- 无标题文档
查看论文信息

论文中文题名:

 基于AGA的煤自然发火期影响因素组合分析    

姓名:

 杨戍    

学号:

 02189    

保密级别:

 公开    

学科代码:

 081903    

学科名称:

 安全技术及工程    

学生类型:

 硕士    

院系:

 能源学院    

专业:

 安全工程    

第一导师姓名:

 徐精彩    

第二导师姓名:

 陈晓坤    

论文外文题名:

 Adaptive Genetic Algorithm based Combination Analysis of the Influence factors to coal spontaneous combustion period    

论文中文关键词:

 煤自燃 ; 热重实验 ; 自然发火期 ; 自适应遗传算法 ; 组合分析    

论文外文关键词:

 coal spontaneous combustion thermogravi    

论文中文摘要:
煤自燃问题是影响煤炭生产安全的最主要灾害之一,而煤自然发火期是衡量煤自燃性大小的最直接、现场应用最广泛的重要参数之一。因此,研究影响煤自然发火期因素及其规律具有十分重要的意义。 本文从宏观特征参数、特征温度及微观官能团特征等多方面,利用多种实验手段分析了影响煤自然发火期的主要因素。通过热重实验研究了煤氧复合不同阶段的特征温度变化规律,给出了粒度、氧浓度对煤自燃过程影响规律,测出了临界氧浓度为13%左右;通过傅立叶红外光谱实验从微观结构上分析了煤氧复合不同阶段参与反应的活性官能团,说明煤氧复合低温阶段(150℃以下)煤中羟基、亚甲基和碳碳双键等“活性结构”为主要反应物,其含量影响煤氧复合过程和自然发火期;通过煤样程序升温实验测算出煤氧复合低温阶段的耗氧速率、CO、CO2等气体产生速率、放热强度最大值、最小值及特征放热强度等特征参数,分析了煤样粒度对煤自然发火期的影响关系,同时通过分析多地区不同煤样临界温度得出不同煤样特征温度范围在50~80℃范围内。 结合实验分析结果和煤自然发火实验条件,本文采用组合方法建立了分析煤自然发火期的主要影响因素与其之间的定量关系。采用多元线性回归模型、灰色模型GM(0,5)和BP神经网络模型分别建立煤样粒度、空隙率、供风量、起始温度和特征放热强度与煤自然发火期之间的定量关系。然后采用基于自适应遗传算法(Adaptive Genetic Algorithm,AGA)优化的组合模型进行组合分析,以弥补单计算模型不足、提高分析精度。最后以双鸭山东荣二矿、三矿实验数据为例,验证了本文建立的关系模型,结果表明组合分析法模型能较好的反映出煤氧复合过程中主要影响因素对其的影响。
论文外文摘要:
The spontaneous combustion of coal seam is one of the major calamities in safe production of coal mine. And the spontaneous combustion period is the most direct and most extensive used key parameter. So it has great importance and significance to study the influence factors to coal spontaneous combustion period. This paper analyzed the main influence factors to coal spontaneous combustion period by different experiments focusing on macroscopical characteristic parameters, characteristic temperatures and microcosmic active groups. Firstly the changing rule of characteristic temperature of coal by Thermogravimetric Analysis is discussed, the rule of particle size and oxygen density influences to coal ignition process is given, and the critical oxygen density is measured at about 13%. Then the active function group character at different steps is classified and analysed, which show that under 150 centigrate the hydroxide, sub-cymene and carbon double bond,etc are the main reactant of coal self ignition. And through programmed heating experiment, oxygen consuming velocity, carbon monoxide producing velocity, carbon dioxide producing velocity, etc, the maximum and minimum exothermic intensity and the characteristic exothermic intensity are surveyed, also particle size influence is discussed, and critical temperature of coal sample in different areas is contrasted, which all falls in the scope of 50~80 centigrate. Based on the experiment results achieved, this paper tries to build up the rational connection between coal spontaneous combustion period and the main influnece factors by combination analysis method. The fixed relationship of coal particle size, intespace ratio, wind supply capacity, initialization temperature, characteristic exothermic intensity and spontaneous combustion period is established by multi-parameter Regression Model, Grey Model,or GM(0,5) and Neural Network Model, which provides a real approach to study coal self ignition. Then, Genetic Algorithm based Combination Analysis Model is realized to reduce the insufficient accuracy of sole analysis model. At the end of this paper, the experiment data of ShuangYaShan DongRong Second Mine and Third Mine is presented as samples to test different models established above, results show that combination analysis model can reflect the relationship of influence factors to spontaneous combustion period.
中图分类号:

 TD712    

开放日期:

 2005-12-02    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式