of Mathematics, 1994, 24(1): 351–380.

[44]Peng Q L, Sun L, Chen. Asymptotic Behavior of the nonautonomous two-species Lotka-Volterra competition models [J]. Computers & Mathematics with Applications, 1994, 27(12): 53-60.

[45]Hassard B D, Kazarinoff N D, Wan Y H. Theory and Applications of Hopf Bifurcation [M]. Cambridge University Press, Cambridge, 1981.

中图分类号:

 O175.2    

开放日期:

 2024-06-14    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式