论文中文题名: | 深埋煤层开采冲击地压发生机理试验研究 |
姓名: | |
学号: | 19204209099 |
保密级别: | 保密(1年后开放) |
论文语种: | chi |
学科代码: | 085213 |
学科名称: | 工学 - 工程 - 建筑与土木工程 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2022 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 深埋煤层冲击地压机理研究 |
第一导师姓名: | |
第一导师单位: | |
第二导师姓名: | |
论文提交日期: | 2022-06-14 |
论文答辩日期: | 2022-05-30 |
论文外文题名: | Experimental Study on Coal Burst Mechanism in Deep Coal Seam Mining |
论文中文关键词: | |
论文外文关键词: | Binchang mining area ; Deep buried coal seam ; Coal burst ; Occurrence mechanism ; Mechanical properties of coal rock ; Energy ; Acoustic emission |
论文中文摘要: |
彬长矿区作为我国重要的煤炭生产基地之一,随着浅层煤层开采殆尽,生产重心逐渐向深部转移,煤岩体在高地应力、高地温、高岩溶水压和工程开采扰动的影响下,冲击地压动力灾害发生的频度和强度逐渐增加。由于冲击地压诱发条件的多样性与复杂性,难以用统一的理论解释所有的冲击地压现象。开展彬长矿区深埋煤层冲击地压发生机理试验研究,可为矿井动力灾害发生机理、监测技术和防治措施提供重要的理论依据。本文以彬长矿区冲击地压灾害频发的某深埋煤层为研究对象,采用理论分析与室内试验相结合的方法开展研究工作,取得了以下主要成果和结论: (1)综合分析彬长矿区某矿深埋煤层地质构造条件、破坏类型判据、采掘活动、冲击地压显现特征,对其冲击地压诱发因素进行研究。高埋深与高地应力造成冲击地压启动门槛大幅降低,积蓄了大量弹性变形能,工程开采导致顶板覆岩运动,使煤岩体受到一定频率的动载扰动,在动静载荷叠加作用下诱发冲击地压灾害。 (2)完成了彬长矿区某矿深埋煤层煤岩冲击倾向性测定试验、X衍射试验和不同含水率煤岩的冲击倾向性特征试验。测定该煤层煤岩具有强冲击倾向性特征;相同地质条件下,微晶参数芳香层片直径与层片平均堆砌厚度的比值越大的强冲击倾向性煤岩,单轴抗压强度越高,引发冲击地压的可能性越大;煤层煤岩含水率与其冲击倾向性指数大小基本遵循Boltzmann模型拟合。 (3)完成了强冲击倾向性煤岩在不同动载频率及振幅下的动静组合加载试验。随着动载频率与振幅的增大,煤岩变形能力呈增幅趋势,承载能力大幅降低,呈拉剪复合破坏模式。低动载频率下,煤岩系统能量释放大小随动载振幅增大而增大,而高频率下能量释放大小与动载振幅呈负相关。动载初期,声发射高频高幅响应,动载后期,声发射趋于沉寂,且随着动载频率增大,后续静载下煤岩失稳破坏时,声发射活跃程度较高。声发射RA-AF值分布随着动载频率增大,由张拉破坏向剪切破坏过渡。声发射b值呈跳崖式或断崖式的下降趋势可作为强冲击倾向性煤岩发生失稳破坏的前兆信息。 (4)完成了强冲击倾向性煤岩在不同应变加载速率条件下的单、三轴声发射试验。随着应变加载速率的增大,煤岩峰值强度逐渐减小,峰值应变呈先增高后降低;随着围压增大,煤岩峰值应变逐渐增加,峰值强度先升高后降低,破坏形式由张拉劈裂破坏转化为剪切破坏。单轴压缩下,煤岩耗散应变能大小与应变加载速率呈负相关,随着围压增大,能量转化方式以耗散应变能为主,不同应变加载速率下煤岩储能极限与其承载能力呈正相关。不同应变加载速率与围压下,煤岩应变能变化趋势基本遵循Slogistic模型增长。声发射累计计数率与绝对能量率的峰值可作为预示煤岩即将发生失稳破坏前兆的临界点。当煤岩声发射主频分布低值响应、破裂尺度骤增时,极具冲击危险性。 (5)基于彬长矿区深埋煤层开采冲击地压发生机理,利用微震及地音监测系统对煤层及其围岩开展实时监测,对高能量积聚、释放的预警区域采取爆破、水力压裂、大直径钻孔卸压与加强支护措施,经工程实践解危效果检验,采取的防治措施有效降低了煤层及其围岩的动静载荷水平,提高了工作面的抗冲击能力,保证了工作面的安全开采。 |
论文外文摘要: |
Binchang mining area is one of the important coal production bases in China. With the exploitation of shallow coal seams, the production center of gravity gradually shifts to the deep. Under the influence of high ground stress, high ground temperature, high karst water pressure and engineering mining disturbance, the frequency and intensity of coal burst dynamic disasters increase gradually. Due to the diversity and complexity of induced conditions of coal burst, it is difficult to explain all phenomena of coal burst with unified theory. The experimental study on coal burst mechanism of deep coal seam in Binchang mining area can provide important theoretical basis for the mechanism of mine dynamic disaster, monitoring technology and prevention measures. In this paper, a deep buried coal seam with frequent coal burst disasters in Binchang mining area is taken as the research object, and the research work is carried out by combining theoretical analysis with laboratory test. The main results and conclusions are as follows : (1) Based on the comprehensive analysis of geological structure conditions, failure type criteria, mining activities and coal burst appearance characteristics of deep-buried coal seam in a mine in binchang mining area, the coal burst inducing factors were studied. High buried depth and high in-situ stress result in a large reduction in the threshold of coal burst initiation, and a large amount of elastic deformation energy is accumulated. Engineering mining leads to the movement of roof overburden, which causes the coal rock mass to be disturbed by a certain frequency of dynamic load, and induces coal burst disaster under the superposition of dynamic and static load. (2) The impact tendency test, X-ray diffraction test and impact tendency characteristic test of coal rock with different water contents in deep buried coal seam of a mine in Binchang mining area were completed. It was determined that the coal rock of the coal seam had strong impact tendency characteristics. Under the same geological conditions, the larger the ratio of the diameter of the aromatic lamellae with the average stacking thickness of the lamellae is, the stronger the strong impact-prone coal rock is. The higher the uniaxial compressive strength is, the greater the possibility of coal burst is. The water content of coal rock and its impact tendency index basically follow Boltzmann model fitting. (3) The dynamic and static combined loading test of coal rock with strong impact tendency under different dynamic loading frequency and amplitude was completed. With the increase of dynamic load frequency and amplitude, the deformation capacity of coal rock shows an increasing trend, and the bearing capacity is greatly reduced, showing a tensile-shear composite failure mode. At low dynamic load frequency, the energy release of coal rock system increases with the increase of dynamic load amplitude, while at high frequency, the energy release is negatively correlated with the dynamic load amplitude. In the early stage of dynamic load, the acoustic emission has a high frequency and high amplitude response. In the late stage of dynamic load, the acoustic emission tends to be quiet. With the increase of dynamic load frequency, the acoustic emission activity is high when the coal rock is unstable and damaged under subsequent static load. The RA-AF value distribution of AE transits from tensile failure to shear failure with the increase of dynamic load frequency. The decreasing trend of acoustic emission b-value in cliff type or cliff type can be used as the precursor information of instability failure of coal rock with strong impact tendency. (4) The uniaxial and triaxial AE tests of coal with strong impact tendency under different strain loading rates were completed. With the increase of strain loading rate, the peak strength of coal rock decreases gradually, and the peak strain increases first and then decreases. With the increase of confining pressure, the peak strain of coal rock increases gradually, and the peak strength increases first and then decreases. The failure mode changes from tensile splitting failure to shear failure. Under uniaxial compression, the dissipation strain energy of coal rock is negatively correlated with the strain loading rate. With the increase of confining pressure, the energy conversion mode is dominated by dissipation strain energy. The energy storage limit of coal rock under different strain loading rates is positively correlated with its bearing capacity. Under different strain loading rates and confining pressures, the variation trend of coal rock strain energy basically follows the growth of Slogistic model. The peak value of cumulative count rate and absolute energy rate of acoustic emission can be used as a critical point for predicting the imminent instability and failure of coal rock. When the main frequency distribution of coal rock acoustic emission has a low value response and the fracture scale increases sharply, it is extremely dangerous to impact. (5) Based on the occurrence mechanism of coal burst in deep-buried coal seam mining in Binchang mining area, the microseismic and geoacoustic monitoring system is used to carry out real-time monitoring of coal seam and its surrounding rock. Blasting, hydraulic fracturing, large-diameter borehole pressure relief and strengthening support measures are adopted for the early warning area of high energy accumulation and release. The results of engineering practice show that the adopted prevention and control measures effectively reduce the dynamic and static load level of coal seam and its surrounding rock, improve the impact resistance of working face, and ensure the safe mining of working face. |
参考文献: |
[1]康红普, 徐刚, 王彪谋, 等. 我国煤炭开采与岩层控制技术发展40a及展望[J]. 采矿与岩层控制工程学报, 2019, 1(2): 1-33. [2]齐庆新, 李宏艳, 邓志刚, 等. 我国冲击地压理论、技术与标准体系研究[J]. 煤矿开采, 2017, 22(1): 1-5. [3]齐庆新, 窦林名, 潘一山, 等. 冲击地压理论与技术[M]. 徐州: 中国矿业大学出版社, 2008. [4]李宏艳, 莫云龙, 孙中学, 等. 煤矿冲击地压灾害防控技术研究现状及展望[J]. 煤炭科学技术, 2017, 47(1): 62-68. [5]章梦涛. 冲击地压机理的探讨[J]. 阜新矿业学院学报, 1985(S1): 65-72. [8]王淑坤, 康立军, 齐庆新. 煤层冲击倾向性分级及测定方法[R]. 煤炭科学研究总院: 北京开采研究所, 1998. [9]张万斌, 王淑坤, 腾学军. 我国冲击地压研究与防治的进展[J]. 煤炭学报, 1992, 17(3): 27-35. [10]章梦涛. 冲击地压失稳理论与数值模拟计算[J]. 岩石力学与工程学报, 1987(3): 15-22. [11]李玉生. 冲击地压机理及其初步应用[J]. 中国矿业学院学报, 1985(3): 42-48. [12]齐庆新. 层状煤岩体结构破坏的冲击矿压理论与实践研究[D]. 煤炭科学研究总院:北京开采研究所, 1996. [13]齐庆新, 元伟, 刘天泉. 冲击地压粘滑失稳机理的实验研究[J]. 煤炭学报, 1997, 22(2): 34-38. [14]窦林名, 陆菜平, 牟宗龙, 等. 冲击矿压的强度弱化减冲原理及其应用[J]. 煤炭学报, 2005, 30(6): 690-694. [15]潘岳. 矿井断层冲击地压的折迭突变模型[J]. 岩石力学与工程学报, 2001, 20(1): 43-48. [16]潘一山, 章梦涛. 用突变理论分析冲击矿压发生的物理过程[J]. 阜新矿业学院学报, 1992, 11(1): 1-18. [17]谭云亮. 矿山岩层运动非线性动力学特征研究[D]. 沈阳: 东北大学, 2002. [19]谢和平. 岩爆的分形特征和机理[J]. 岩石力学与工程学报, 1993, 12(1): 28-37. [20]潘一山, 李忠华, 章梦涛. 我国冲击地压分布、类型、机理及防治研究[J]. 岩石力学与工程学报, 2003, 22(11): 1844-1851. [21]姜耀东, 赵毅鑫, 何满潮, 等. 冲击地压机制的细观实验研究[J]. 岩石力学与工程学报, 2007, 26(5): 901-907. [22]潘俊锋, 宁宇, 毛德兵, 等. 煤矿开采冲击地压启动理论[J]. 岩石力学与工程学报, 2012, 31(3): 586-596. [23]姜福兴, 冯宇, KOUAME K J A, 等. 高地应力特厚煤层“蠕变型”冲击机理研究[J]. 岩土工程学报, 2015, 37(10): 1762-1768. [24]王宏伟, 姜耀东, 邓代新, 等. 义马煤田复杂地质赋存条件下冲击地压诱因研究[J]. 岩石力学与工程学报, 2017, 36(A2): 4085-4092. [25]来兴平, 张帅, 代晶晶, 等. 水力耦合作用下煤岩多尺度损伤演化特征[J]. 岩石力学与工程学报, 2020, 39(S2): 3217-3228. [26]张广辉, 邓志刚, 蒋军军, 等. 不同加载方式下强冲击倾向性煤声发射特征研究[J]. 采矿与安全工程学报, 2020, 37(5): 977-990. [27]魏辉. 不同煤岩系统的冲击显现机理及能量演化特征分析[J]. 煤矿安全, 2020, 51(5): 197-202. [29]任建喜, 王晓琳, 张琨, 等. 不同加载模式下煤岩破坏特性试验研究[J]. 煤炭工程, 2020, 52(10): 125-129. [30]张天军, 陈智云, 潘红宇, 等. 水对含孔煤体蠕变声发射特性影响的试验研究[J]. 煤炭科学技术, 2020, 1-9. [35]李波波, 张尧, 任崇鸿, 等. 三轴应力下煤岩损伤-能量演化特征研究[J]. 中国安全科学学报, 2019, 10(7): 98-104. [38]杨磊, 高富强, 王晓卿, 等. 煤岩组合体的能量演化规律与破坏机制[J].煤炭学报, 2019, 44(12): 3894-3902. [42]王文, 李化敏, 顾合龙, 等. 三维动静组合加载含水煤样强度特征试验研究[J]. 岩石力学与工程学报, 2017, 36(10): 2406-2414. [43]薛东杰, 周宏伟, 王子辉, 等. 不同加载速率下煤岩采动力学响应及破坏机制[J]. 煤炭学报, 2016, 41(3): 595-602. [44]杨永杰, 王德超, 李博, 等. 煤岩三轴压缩损伤破坏声发射特征[J]. 应用基础与工程科学学报, 2015, 23(1): 127-135. [45]蔡益栋, 刘大锰, 姚艳斌, 等. 三轴应力下饱和水煤岩破裂的声发射特征[J]. 地学前缘, 2015, 22(3): 394-401. [47]来兴平, 代晶晶, 李超. 急倾斜煤层开采覆岩联动致灾特征分析[J]. 煤炭学报, 2020, 45(1): 122-130. [49]蒙伟, 何川, 吴枋胤, 等. 地温梯度孕育的岩体热应力对岩爆预测的影响[J/OL]. 西南交通大学学报, 2022: 1-8. [50]黄金龙, 耿玉建, 赵砚. 断层处煤层冲击地压机理研究及危害分析[J]. 内蒙古煤炭经济, 2020, (9): 1-2. [53]焦彪, 史星星, 田晓兵. 胡家河煤矿冲击地压微震多参量监测预警研究[J]. 煤炭科技, 2020, 4(4): 147-150. [54]魏立科, 姜德义, 王翀, 等. 煤矿冲击地压灾害风险监察智能分析系统关键技术架构研究[J]. 煤炭学报, 2020. [55]马涛, 聂书遥. 孟村煤矿强冲击地压条件下巷道维护方案[J]. 陕西煤炭, 2020, 39(6): 124-127. [56]薛成春, 曹安业, 牛风卫, 等. 深部不规则孤岛煤柱区冲击地压机理及防治[J]. 采矿与安全工程学报, 2021, 38(3): 479-486. [58]陈卫军. 鄂尔多斯西部煤矿冲击地压治理技术研究[J]. 煤炭科学技术, 2018, 46(10): 99-104. [60]王旭宏, 杜献杰, 冯国瑞, 等. “三硬”煤层巷道冲击地压发生机理研究[J]. 采矿与安全工程学报, 2017, 34(4): 663-669. [63]薛俊华, 刘超, 王龙. 组合串联煤岩冲击倾向性影响因素数值模拟[J]. 西安科技大学学报, 2016, 36(1): 65-69. [66]余学义, 许文强, 刘俊杰, 等. 亭南煤矿深埋大采高综采工作面矿压规律研究[J]. 煤炭工程, 2015, 47(8): 80-83. [67]施天威, 潘一山, 王爱文, 等. 基于能量贮存及释放主体的煤矿冲击地压分类[J]. 煤炭学报, 2020, 45(2):524-532. [68]谢和平, 鞠杨, 黎立云. 基于能量耗散与释放原理的岩石强度与整体破坏准则[J]. 岩石力学与工程学报, 2005, 24(17): 3003-3010. [69]马振乾. 厚层软弱顶板巷道灾变机理及控制技术研究[D]. 北京: 中国矿业大学, 2016. [70]齐庆新, 彭永伟, 李宏艳, 等. 煤岩冲击倾向性研究[J]. 岩石力学与工程学报, 2011(S1): 2736-2742. [71]刘学生. 动载荷作用下巷道围岩冲击地压机理及防控研究[D]. 青岛: 山东科技大学, 2017. [72]煤和岩石物理力学性质试验规程: GB/T 23561-2009. [73]冲击地压测定、监测与防治方法: GB/T 25217.2-2010. [74]赵毅鑫, 姜耀东, 张雨. 冲击倾向性与煤体细观结构特征的相关规律[J]. 煤炭学报, 2007, 32(1): 64-68. [75]潘一山. 煤矿冲击地压扰动响应失稳理论及应用[J]. 煤炭学报, 2018, 43(8): 2091-2098. [76]李夕兵, 冯帆, 宫凤强, 等. 深部硬岩矿山岩爆的动静组合加载力学机制与动力判据[J]. 岩石力学与工程学报, 2019, 38(4): 708-723. [77]宫凤强, 潘俊锋, 江权. 岩爆和冲击地压的差异解析及深部工程地质灾害关键机理问题[J]. 工程地质学报, 2021, 29(4): 933-961. [78]荣海, 于世棋, 张宏伟, 等. 基于煤岩动力系统能量的冲击地压矿井临界深度判别[J]. 煤炭学报, 2021, 46(4): 1263-1270. [80]邢鲁义. 周期载荷下煤岩疲劳损伤破坏演化机理及声发射前兆特征研究[D]. 青岛: 山东科技大学, 2019. [81]谢和平, 鞠杨, 黎立云. 基于能量耗散与释放原理的岩石强度与整体破坏准则[J]. 岩石力学与工程学报, 2005, 24(17): 3003-3010. [82]段会强. 三轴周期荷载作用下煤的疲劳破坏及分形特征研究[D]. 青岛: 山东科技大学, 2018. [83]纪洪广. 混凝土材料声发射性能研究与应用[M]. 北京: 煤炭工业出版社, 2004. [85]陈田. 水对煤样力学性质与破坏形式的影响[D]. 徐州: 中国矿业大学, 2017. [90]董陇军, 张凌云. 岩石破坏声发射b值的误差分析[J]. 长江科学院院报, 2020, 37(8): 75-81. [91]谢和平, 鞠杨, 黎立云, 等. 岩体变形破坏过程的能量机制[J]. 岩石力学与工程学报, 2008, 27(9): 1729-1740. [92]马振乾, 姜耀东, 李彦伟, 等. 加载速率和围压对煤能量演化影响试验研究[J]. 岩土工程学报, 2016, 38(11): 2114-2121. [93]罗可, 招国栋, 曾佳君, 等. 加载速率影响的单裂隙类岩石试样能量演化规律[J]. 应用力学学报, 2020, 37(3): 1151-1159. [95]张艳博, 梁鹏, 孙林, 等. 单轴压缩下饱水花岗岩破裂过程声发射频谱特征实验研究[J]. 岩土力学, 2019, 40(7): 2497-2506. [96]徐启钟, 于新凯, 汤大明, 等. 水-力耦合条件下玄武岩声发射特征试验研究[J/OL]. 武汉大学学报, 2022, 工学版: 1-9. [100]刘希灵, 王金鹏, 李夕兵, 等. 压缩与劈裂条件下矿岩声发射信号的频率特性[J]. 实验力学, 2018, 33(2): 201-208. [105]莫云龙, 李宏艳, 邓志刚, 等. 不同冲击倾向性煤能量响应初始损伤效应分析[J]. 采矿与安全工程学报, 2020, 37(6): 1205-1212. [106]杨永杰, 段会强, 邢鲁义. 周期荷载作用下煤的疲劳变形及能量演化特征[J]. 应用基础与工程科学学报, 2018, 26(1): 154-167. [107]王文, 李化敏, 顾合龙, 等. 动静组合加载含水煤样能量耗散特征分析[J]. 岩石力学与工程学报, 2015(S2): 3965-3971. [108]侯连浪, 刘向君, 梁利喜, 等. 滇东黔西松软煤岩三轴压缩力学特性及能量演化特征[J]. 中国安全生产科学技术, 2019, 15(2): 105-110. |
中图分类号: | TD324 |
开放日期: | 2023-06-14 |