论文中文题名: | 一类带有Matukuma型源的k-Hessian方程径向正解的性质研究 |
姓名: | |
学号: | 21201103010 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 0701 |
学科名称: | 理学 - 数学 |
学生类型: | 硕士 |
学位级别: | 理学硕士 |
学位年度: | 2024 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 偏微分方程 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2024-06-14 |
论文答辩日期: | 2024-06-04 |
论文外文题名: | Asymptotic behavior of positive radial solution to the k-Hessian equation with a Matukuma-type source |
论文中文关键词: | k-Hessian方程 ; 径向正解 ; 存在性 ; 唯一性 ; 渐近行为 |
论文外文关键词: | k-Hessian equation ; positive radial solution ; Existence ; Uniqueness ; asymptotic behavior |
论文中文摘要: |
当k>=2时,k-Hessian算子是完全非线性的,该算子有两个特殊的情形分别为k=1时的Laplace算子和k=n时的Monge-Ampère算子。对于这两类算子已有比较完善的研究结果,包括其所对应方程的解的存在性、唯一性、渐近性态以及稳定性。k-Hessian方程作为连接这两类算子对应方程的桥梁,在完全非线性偏微分方程理论研究中扮演着重要的角色,同时该方程解的性质在数学物理和微分几何学科中具有重要应用。 |
论文外文摘要: |
The k-Hessian operator is completely nonlinear at k>=2 , which has two special cases: Laplace operator of k=1 and Monge-Ampere operator of k=n . The results of these two types of operators have been well developed, including the existence, uniqueness, asymptotic properties and stability of the solutions of the corresponding equations. As a bridge connecting the corresponding equations of these two types of operators, the k-Hessian equation plays an important role in the theoretical study of completely nonlinear partial differential equations, and the properties of the solution of the equation have important applications in mathematical physics and differential geometry. |
参考文献: | ﹀ |
中图分类号: | O175.2 |
开放日期: | 2024-06-14 |