- 无标题文档
查看论文信息

题名:

 热损伤对煤氧化特性的影响及其作用机制研究    

作者:

 宋波波    

学号:

 20120089028    

保密级别:

 保密(2年后开放)    

语种:

 chi    

学科代码:

 083700    

学科:

 工学 - 安全科学与工程    

学生类型:

 博士    

学位:

 工学博士    

学位年度:

 2024    

学校:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 煤火灾害防治    

导师姓名:

 翟小伟    

导师单位:

 西安科技大学    

提交日期:

 2024-06-21    

答辩日期:

 2024-06-04    

外文题名:

 Study on the influence of thermal damage on coal oxidation characteristics and its mechanism    

关键词:

 热损伤煤 ; 氧化特性 ; 煤自燃 ; 活性官能团 ; 影响机制    

外文关键词:

 Thermal damage coal ; Oxidation characteristics ; Spontaneous combustion of coal ; Active functional group ; Influence mechanism    

摘要:

煤自燃是煤炭开采过程的主要灾害之一,煤火蔓延可能形成难以控制的大面积煤田火灾,在高温环境影响下火区周边煤体氧化反应性发生变化,进而对煤火灾害的蔓延、发展造成影响,然而目前煤田火区热损伤对煤氧化特性影响的研究较少。基于此,本文首先研究了煤热处理过程的反应动力学特征及气体生成规律,确定了模拟煤热损伤过程的研究条件并制备出不同温度热损伤煤样,测试分析了热损伤作用对煤氧化反应宏观特性与微观结构的影响,结合原位红外技术研究了煤氧化升温过程主要活性官能团的演变规律,通过灰色关联分析方法确定了影响热损伤煤氧化特性的关键活性基团,并采用量子化学方法研究了活性基团的氧化反应历程,揭示了热损伤对煤氧化特性的影响作用机制。主要研究成果如下:

采用热重分析仪与管式电阻炉,确定了终止温度、升温速率、终温保持时间对煤热处理过程的影响,得出温度是影响煤热处理过程的首要因素,随温度增大煤的热失重曲线呈现明显的阶段性特征,室温~100 ℃主要发生脱水干燥;100~200 ℃主要为脱气过程;200~400 ℃依次发生脱气、脱羧并初步开始热解;400~600 ℃进入快速热解阶段;600 ℃之后为缩聚反应阶段。升温速率越快微商热重曲线特征峰越窄、越尖锐,反应速率越快,升温速率越慢煤在特定温度下的剩余质量越小,反应程度越高。煤热处理过程气体产物浓度随终温保持时间动态变化,在保持时间达360 min后产物浓度可保持平稳,据此确定了模拟煤热损伤过程的反应条件。

采用管式电阻炉制备出不同温度热损伤煤样,通过程序升温实验系统与差示扫描量热仪,从热损伤煤氧化过程的温升特性、气体生成规律、热效应及氧化动力学等角度,分析了热损伤作用对煤氧化宏观特性的影响。发现100 ℃热损伤煤的交叉点温度降低,O2浓度及CO、CO2、CH4、C2H6、C2H4等气体产物浓度变化早于原煤,煤样热平衡温度降低、反应前期吸热量减小、更早进入放热阶段,表明煤的自燃倾向增强;200 ℃、400 ℃、600 ℃热损伤煤样交叉点温度递增,气体浓度变化幅度减小,热平衡温度明显延后、热流曲线中由挥发性物质氧化造成的缓慢放热峰逐渐降低最后消失,煤的氧化反应性随热处理温度升高逐渐降低。通过改进的KAS法研究了热损伤煤氧化反应活化能的变化规律,发现100 ℃热损伤煤活化能低于原煤,200 ℃热损伤煤高于原煤,400 ℃、600 ℃热损伤煤的活化能在转化率0~0.45范围内高于原煤、而在转化率大于0.45以后低于原煤,表明该煤样低温阶段自燃倾向降低,但在高温阶段更易发生燃烧。

采用X射线衍射仪与傅里叶变换红外光谱仪分析了热损伤作用对煤微观结构的影响,结合原位红外技术研究了热损伤煤氧化活性基团的演变规律,发现随热处理温度升高煤中芳香层片间距减小,平均直径、平均堆砌高度及有效堆砌片数增大,微晶结构有序性增强。热损伤作用使煤中活性基团减少,随着热处理温度升高煤表面活性官能团中–OH、脂肪C–H、C–O、C=O的相对含量减少,而取代芳烃、芳环C=C等芳香族官能团相对含量增多,导致煤氧化反应性降低。热损伤煤氧化升温过程中活性官能团含量随温度的变化趋势与原煤一致,超过热解温度的热损伤作用使煤分子芳核更加稳定,官能团变化速率明显降低。

基于灰色关联分析方法计算了煤氧化过程宏观特性与微观活性基团吸收峰面积变化规律之间的关联度,确定了影响热流强度、放热量、碳氧化合物气体浓度的关键活性基团为C=O,影响碳氢化合物气体浓度的关键活性基团为脂肪C–H。采用量子化学方法对关键活性基团小分子模型化合物的氧化反应历程进行了模拟计算,结合理论分析与实验结果揭示了热损伤对煤氧化特性的影响作用机制。得出100 ℃热损伤作用使煤中水分蒸发,煤氧反应初期吸热量减少,水分对煤氧接触的阻碍降低,导致煤自燃倾向增强。200 ℃、400 ℃、600 ℃的热损伤作用使煤表面活性基团减少,煤分子结构有序性增加,氧气夺取活性基团氢原子的反应能垒增大、吸热量增大,延缓了煤氧化自由基链式反应,导致煤氧化反应性逐渐降低。

外文摘要:

Spontaneous combustion of coal is one of the main disasters in the process of coal mining. The spread of coal fire may form a large-scale coalfield fire that is difficult to control. Under the influence of high temperature environment, the oxidation reactivity of coal around the fire area changes, which in turn affects the spread and development of coal fire disaster. However, there are few studies on the influence of thermal damage in coalfield fire area on coal oxidation characteristics. Based on this, firstly, the reaction kinetics characteristics and gas generation law of coal heat treatment process were studied, the experimental conditions for simulating coal thermal damage process were determined, and coal samples with different thermal damage degrees were prepared. The influence of thermal damage on the macro-characteristics and microstructure of coal oxidation reaction was tested and analyzed. The evolution law of main active functional groups in the process of coal oxidation heating was studied by in-situ infrared technology, and the key active groups affecting the oxidation characteristics of coal with thermal damage were determined by grey correlation analysis. The oxidation reaction process of active groups was studied by quantum chemistry method, revealing the mechanism of the influence of thermal damage on the oxidation characteristics of coal. The main research results are as follows.

By using thermogravimetric analyzer and tube resistance furnace, the effects of termination temperature, heating rate and final temperature holding time on the coal heat treatment process were determined, and the experimental conditions for simulating the coal thermal damage process were defined. It is concluded that temperature is the primary factor affecting the heat treatment process of coal. As the temperature increases, the thermal weight loss curve of coal shows obvious stage characteristics. Dehydration and drying mainly occurs between room temperature and 100 ℃. Degassing occurs mainly between 100 ℃ and 200 ℃. Degassing, decarboxylation and preliminary pyrolysis occur at 200 ℃ and 400 ℃. The rapid pyrolysis stage occurs between 400 ℃ and 600 ℃. After 600 ℃ is the polycondensation reaction stage. The faster the heating rate, the narrower and sharper the characteristic peak of the differential thermogravimetric curve, and the faster the reaction rate. The slower the heating rate, the smaller the remaining mass of coal at a specific temperature, and the higher the degree of reaction. During the coal thermal treatment process, the gas product concentration changes dynamically with the final temperature holding time, and the product concentration can remain stable after the holding time reaches 360 minutes. Accordingly, the reaction conditions for simulating the thermal damage process of coal were determined.

Coal samples with different degrees of thermal damage were prepared using a tubular resistance furnace. The temperature rise characteristics, gas generation rules, thermal effects and oxidation kinetics of the oxidation process of thermally damaged coal were analyzed through a programmed temperature rise experimental system and a differential scanning calorimeter. The influence of thermal damage on the macroscopic characteristics of coal oxidation was studied. It was found that the crossing-point temperature of thermally damaged coal at 100 ℃ decreased, and the concentration of O2 and gaseous products such as CO, CO2, CH4, C2H6, and C2H4 changed earlier than that of raw coal. The thermal equilibrium temperature decreased, the heat absorption in the early stage of reaction decreased, and it entered the exothermic stage earlier, indicating that the spontaneous combustion tendency of coal increased. The crossing-point temperature of thermally damaged coal samples at 200 ℃, 400 ℃, and 600 ℃ increases gradually, the change amplitude of gas concentration decreases, the thermal equilibrium temperature is significantly delayed, and the slow exothermic peak caused by the oxidation of volatile substances in the heat flow curve gradually decreases and finally disappears, indicating that the oxidation reactivity of coal gradually decreases as the heat treatment temperature increases. The variation pattern of the activation energy of thermally damaged coal oxidation reaction was studied through the improved KAS method. It was found that the activation energy of thermally damaged coal at 100 ℃ was lower than that of raw coal, that of thermally damaged coal at 200 ℃ was higher than that of raw coal, and that of heat damaged coal at 400 ℃ and 600 ℃ was higher than that of raw coal in the conversion rate range of 0 to 0.45, but lower than that of raw coal after the conversion rate was greater than 0.45, indicating that the spontaneous combustion tendency of the coal sample decreased at low temperature stage, but it was more prone to burn at high temperature stage.

X-ray diffractometer and Fourier transform infrared spectrometer were used to analyze the influence of thermal damage on the microstructure of coal, and the evolution law of oxidative active groups in thermal damaged coal was studied by combining with in-situ infrared technology. It is found that with the increase of heat treatment temperature, the spacing of aromatic lamellae in coal decreases, the average diameter, average stacking height and effective stacking number increase, and the order of coal microcrystal structure increases. Thermal damage reduces the active groups in coal. As the heat treatment temperature increases, the relative contents of –OH, aliphatic C–H, C–O, and C=O in the active functional groups on the coal surface decrease, while the relative contents of aromatic functional groups such as substituted aromatics and aromatic ring C=C increase, resulting in a decrease in coal oxidation reactivity. The trend of the change of the active functional group content with temperature during the oxidation heating process of thermal damaged coal is consistent with that of the original coal. The thermal damage effect exceeding the pyrolysis temperature makes the aromatic nucleus of the coal molecule more stable, and the rate of functional group change is significantly reduced.

Based on the method of grey correlation analysis, the correlation coefficient between the macroscopic characteristics of coal oxidation process and the variation law of absorption peak area of microscopic active groups is calculated. It is determined that the key active group affecting heat flux intensity, heat release and hydrocarbon gas concentration is C=O, and the key active group affecting hydrocarbon gas concentration is aliphatic C–H. Quantum chemical methods were used to simulate and calculate the oxidation reaction process of small molecule model compounds with key active groups, revealing the mechanism of the influence of thermal damage on coal oxidation characteristics. It was concluded that the thermal damage at 100 ℃ evaporates the water in the coal, reduces the heat absorption in the early stage of the coal-oxygen reaction, and reduces the hindrance of water to coal-oxygen contact, resulting in an enhanced tendency of coal to spontaneously ignite. Thermal damage at 200 ℃, 400 ℃, and 600 ℃ reduces the active groups on the coal surface, increases the order of the coal molecular structure, increases the reaction energy barrier and heat absorption for oxygen to take away the hydrogen atoms of the active groups, and delays the Coal oxidation radical chain reaction leads to the gradual decrease of coal oxidation reactivity.

参考文献:

[1] 王双明, 申艳军, 宋世杰, 等. “双碳”目标下煤炭能源地位变化与绿色低碳开发[J]. 煤炭学报, 2023, 48: 2599-2612.

[2] 邓军, 李贝, 王凯, 等. 我国煤火灾害防治技术研究现状及展望[J]. 煤炭科学技术, 2016, 44: 1-7+101.

[3] 翟小伟, 郝乐, 王凯, 等. 浅埋火区无人机热红外监测温度补偿方法研究[J]. 煤炭学报: 1-11.

[4] 贺强. 双碳目标下我国西部地区地下煤火探测技术研究进展[J]. 中国煤炭地质, 2022, 34: 8-13.

[5] 马砺, 刘庚, 肖旸, 等. 煤田火区发展演化的多场耦合作用过程[J]. 科技导报, 2016, 34: 190-194.

[6] Li J, Li Z, Yang Y, et al. Study on the generation of active sites during low-temperature pyrolysis of coal and its influence on coal spontaneous combustion[J]. Fuel, 2019, 241: 283-296.

[7] Liu H, Jiang B. Differentiated evolution of coal macromolecules in localized igneous intrusion zone: A case study of Zhuxianzhuang colliery, Huaibei coalfield, China[J]. Fuel, 2019, 254: 115692.

[8] 陆伟, 李金亮, 杨兴兵. 采用交叉点温度法对启封煤易复燃问题的研究[J]. 煤矿安全, 2013, 44: 230-233.

[9] 杨锴. 热损伤作用对煤结构及其自燃氧化特性影响的研究[D]. 徐州: 中国矿业大学, 2022.

[10] Shao H, Yang S, Yang K J A P J o C E. Effect of thermal damage on pore development and oxidation reaction of coal[J]. 2022, 17(3): e2774.

[11] 唐一博, 王俊峰, 薛生, 等. 密闭火区内惰性环境下烟煤自燃特性变化[J]. 煤炭学报, 2016, 41: 439-443.

[12] Miao G, Li Z, Sun L, et al. Experimental Study on Pore-fracture Evolution Law in the Thermal Damage Process of Coal[J]. Combustion Science and Technology, 2021, 193(4): 677-701.

[13] 孙留涛. 煤岩热损伤破坏机制及煤田火区演化规律数值模拟研究[D]. 徐州: 中国矿业大学, 2019.

[14] Clemens A H, Matheson T W, Rogers D E. Low temperature oxidation studies of dried New Zealand coals[J]. Fuel, 1991, 70(2): 215-221.

[15] 梁洪军, 毕强, 曲宝, 等. 火成岩侵入条件下煤低温氧化特性实验研究[J]. 煤矿安全, 2018, 49: 43-47.

[16] 毕强. 大兴矿火成岩侵入条件下煤自燃特性及防治技术研究[D]. 阜新: 辽宁工程技术大学, 2019.

[17] Shi Q, Qin B, Bi Q, et al. An experimental study on the effect of igneous intrusions on chemical structure and combustion characteristics of coal in Daxing Mine, China[J]. Fuel, 2018, 226: 307-315.

[18] 蒋静宇, 程远平, 王海锋, 等. 岩浆侵入对煤吸附瓦斯特性的影响分析[J]. 采矿与安全工程学报, 2012, 29: 118-123.

[19] 刘福胜, 徐培武, 郑荣华, 等. 邯邢煤田岩浆侵入及对煤层煤质的影响[J]. 中国煤田地质, 2007: 22-24.

[20] 王飞, 程远平, 蒋静宇, 等. 大兴煤矿岩浆侵入对煤体性质的影响研究[J]. 煤炭科学技术, 2015, 43: 61-65+71.

[21] 朱令起, 杨帆, 刘聪. 火成岩侵入煤CO吸附动力学分析[J]. 煤炭技术, 2017, 36: 139-142.

[22] Li J, Li Z, Yang Y, et al. Study on oxidation and gas release of active sites after low-temperature pyrolysis of coal[J]. Fuel, 2018, 233: 237-246.

[23] Zhong X, Kan L, Xin H, et al. Thermal effects and active group differentiation of low-rank coal during low-temperature oxidation under vacuum drying after water immersion[J]. Fuel, 2019, 236: 1204-1212.

[24] Zhang Y, Liu Y, Shi X, et al. Risk evaluation of coal spontaneous combustion on the basis of auto-ignition temperature[J]. Fuel, 2018, 233: 68-76.

[25] 刘丽华, 初茉, 党彤彤, 等. 热提质褐煤预氧化后自燃特性变化及其自由基原位分析[J]. 化工学报, 2017, 68: 3967-3977.

[26] 刘淑琴, 脱凯用. 低阶煤微波辅助热提质研究进展[J]. 煤炭科学技术, 2021, 49: 162-174.

[27] 印杨, 李超, 廖俊杰, 等. 褐煤脱水提质及其物化结构演变的研究进展[J]. 现代化工, 2017, 37: 56-59+61.

[28] Tahmasebi A, Zheng H, Yu J. The influences of moisture on particle ignition behavior of Chinese and Indonesian lignite coals in hot air flow[J]. Fuel Processing Technology, 2016, 153: 149-155.

[29] Liao J, Fei Y, Marshall M, et al. Hydrothermal dewatering of a Chinese lignite and properties of the solid products[J]. Fuel, 2016, 180: 473-480.

[30] 曲啸洋, 李鹏, 周国莉, 等. 孔隙结构对褐煤干燥动力学的影响[J]. 煤炭学报, 2019, 44: 950-957.

[31] 刘丽华. 热提质对低阶煤水分复吸与自燃特性影响研究[D]. 北京: 中国矿业大学(北京), 2017.

[32] 刘鹏, 周扬, 鲁锡兰, 等. 先锋褐煤在水热处理过程中的结构演绎[J]. 燃料化学学报, 2016, 44: 129-137.

[33] Zhao H, Geng X, Yu J, et al. Effects of drying method on self-heating behavior of lignite during low-temperature oxidation[J]. Fuel Processing Technology, 2016, 151: 11-18.

[34] 徐志强, 辛凡文, 涂亚楠. 褐煤微波脱水过程中水分的迁移规律和界面改性研究[J]. 煤炭学报, 2014, 39: 147-153.

[35] Yuan S, Liu J-Z, Zhu J-F, et al. Effect of microwave irradiation on the propensity for spontaneous combustion of Inner Mongolia lignite[J]. Journal of Loss Prevention in the Process Industries, 2016, 44: 390-396.

[36] 张辛亥, 白亚娥, 李青蔚, 等. 基于活化能指标研究不同变质程度烟煤的自燃倾向性[J]. 矿业安全与环保, 2016, 43: 5-7+11.

[37] 王海晖. 煤自燃倾向性测试方法综述[J]. 安全与环境学报, 2009, 9: 132-137.

[38] 陈鹏, 张弛, 张浪, 等. 煤自燃倾向性测试方法研究进展与展望[J]. 煤矿安全, 2016, 47: 164-168.

[39] 朱建芳, 段嘉敏, 郭文杰. 基于DSC的煤自燃倾向性研究[J]. 华北科技学院学报, 2018, 15: 10-15.

[40] 刘利, 崔文权, 陈鹏, 等. 利用XPS研究低温干燥脱水过程中煤的氧化规律[J]. 煤炭技术, 2010, 29: 189-191.

[41] 仲晓星, 王德明, 戚绪尧, 等. 煤自燃倾向性的氧化动力学测定方法研究[J]. 中国矿业大学学报, 2009, 38: 789-793.

[42] Nubling R, Wanner H J J o G. Spontaneous combustion of coal[J]. 1915, 58: 515.

[43] Banerjee S, Chakravorty R J J o M, Metals, Fuels. Use of DTA in the study of spontaneous combustion of coal[J]. 1967, 15(1): 1-5.

[44] Nimaje D S, Tripathy D P. Characterization of some Indian coals to assess their liability to spontaneous combustion[J]. Fuel, 2016, 163: 139-147.

[45] Feng K, Chakravorty R, Cochrane T J C B. Spontaneous combustion-coal mining hazard[J]. 1973, 66(738): 75-84.

[46] Mahadevan V, Ramlu M J J o M, Metals, Fuels. Fire risk rating of coal mines due to spontaneous heating[J]. 1985, 33(8): 357-362.

[47] Gouws M J, Wade L. The self-heating liability of coal: Predictions based on composite indices[J]. Mining Science and Technology, 1989, 9(1): 81-85.

[48] Uludag S. A visit to the research on Wits-Ehac index and its relationship to inherent coal properties for Witbank Coalfied[J]. Journal of the Southern African Institute of Mining and Metallurgy, 2007, 107(10): 671-679.

[49] Onifade M, Genc B, Bada S. Spontaneous combustion liability between coal seams: A thermogravimetric study[J]. International Journal of Mining Science and Technology, 2020, 30(5): 691-698.

[50] Onifade M, Genc B, Carpede A. A new apparatus to establish the spontaneous combustion propensity of coals and coal-shales[J]. International Journal of Mining Science and Technology, 2018, 28(4): 649-655.

[51] Ogunsola O I, Mikula R J. A study of spontaneous combustion characteristics of Nigerian coals[J]. Fuel, 1991, 70(2): 258-261.

[52] Kim J, Lee Y, Ryu C, et al. Low-temperature reactivity of coals for evaluation of spontaneous combustion propensity[J]. Korean Journal of Chemical Engineering, 2015, 32(7): 1297-1304.

[53] 王寅, 王海晖. 基于交叉点温度法煤自燃倾向性评定指标的物理内涵[J]. 煤炭学报, 2015, 40: 377-382.

[54] Wang H, Dlugogorski B. Tests for spontaneous ignition of solid materials[M]. // Flammability testing of materials used in construction, transport and mining. City: Elsevier, 2022: 387-444.

[55] Bowes P C, Cameron A. Self-heating and ignition of chemically activated carbon[J]. Journal of Applied Chemistry and Biotechnology, 1971, 21(9): 244-250.

[56] Chen X D, Chong L V. Some characteristics of transient self-heating inside an exothermically reactive porous solid slab[J]. Process safety and environmental protection, 1995, 73(2): 101-107.

[57] Jones J C, Chiz P S, Koh R, et al. Kinetic parameters of oxidation of bituminous coals from heat-release rate measurements[J]. Fuel, 1996, 75(15): 1755-1757.

[58] Sujanti W, Zhang D-K, Chen X D. Low-temperature oxidation of coal studied using wire-mesh reactors with both steady-state and transient methods[J]. Combustion and Flame, 1999, 117(3): 646-651.

[59] Nugroho Y S, McIntosh A C, Gibbs B M. Using the crossing point method to assess the self-heating behavior of indonesian coals[J]. Symposium (International) on Combustion, 1998, 27(2): 2981-2989.

[60] Nugroho Y S, McIntosh A C, Gibbs B M. Low-temperature oxidation of single and blended coals[J]. Fuel, 2000, 79(15): 1951-1961.

[61] Nugroho Y S, McIntosh A C, Gibbs B M J P o t C I. On the prediction of thermal runaway of coal piles of differing dimension by using a correlation between heat release and activation energy[J]. 2000, 28(2): 2321-2327.

[62] Fei Y, Aziz A A, Nasir S, et al. The spontaneous combustion behavior of some low rank coals and a range of dried products[J]. Fuel, 2009, 88(9): 1650-1655.

[63] 玄伟伟, 王倩, 张建胜. 褐煤自燃倾向测定及其低温氧化反应过程研究[J]. 煤炭学报, 2016, 41: 2460-2465.

[64] Li B, Chen G, Zhang H, et al. Development of non-isothermal TGA–DSC for kinetics analysis of low temperature coal oxidation prior to ignition[J]. Fuel, 2014, 118: 385-391.

[65] 阳富强, 吴超, 李孜军, 等. 硫化矿石自燃倾向性测试方法研究进展[J]. 科技导报, 2011, 29: 73-79.

[66] 朱红青, 王海燕, 宋泽阳, 等. 煤绝热氧化动力学特征参数与变质程度的关系[J]. 煤炭学报, 2014, 39: 498-503.

[67] 王德明, 亓冠圣, 戚绪尧, 等. 煤实验最短自然发火期的快速测试[J]. 煤炭学报, 2014, 39: 2239-2243.

[68] Humphreys D, Rowlands D, Cudmore J. Spontaneous combustion of some Queensland coals[C]// Spontaneous combustion of some Queensland coals. Proceedings of ignitions, explosions and fires in coal mines symposium. 5-1.

[69] Beamish B B, Hamilton G R. Effect of moisture content on the R70 self-heating rate of Callide coal[J]. International Journal of Coal Geology, 2005, 64(1): 133-138.

[70] Singh R N, Demirbilek S. Statistical appraisal of intrinsic factors affecting spontaneous combustion of coal[J]. Mining Science and Technology, 1987, 4(2): 155-165.

[71] Ren T X, Edwards J S, Clarke D. Adiabatic oxidation study on the propensity of pulverised coals to spontaneous combustion[J]. Fuel, 1999, 78(14): 1611-1620.

[72] Qi X, Xin H, Wang D, et al. A rapid method for determining the R70 self-heating rate of coal[J]. Thermochimica Acta, 2013, 571: 21-27.

[73] Smith A C, Lazzara C P. Spontaneous combustion studies of US coals[M]. US Department of the Interior, Bureau of Mines, 1987.

[74] Beamish B, Arisoy A. Effect of intrinsic coal properties on self-heating rates[C]// Effect of intrinsic coal properties on self-heating rates. Proceedings of the 12th US/North American mine ventilation symposium. 149-153.

[75] 郭小云. 煤自燃倾向性的氧化动力学测定装置设计理论与试验研究[D]. 徐州: 中国矿业大学, 2012.

[76] 张艳芳, 王福生, 王建涛. 复采煤层氧化煤的自燃特性研究[J]. 煤矿安全, 2021, 52: 31-35.

[77] 朱建芳, 郭文杰, 段嘉敏, 等. 基于活化能的煤自燃倾向性鉴定方法探讨[J]. 华北科技学院学报, 2017, 14: 6-10.

[78] 王福生. 煤的自燃倾向性鉴定方法研究进展与展望[J]. 安全, 2022, 43: 1-6+89.

[79] 张斌, 刘建忠, 赵卫东, 等. 褐煤自燃特性热重实验及动力学分析[J]. 热力发电, 2014, 43: 71-76.

[80] 刘剑, 赵凤杰. 升温速率对煤的自燃倾向性表征影响的研究[J]. 煤矿安全, 2006: 4-6.

[81] 何启林, 王德明. 煤的氧化和热解反应的动力学研究[J]. 北京科技大学学报, 2006: 1-5.

[82] Qi X, Li Q, Zhang H, et al. Thermodynamic characteristics of coal reaction under low oxygen concentration conditions[J]. 2017, 90(4): 544-555.

[83] Garcia P, Hall P J, Mondragon F J T a. The use of differential scanning calorimetry to identify coals susceptible to spontaneous combustion[J]. 1999, 336(1-2): 41-46.

[84] Sahu H, Panigrahi D, Mishra N. Assessment of spontaneous heating susceptibility of coal seams by differential scanning calorimetry[J]. 2004.

[85] 舒新前. 煤炭自燃的热分析研究[J]. 中国煤田地质, 1994: 25-29.

[86] Wang H, Dlugogorski B Z, Kennedy E M. Coal oxidation at low temperatures: oxygen consumption, oxidation products, reaction mechanism and kinetic modelling[J]. Progress in Energy and Combustion Science, 2003, 29(6): 487-513.

[87] 崔馨, 严煌, 赵培涛. 煤分子结构模型构建及分析方法综述[J]. 中国矿业大学学报, 2019, 48: 704-717.

[88] Cannon C G, Sutherland G B B M. The infra-red absorption spectra of coals and coal extracts[J]. Transactions of the Faraday Society, 1945, 41(0): 279-288.

[89] Painter P C, Snyder R W, Starsinic M, et al. Concerning the application of FT-IR to the study of coal: a critical assessment of band assignments and the application of spectral analysis programs[J]. 1981, 35(5): 475-485.

[90] Chen Y, Mastalerz M, Schimmelmann A. Characterization of chemical functional groups in macerals across different coal ranks via micro-FTIR spectroscopy[J]. International Journal of Coal Geology, 2012, 104: 22-33.

[91] Ding C, Li Z, Wang J, et al. Experimental research on the spontaneous combustion of coal with different metamorphic degrees induced by pyrite and its oxidation products[J]. 2022, 318: 123642.

[92] 向柏祥, 熊小鹤, 卢旭超, 等. 典型神华煤/焦官能团分布差异和反应性对比分析[J]. 洁净煤技术, 2020, 26: 126-131.

[93] Shang L, Guanhua N, Baisheng N, et al. Microstructure characteristics of lignite under the synergistic effect of oxidizing acid and ionic liquid [Bmim][Cl][J]. Fuel, 2021, 289: 119940.

[94] Wang D, Zhong X, Gu J, et al. Changes in active functional groups during low-temperature oxidation of coal[J]. Mining Science and Technology (China), 2010, 20(1): 35-40.

[95] 冯杰, 李文英, 谢克昌. 傅立叶红外光谱法对煤结构的研究[J]. 中国矿业大学学报, 2002: 25-29.

[96] 杨永良, 李增华, 季淮君, 等. 可溶有机质对煤低温氧化的影响[J]. 煤炭学报, 2013, 38: 1806-1811.

[97] 王涌宇, 邬剑明, 王俊峰, 等. 亚烟煤低温氧化元素迁移规律及原位红外实验[J]. 煤炭学报, 2017, 42: 2031-2036.

[98] 辛海会, 王德明, 许涛, 等. 低阶煤低温热反应特性的原位红外研究[J]. 煤炭学报, 2011, 36: 1528-1532.

[99] 杨永良, 李增华, 尹文宣, 等. 易自燃煤漫反射红外光谱特征[J]. 煤炭学报, 2007: 729-733.

[100] 葛岭梅, 李建伟. 神府煤低温氧化过程中官能团结构演变[J]. 西安科技学院学报, 2003: 187-190.

[101] 陆伟, 胡千庭, 仲晓星, 等. 煤自燃逐步自活化反应理论[J]. 中国矿业大学学报, 2007: 111-115.

[102] Zhou C, Zhang Y, Wang J, et al. Study on the relationship between microscopic functional group and coal mass changes during low-temperature oxidation of coal[J]. 2017, 171: 212-222.

[103] Zhang Y, Wu B, Liu S-H, et al. Thermal kinetics of nitrogen inhibiting spontaneous combustion of secondary oxidation coal and extinguishing effects[J]. 2020, 278: 118223.

[104] Zhang Y, Li Y, Huang Y, et al. Characteristics of mass, heat and gaseous products during coal spontaneous combustion using TG/DSC–FTIR technology: the impacts of oxygen concentrations and heating rates[J]. 2018, 131: 2963-2974.

[105] 王涌宇, 邬剑明, 王俊峰, 等. 煤氧化过程中CO生成机理的原位红外实验研究[J]. 煤炭学报, 2016, 41: 451-457.

[106] 张玉涛, 任梦茹, 李亚清, 等. 油浸煤氧化指标气体与官能团关联特性研究[J]. 安全与环境学报, 2024: 1-9.

[107] 屈丽娜. 煤自燃阶段特征及其临界点变化规律的研究[D]. 北京: 中国矿业大学(北京), 2013.

[108] 张玉涛, 杨杰, 李亚清, 等. 煤自燃特征温度与微观结构变化及关联性分析[J]. 煤炭科学技术, 2023, 51: 80-87.

[109] 王继仁, 邓存宝. 煤微观结构与组分量质差异自燃理论[J]. 煤炭学报, 2007: 1291-1296.

[110] 邓军, 李亚清, 张玉涛, 等. 羟基(—OH)对煤自燃侧链活性基团氧化反应特性的影响[J]. 煤炭学报, 2020, 45: 232-240.

[111] 辛海会, 王德明, 戚绪尧, 等. 褐煤表面官能团的分布特征及量子化学分析[J]. 北京科技大学学报, 2013, 35: 135-139.

[112] 柴双奇, 曾强. 基于量子化学的准东五彩湾煤分子结构模型构建与特征分析[J]. 煤炭学报, 2022, 47: 4504-4516.

[113] 相建华, 曾凡桂, 梁虎珍, 等. 兖州煤大分子结构模型构建及其分子模拟[J]. 燃料化学学报, 2011, 39: 481-488.

[114] 孙庆雷, 李文, 陈皓侃, 等. 煤显微组分分子结构模型的量子化学研究[J]. 燃料化学学报, 2004: 282-286.

[115] Fan L, Meng X, Zhao J, et al. Reaction site evolution during low-temperature oxidation of low-rank coal[J]. Fuel, 2022, 327: 125195.

[116] Zhang X, Lu B, Zhang J, et al. Experimental and simulation study on hydroxyl group promoting low-temperature oxidation of active groups in coal[J]. Fuel, 2023, 340: 127501.

[117] 侯新娟, 杨建丽, 李永旺. 煤大分子结构的量子化学研究[J]. 燃料化学学报, 1999: 143-149.

[118] Yang Y, Li Z, Si L, et al. Study on test method of heat release intensity and thermophysical parameters of loose coal[J]. Fuel, 2018, 229: 34-43.

[119] Xu J, Tang H, Su S, et al. A study of the relationships between coal structures and combustion characteristics: The insights from micro-Raman spectroscopy based on 32 kinds of Chinese coals[J]. Applied Energy, 2018, 212: 46-56.

[120] Song H, Liu G, Zhang J, et al. Pyrolysis characteristics and kinetics of low rank coals by TG-FTIR method[J]. Fuel Processing Technology, 2017, 156: 454-460.

[121] 陈兆辉, 高士秋, 许光文. 煤热解过程分析与工艺调控方法[J]. 化工学报, 2017, 68: 3693-3707.

[122] Lin B, Zhou J, Qin Q, et al. Thermal behavior and gas evolution characteristics during co-pyrolysis of lignocellulosic biomass and coal: A TG-FTIR investigation[J]. Journal of Analytical and Applied Pyrolysis, 2019, 144: 104718.

[123] Wang T, Li C, Zhou B, et al. Experimental investigation of thermal effect in coal pyrolysis process[J]. Fuel Processing Technology, 2020, 200: 106269.

[124] Jayaraman K, Kök M V, Gökalp I. Combustion mechanism and model free kinetics of different origin coal samples: Thermal analysis approach[J]. Energy, 2020, 204: 117905.

[125] Starink M J. Activation energy determination for linear heating experiments: deviations due to neglecting the low temperature end of the temperature integral[J]. Journal of Materials Science, 2007, 42(2): 483-489.

[126] Vyazovkin S, Burnham A K, Criado J M, et al. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data[J]. Thermochimica Acta, 2011, 520(1): 1-19.

[127] 何选明. 煤化学 第2版[M]. 北京:冶金工业出版社, 2010.

[128] Zhai X, Ge H, Shu C-M, et al. Effect of the heating rate on the spontaneous combustion characteristics and exothermic phenomena of weakly caking coal at the low-temperature oxidation stage[J]. Fuel, 2020, 268: 117327.

[129] Luo Z, Qin B, Shi Q, et al. Compound effects of water immersion and pyritic sulfur on the microstructure and spontaneous combustion of non-caking coal[J]. Fuel, 2022, 308: 121999.

[130] 邓军, 宋佳佳, 赵婧昱, 等. 高温氧化条件下风化煤自燃特性试验研究[J]. 煤炭科学技术, 2017, 45: 73-77+105.

[131] 邓军, 任帅京, 肖旸, 等. 煤低温氧化与热解过程的传热特性对比研究[J]. 煤炭学报, 2019, 44: 171-177.

[132] 解强, 梁鼎成, 何璐, 等. TG-DSC同步联用测定煤热解反应热[J]. 煤炭学报, 2017, 42: 538-546.

[133] 何璐, 解强, 梁鼎成, 等. 煤热解反应热测定方法研究进展[J]. 化工进展, 2017, 36: 494-501.

[134] 陈晨, 杨倩, 陈云, 等. 不同氧浓度下煤挥发分燃烧的化学动力学研究[J]. 化工学报, 2022, 73: 4133-4146.

[135] 薛新巧, 冯钰, 靳立军, 等. 不连沟煤热解半焦燃烧特性研究[J]. 化工进展, 2017, 36: 3287-3292.

[136] 秦波涛, 仲晓星, 王德明, 等. 煤自燃过程特性及防治技术研究进展[J]. 煤炭科学技术, 2021, 49: 66-99.

[137] Liang Y, Zhang J, Wang L, et al. Forecasting spontaneous combustion of coal in underground coal mines by index gases: A review[J]. Journal of Loss Prevention in the Process Industries, 2019, 57: 208-222.

[138] 李增华, 苗国栋. 煤自燃大分子量气态产物生成规律研究[J]. 中国矿业大学学报, 2023, 52: 1119-1128.

[139] 王继仁, 金智新, 邓存宝. 煤自燃量子化学理论[M]. 北京:科学出版社, 2007.

[140] 邓存宝, 王继仁, 张俭, 等. 煤自燃生成乙烯反应机理[J]. 煤炭学报, 2008: 299-303.

[141] Zhao L, Guanhua N, Hui W, et al. Molecular structure characterization of lignite treated with ionic liquid via FTIR and XRD spectroscopy[J]. Fuel, 2020, 272: 117705.

[142] 张春华, 王一明. 不同热解温度下褐煤焦样物相及其微结构变化[J]. 重庆大学学报, 2023, 46: 57-66.

[143] Wang Y, Li Z, Kong J, et al. Simultaneous SAXS-WAXS study on coking coal during high temperature carbonization[J]. Carbon Letters, 2023, 33(2): 363-372.

[144] Patterson A J P r. The Scherrer formula for X-ray particle size determination[J]. 1939, 56(10): 978.

[145] Jiang J, Yang W, Cheng Y, et al. Molecular structure characterization of middle-high rank coal via XRD, Raman and FTIR spectroscopy: Implications for coalification[J]. Fuel, 2019, 239: 559-572.

[146] Yuan L, Liu Q, Mathews J P, et al. Quantifying the Structural Transitions of Chinese Coal to Coal-Derived Natural Graphite by XRD, Raman Spectroscopy, and HRTEM Image Analyses[J]. Energy & Fuels, 2021, 35(3): 2335-2346.

[147] 崔贝贝, 王美君, 常丽萍, 等. 炼焦煤成焦机理再认识:“衍构成焦机理”的提出[J]. 煤炭学报, 2024: 1-15.

[148] 郝盼云, 孟艳军, 曾凡桂, 等. 红外光谱定量研究不同煤阶煤的化学结构[J]. 光谱学与光谱分析, 2020, 40: 787-792.

[149] 梁虎珍, 王传格, 曾凡桂, 等. 应用红外光谱研究脱灰对伊敏褐煤结构的影响[J]. 燃料化学学报, 2014, 42: 129-137.

[150] 韩峰, 张衍国, 蒙爱红, 等. 云南褐煤结构的FTIR分析[J]. 煤炭学报, 2014, 39: 2293-2299.

[151] 谭波, 徐斌, 胡明明, 等. 不同变质程度煤在氧化过程中的表面官能团红外光谱定量分析[J]. 中南大学学报(自然科学版), 2019, 50: 2886-2895.

[152] 贾廷贵, 李璕, 曲国娜, 等. 不同变质程度煤样化学结构特征FTIR表征[J]. 光谱学与光谱分析, 2021, 41: 3363-3369.

[153] Jiang J, Zhang S, Longhurst P, et al. Molecular structure characterization of bituminous coal in Northern China via XRD, Raman and FTIR spectroscopy[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 255: 119724.

[154] Li J, Lu W, Li J, et al. Mutual conversion of active sites and oxygen-containing functional groups during low-temperature oxidation of coal[J]. Energy, 2023, 272: 127151.

[155] Shi Q, Mi Y, Wang S, et al. Pyrolysis behavior of tar-rich coal with various coal-forming environments: A TGA and in-situ transmission FTIR study[J]. Fuel, 2024, 358: 130250.

[156] Liu R, Liu G, Yousaf B, et al. Novel investigation of pyrolysis mechanisms and kinetics for functional groups in biomass matrix[J]. Renewable and Sustainable Energy Reviews, 2022, 153: 111761.

[157] 钮志远. 典型煤的官能团热解机理、动力学分析及影响因素研究[D]. 合肥: 中国科学技术大学, 2017.

[158] 闫政浩, 何润霞, 王丹丹, 等. 胜利褐煤低温氧化过程中微结构的转化特性研究[J]. 燃料化学学报, 2019, 47: 411-418.

[159] 陈天宇, 冯夏庭, 梁冰, 等. 煤层气藏地面勘探开发选区灰色模糊评价[J]. 东北大学学报(自然科学版), 2013, 34: 429-433.

[160] Wang D-m, Xin H-h, Qi X-y, et al. Reaction pathway of coal oxidation at low temperatures: a model of cyclic chain reactions and kinetic characteristics[J]. Combustion and Flame, 2016, 163: 447-460.

[161] 张卫, 臧立岩, 李靖. 量子化学方法在煤自燃机理方面的应用及进展[J]. 科技导报, 2024, 42: 73-83.

[162] Xu T. Heat effect of the oxygen-containing functional groups in coal during spontaneous combustion processes[J]. Advanced Powder Technology, 2017, 28(8): 1841-1848.

[163] 刘振宇. 重质有机资源热解过程中的自由基化学[J]. 北京化工大学学报(自然科学版), 2018, 45: 8-24.

[164] 刘振宇. 煤化学的前沿与挑战:结构与反应[J]. 中国科学:化学, 2014, 44: 1431-1439.

[165] 黄淄博, 周文静, 魏进家. 基于ReaxFF MD模拟的低阶煤热解产物演化规律及反应机理[J]. 化工进展: 1-14.

[166] Song B, Zhai X, Ma T, et al. Effect of water immersion on pore structure of bituminous coal with different metamorphic degrees[J]. Energy, 2023, 274: 127449.

[167] Petit J C. A comprehensive study of the water vapour/coal system: application to the role of water in the weathering of coal[J]. Fuel, 1991, 70(9): 1053-1058.

中图分类号:

 TD752.2    

开放日期:

 2026-06-24    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式