论文中文题名: | 煤矸石掺合料混凝土的微观结构与宏观性能研究 |
姓名: | |
学号: | 19204053027 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 081402 |
学科名称: | 工学 - 土木工程 - 结构工程 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2022 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 固废物的资源化利用 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2022-06-15 |
论文答辩日期: | 2022-05-31 |
论文外文题名: | Study on Microstructure and Macroscopic Properties of Coal Gangue Admixture Concrete |
论文中文关键词: | |
论文外文关键词: | Coal gangue ; Coal gangue admixture concrete ; Mechanical property ; Microstructure ; Hydration process |
论文中文摘要: |
煤矸石是一种黑色泥质岩石,含碳量仅有20-30%,年产量相当于每年煤炭产量的15%-20%。废弃的煤矸石不但侵占农田,而且其内部硫化物会导致土壤酸碱度失衡,地下水受到污染,从而引起不可逆转的后果。然而,煤矸石具有可利用的资源属性,因其富含硅铝,故具有潜在活性。众多学者表明,高岭质矿物属于硅铝酸盐矿物,活化后可作为性能优异的矿物掺合料使用。合理使用高岭质煤矸石作为矿物掺合料不仅能降低水泥用量,还解决了煤矸石堆积带来的环境与经济问题。因而研究煤矸石的活性及其在混凝土中的影响,对于煤矸石的推广使用不可或缺。. 本课题将采用不同方式活化煤矸石,研究活化后的煤矸石活性。再将活性最优的煤矸石粉等质量替代水泥制备不同取代率、水胶比和龄期的煤矸石掺合料混凝土,并结合力学性能试验和微观表征手段,研究不同变量下煤矸石掺合料混凝土的力学性能及经时强度模型,分析煤矸石作为矿物掺合料在混凝土中的作用机理。本文主要研究内容有以下几个方面: 第一,本论文以机械活化、化学活化和微波活化的方式激发煤矸石的活性,采用强度法测试其活性指数,并通过微观表征手段分析不同活化方式下煤矸石粉的微观形貌和矿物成分。试验结果表明:机械球磨、微波和化学激发剂均能够活化煤矸石,微波活化效果最佳。当微波温度达到600-700℃时,煤矸石颗粒产生结合面并逐渐粘结化及致密化,同时高温破坏了其内部矿物高岭土的层状结构,生成较多玻璃态的活性SiO2,Al2O3,提高了煤矸石的活性。 第二,以质量掺量为0、10%、20%、30%、40%和50%的活性煤矸石粉为变量,研究煤矸石掺合料混凝土工作性能及宏观性能的变化规律,利用微观表征手段分析煤矸石粉在混凝土中的作用机理。试验结果表明:混凝土中掺入煤矸石粉会降低其坍落度。煤矸石粉掺入在20%以内时,混凝土的的抗压、抗折和劈拉强度较基准组均有提高,但超过20%后混凝土力学强度发生损失。XRD分析表明煤矸石粉会发生火山灰反应。SEN-EDS分析表明,煤矸石粉会促使更多高钙硅比的C-S-H凝胶向低钙硅比高铝硅比的C-A-S-H凝胶转变。NMR与SEM表明,未水化的煤矸石粉则填充在孔隙之间,混凝土中大孔和毛细孔的数量减少。 第三,以煤矸石粉质量掺量为20%为基准,制备水胶比为0.45、0.51和0.55的煤矸石掺合料混凝土。采用抗压、劈裂抗拉和抗折强度试验研究不同水胶比下煤矸石掺合料混凝土的力学性能劣化规律。试验结果表明:水胶比的增加对混凝土强度有负效应,当水胶比为0.55时,混凝土中的水化产物含量减少,骨料与水化产物的粘结性差,界面过渡区有较明显的裂缝,混凝土中0.001μm-0.1μm的孔径面积减少,而1μm-100μm的孔径面积增多。 最后,为进一步探究煤矸石粉在混凝土中的水化进程,以水胶比为0.51、20%煤矸石粉掺量的混凝土为基准,测定3d、7d、14d、28d、56d、90d龄期下混凝土的抗压、劈裂抗拉和抗折强度,研究其力学性能变化规律,并建立煤矸石掺合料混凝土强度的经时演变模型。试验结果表明:煤矸石粉在养护龄期为14d后会大量吸附水泥水化的CH,促进水泥水化,同时其内部(AlO4)4-基团会替代水化产物C-S-H结构上的(SiO4)4-,生成新的絮状结构的聚合物C-A-S-H。直至养护龄期超过56d后,浆体中CH含量较少,煤矸石水化反应速率变缓,未水化的煤矸石粉则发挥“微集料效应”,填充在孔隙中,减少大孔和毛细孔数量,混凝土微观结构致密度增大,促进混凝土强度持续增长。 |
论文外文摘要: |
Coal gangue is a kind of black muddy rock with a carbon content of only 20-30%, with an annual output equivalent to 15% of annual coal output. The waste coal gangue not only occupies the farmland, but also its internal sulfides will lead to the imbalance of soil acidity and alkalinity, groundwater pollution, resulting in irreversible consequences. However, coal gangue has the property of available resources, and it has potential activity because it is rich in silicon and aluminum. Many scholars have shown that kaolinite minerals belong to aluminosilicate minerals and can be used as mineral admixtures with excellent properties after activation. The rational use of kaolinite coal gangue as mineral admixture can not only reduce the amount of cement, but also solve the environmental and economic problems caused by coal gangue accumulation. Therefore, the study of the activity of coal gangue and its influence in concrete is indispensable for the popularization and use of coal gangue. This paper used different ways to activate coal gangue and evaluated the activity of activated coal gangue. Then the best active coal gangue powder was used to replace cement to prepare coal gangue admixture concrete, with different substitution rate, water-binder ratio and age. It combined with mechanical property test and microscopic characterization means. The mechanical properties and time-passing strength model of coal gangue admixture concrete under different variables were studied, and the action mechanism of coal gangue in concrete was further analyzed.The following main contents are included in this dissertation: First of all, the activity of coal gangue was activated by mechanical activation, chemical activation and microwave activation, and its activity index was tested by strength method. The micro-morphology and mineral composition of coal gangue powder under different activation methods were analyzed by means of microscopic characterization. The test results indicated that mechanical ball milling, microwave and chemical activator could activate coal gangue, and the microwave activation effect was the best. When the microwave temperature was 600 - 700 ℃, the coal gangue particles produced bonding surface and gradually agglutinate and densify. Meantime, the layered structure of the internal mineral kaolinite was destroyed and more active SiO2, Al2O3 was formed. The activity of coal gangue was improved. Secondly, taking the active coal gangue powder with mass content of 0%, 10%, 20%, 30%, 40% and 50% as variables. The working performance and macroscopic performance of coal gangue admixture concrete were studied. The action mechanism of coal gangue powder in concrete was analyzed by means of microscopic characterization. The test results showed that the slump of concrete reduced by adding coal gangue powder. Which 20% was the best content, and the compressive, flexural and splitting tensile strength of concrete were increased. However, the mechanical strength of concrete was lost when it exceeded 20%. XRD analysis indicated that coal gangue particles could occur pozzolanic reaction. SEN-EDS showed the conversion of C-S-H gel with higher calcium to silicon ratio to C-A-S-H gel with low calcium to silicon ratio and high alumina silicon ratio was promoted. NMR and SEM showed that unhydrated particles were filled between pores, and the volume of macropores and capillaries in concrete was decreased. Then, based on the 20% mass content of coal gangue powder, the coal gangue admixture concrete with water-binder ratio of 0.45, 0.51 and 0.55 was prepared. The deterioration law of mechanical properties of coal gangue admixture concrete with different water-binder ratio was studied by compression, splitting tensile and flexural strength tests. The test results show that the increase of water-binder ratio had a negative effect on the strength of concrete. When the water-binder ratio was 0.55, the content of hydration products in concrete decreased, the adhesion between aggregate and hydration products was poor, and there were obvious cracks in the interface transition zone. The pore area of 0.001μm-0.1μm in concrete decreased, while the pore area of 1μm-100μm increased. Finally, in order to further explore the action mechanism of coal gangue powder in concrete, in the concrete matrix with water binder ratio of 0.51 and coal gangue powder content of 20%. The compressive, splitting tensile and flexural strength of concrete at the ages of 3 d, 7 d, 14 d, 28 d, 56 d and 90 d were measured. The change law of mechanical properties was studied, and the time evolution model of concrete strength was established. The experimental results showed that coal gangue particles would absorb a large amount of CH of cement hydration after curing for 14 d, and promoted the hydration of cement. At the same time, the internal (AlO4)4- group replaced (SiO4)4- on the hydration product C-S-H structure to form a new flocculent polymer C-A-S-H. Until the curing age exceeded 56 d, the content of CH in the paste was less, and the hydration rate of coal gangue power slowed down. The unhydrated coal gangue particles played the "micro-aggregate effect", filled in the pores, reduce the number of macropores and capillaries. It increased the density of concrete microstructure and promoted the continuous growth of concrete strength. |
参考文献: |
[4] 雷建红.煤矸石的污染危害与综合利用分析[J].能源与节能,2017(04):90-91+147. [6] 申丽明.煤矸石成分及其再利用技术研究[J].能源与节能,2020(05):62-63. [9] 赵越,王晓岩,苑文仪,等. 机械力化学活化煤矸石一步制备高效混凝剂[J]. 矿产保护与利用,2020,40(1):16-22. [10] 芋艳梅,方莹,张少明.机械力化学效应对煤矸石水泥性能的影响[J].硅酸盐通报,2006,25(4):59-62. [11] 沙建奇.混凝土水泥机械力化学生成研究[D].辽宁:大连理工大学,2008. [13] 郭丽君,李超,赵亮,等. 煤矸石的机械-热复合活化研究[J]. 应用化工,2018,47(8):1800-1802. [14] 郭伟,李东旭,陈建华,等. 机械活化煅烧煤矸石水泥的早期水化过程[J]. 硅酸盐学报,2008,36(1):94-98. [15] 吴红,徐立飞,吴习,陈明雪.煤矸石活化的研究现状与展望[J].广州化工,2017,45(01):7-8+43. [16] 丁星,蒲心诚.水泥活性矿物掺料增强效应统计模型研究[J]硅酸盐学报,1999,27(4):40-407. [17] 郭伟. 煤矸石的活性激发及活性评价方法的探讨[D].南京:南京工业大学,2005. [18] 吴红,张绪勇,孔德顺, 等.活化煤矸石基免烧砖胶凝性能的研究[J].硅酸盐通报,2017,36(1):359-364. [19] 秦丙克,籍永华,白志玲, 等.煤矸石复合活化制备水泥胶砂的力学性能研究[J].煤炭技术,2018,37(12):320-322. [20] 王菲,刘泽,韩乐,等. 活化煤矸石地质聚合物的制备与性能研究[J]. 硅酸盐通报,2021,40(3):914-920. [22] 张卫清,柴军,冯秀娟,董超伟,孙强,李猛,王莉.煤矸石基地质聚合物的制备及微观结构[J].中国矿业大学学报,2021,50(03):539-547. [25] 关虓,陈霁溪,高扬,高洁.NaOH碱激发煤矸石胶砂试块力学性能及微观结构[J].西安科技大学学报,2020,40(04):658-664. [27] 周梅,王然,陈冲,赵华民,瞿宏霖.煤矸石掺合料的制备及对高强混凝土性能影响[J].非金属矿,2015,38(05):27-30. [28] 宋旭艳,张康,韩静云,等. 热活化煤矸石的火山灰效应及其对水泥性能的影响[J]. 材料导报,2011,25(22):118-121,129. [29] 朱蓓蓉,杨全兵. 煤矸石颗粒表面热活化研究[J]. 建筑材料学报,2006,9(4):484-487. [32] 张蕾,宋旭艳.煤矸石热活化性能研究及其用于建筑砂浆的制备[J].粉煤灰综合利用,2013(04):27-30. [33] 李永峰,王万绪,杨效益.煤矸石热活化及相变分析[J].硅酸盐学报,2007,35(9):1258-1263,1269. [34] 郭伟,李东旭,陈建华,等. 热活化与机械力活化对煤矸石胶凝性的影响[J]. 建筑材料学报,2011,14(3):371-375. [37] 钟声亮,张迈生,苏锵. 微波热法煅烧高岭土的机理研究[J]. 中山大学学报(自然科学版),2005,44(3):71-74. [38] 赵志曼,何天淳,宁平,等. 微波辐照改性陈煤矸石球团烧结动力学研究[J]. 矿产综合利用,2004(5):21-24. [41] 连明磊,霍霞,胡江良,等. 活性炭辅助微波协同活化煤矸石过程[J]. 化学反应工程与工艺,2012,28(5):452-457. [42] 王倩,赵志曼,王春杰,等. 利用微波技术研制膨胀煤矸石硅酸盐水泥的试验研究[J]. 河南科学,2013(6):814-817. [43] 张长森,邓育新,吴其胜.微波活化煤矸石反应活性及胶凝性能[J].环境工程学报,2013,7(08):3170-3174. [44] 胡晓娜,赵志曼,王倩,等. 微波辐照活化高岭质矿物研究进展[J]. 矿产综合利用,2013(2):20-23. [47] 曹润倬,周茗如,周群,何勇.超细粉煤灰对超高性能混凝土流变性、力学性能及微观结构的影响[J].材料导报,2019,33(16):2684-2689. [50] 余强,曾俊杰,范志宏,等. 偏高岭土和硅灰对混凝土性能影响的对比分析[J]. 硅酸盐通报,2014,33(12):3134-3139. [51] 何鼎辉,李闯民.矿物掺合料对水泥砂浆性能影响试验研究[J].公路,2021,66(04):285-290. [62] 周梅,沈梦阳,吴景昊,等. 煤矸石掺合料的制备及对混凝土碱-骨料反应影响[J]. 硅酸盐通报,2017,36(5):1713-1717. [64] 孟云芳,眭克仁,买文智. 复合矿物掺和料对混凝土的增强效应[J]. 建筑材料学报,2007,10(6):724-730. [69] 刘贤萍,王培铭. 硅酸盐水泥熟料-煤矸石混合水泥的界面结构[J]. 硅酸盐学报,2008,36(1):105-112. [72] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会,通用硅酸盐水泥:GB175-2007[S],北京:中国标准出版社,2007. [73] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会,水泥胶砂强度检验方法(ISO法):GB 17671-1999[S],北京:中国标准出版社,1999. [74] 中华人民共和国行业标准,中国人民共和国住房和城乡建设部,普通混凝土配合比设计规范:JGJ/T 55-2011[J],北京:中国标准出版社,2011. [75] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会,普通混凝土拌合物性能试验方法标准:GB/T 50080-2016[S],北京:中国标准出版社,2016. [76] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会,混凝土物理力学性能试验方法标准:GB/T 50081-2019[S],北京:中国标准出版社,2019. [77] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会,用作水泥混合材料的的工业废渣活性试验方法:GB/T12957—2005[S],北京:中国标准出版社,2005. [80] 吴振华,何静.煤矸石对水泥抗压强度性能的影响[J].混凝土,2020(07):81-83. [81] 程多松,尚建丽.轻集料混凝土早期强度预测的试验研究[J].混凝土,2007(1):32-36. [84] 肖建敏,胡亚茹. 不同镁硅摩尔比下水化硅酸镁凝胶的微观结构[J]. 建筑材料学报,2021,24(6):1131-1138. [85] 覃丽芳,曲波,史才军,等. 钙硅比对铝硅酸盐凝胶形成与特性的影响[J]. 材料导报,2020,34(12):12057-12063. [87] 赵燕茹,王志慧,王磊,范晓奇.冻融循环作用后BFRC宏微观性能的灰熵法分析. 建筑材料学报,2019(01),45-53. [88] 林基泳,蒋勇,吴兴颜,等. 石粉对混凝土性能影响的研究现状[J]. 硅酸盐通报,2018,37(12):3842-3848. [89] 王文东,王昌鑫,刘荟,等. 紫外辐射对高岭土混凝过程的影响机制[J]. 环境科学,2017,38(1):188-194. DOI:10.13227/j.hjkx.201606114. |
中图分类号: | TU528 |
开放日期: | 2022-06-15 |