论文中文题名: | 波纹套管煤矸石CFG桩复合地基承载机理研究 |
姓名: | |
学号: | 19204209071 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085213 |
学科名称: | 工学 - 工程 - 建筑与土木工程 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2022 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 地基处理 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2022-06-13 |
论文答辩日期: | 2022-05-29 |
论文外文题名: | Research on Bearing Mechanism of Composite Foundation with Corrugated Casing Coal Gangue CFG Pile |
论文中文关键词: | |
论文外文关键词: | Coal gangue CFG pile ; Corrugated plastic sleeve ; Composite foundation ; Reinforcement mechanism ; Optimization design |
论文中文摘要: |
CFG桩广泛应用于地基处理,以煤矸石作为粗骨料配置桩体混凝土,既能有效利用煤矸石,又能减轻其堆积占地及环境污染。而CFG桩体埋置在土体中,存在多种侵蚀介质影响其性能,故考虑在桩体外侧包裹波纹塑料套管形成统一整体,能较好改善桩侧摩阻力和耐久性能。基于混凝土试验、模型试验与数值计算,研究分析波纹塑料套管煤矸石CFG桩复合地基的可行性及其承载特性。主要研究内容与结论如下: (1)以粉煤灰替代水泥率、煤矸石取代碎石率、养护龄期三类试验变量,分析各参数对煤矸石混凝土抗压强度与坍落度的影响。以C20抗压强度等级为基准,结合CFG桩体工作性能需求,通过混凝土试验选取编号F40M40(水:水泥:粉煤灰:砂:普通碎石:煤矸石:减水剂=1:1:0.67:2.98:3.32:2.22:0.01)作为煤矸石混凝土最优配合比,同时测定其弹性模量,为后续模型试验与数值计算提供依据。 (2)按照相似理论设计并完成天然地基、煤矸石混凝土桩复合地基、波纹塑料套管+煤矸石混凝土桩复合地基、土工格栅+波纹塑料套管+煤矸石混凝土桩复合地基4组模型对照试验。研究表明,波纹塑料套管桩表现为明显的摩擦桩特性,能够充分调动桩周土体承担上部荷载,桩顶荷载越高,桩侧摩阻力发挥越充分,复合地基沉降变形控制效果显著;土工格栅在高荷载作用下能充分发挥其张拉膜效应,在提高桩土应力比、桩体荷载分担比的同时降低桩端阻力比,进一步改善复合地基的承载性能与沉降变形。 (3)在模型试验工况的基础上建立数值计算模型,与模型试验结果比较,二者在变化规律上基本一致。设置光滑套管桩复合地基对照组,以此为基础提出一种新型桩体优化方法,即部分光滑波纹套管桩。研究表明,桩体轴向应力在套管型式分界处存在突变点,该突变点在不高于0.4倍桩长的光滑区间内随其增长逐渐趋近于中性点;相较于波纹套管桩复合地基,光滑区间在0.1、0.2倍桩长时沉降变形相差不大,桩体控制应力均有所降低,可有效降低负摩阻力对桩体的不利影响。比较不同桩长、桩间距和桩体模量对照组的数值计算结果,分析各因素变化对桩体轴向应力、桩土顶部差异沉降等的影响,对比各指标变化规律并揭示其工作机理,为桩体优化设计提供思路。 |
论文外文摘要: |
CFG pile is widely used in foundation treatment. Using coal gangue as coarse aggregate to mix pile concrete can not only make effective use of coal gangue, but also reduce its accumulation area and environmental pollution. CFG pile is buried in the soil, there are a variety of erosion media, which affects the performance. Therefore, it is considered to be wrapped by corrugated plastic casing on the outside of the pile to form a unified whole, which can better improve the lateral friction resistance and durability of the pile. Based on concrete test, model test and numerical simulation, the feasibility and bearing characteristics of corrugated plastic casing coal gangue CFG pile composite foundation were studied and analyzed. The main research contents and conclusions are as follows: (1) The influence of the parameters on the compressive strength and slump of coal gangue concrete was analyzed by using three test variables: the ratio of fly ash replacing cement, the ratio of coal gangue replacing gravel and curing age. Based on the C20 compressive strength grade and combined with the working performance requirements of CFG pile, the number F40M40 (water: cement: fly ash: sand: ordinary gravel: coal gangue: water reducing agent = 1:1:0.67:2.98:3.32:2.22:0.01) was determined as the optimal mix ratio of coal gangue concrete, and the elastic modulus was measured at the same time. It provided a basis for subsequent model test and numerical calculation. (2) According to the similarity theory, four groups of model control tests were designed and completed: natural foundation, gangue concrete pile composite foundation, corrugated plastic casing + gangue concrete pile composite foundation, geogrids + corrugated plastic casing + gangue concrete pile composite foundation. The results show that the corrugated plastic casing pile has obvious characteristics of friction pile, which can fully mobilize the soil around the pile to bear the upper load. The higher the pile top load value is, the more fully the pile side friction resistance can play, and the settlement deformation control effect of composite foundation is remarkable. Geogrid can give full play to its tension film effect when the load is higher. And it can increase the pile-soil stress ratio and pile load-sharing ratio, and reduce the ratio of pile tip stress to pile top stress. Thus, the bearing capacity and settlement deformation of composite foundation can be further improved. (3) The numerical calculation model was established based on the model test condition. Compared with the model test results, it is confirmed that the variation law of the two was basically consistent. The control group of the composite foundation of smooth casing pile was set up, and a new pile optimization method was proposed based on this, that is, partially smooth corrugated casing pile. The results show that there is a mutation point of pile axial stress at the boundary of casing type, and the mutation point gradually tends to the neutral point with the increase in a smooth interval no higher than 0.4 times the pile length. Compared with the composite foundation of corrugated casing pile, there is little difference in settlement deformation between the smooth zone of 0.1 and 0.2 times the pile length, and the control stress of pile decreases, which can effectively reduce the adverse effect of negative friction on pile. The numerical calculation results of the control group with different pile lengths, pile spacing and pile modulus were compared, and the influence of various factors on the axial stress of pile, differential settlement on the top of pile and soil, and pile-soil stress ratio were analyzed. On this basis, the variation law of each index was compared and its working mechanism was revealed, which provided ideas for the optimal design of piles. |
参考文献: |
[1] 蒋茂荣, 肖新建. 2019年煤炭供需形势分析及2020年展望[J]. 中国能源, 2020, 42(3): 9-13. [4] 郭彦霞, 张圆圆, 程芳琴. 煤矸石综合利用的产业化及其展望[J]. 化工学报, 2014, 65(7): 2443-2453. [7] 龚晓南. 复合地基理论及工程应用[M]. 北京: 中国建筑工业出版社, 2002. [8] 周圣斌, 孙训海. 某超高层建筑采用CFG桩复合地基协同作用分析[J]. 武汉大学学报(工学版), 2020, 53(S1): 196-199. [9] 闫明礼, 张东刚. CFG桩复合地基技术及工程实践(第二版)[M]. 北京: 中国水利水电出版社, 2006. [12] 郭海桥, 程伟, 尚志, 等. 水分和冻融循环对酷寒矿区煤矸石风化崩解速率影响的定量研究[J]. 煤炭学报, 2019, 44(12): 3859-3864. [13] 李超, 赵亮, 惠晓梅, 等. 煤矸石动态煅烧活化的影响因素[J]. 环境工程学报, 2017, 11(7): 4349-4354. [14] 邱继生, 潘杜, 关虓, 等. 冻融后煤矸石混凝土受压损伤声发射特性[J]. 建筑材料学报, 2018, 21(2): 196-201. [15] 马宏强, 易成, 朱红光, 等. 煤矸石集料混凝土抗压强度及耐久性能[J]. 材料导报, 2018, 32(14): 2390-2395. [19] 白国良, 刘瀚卿, 朱可凡, 等. 陕北矿区不同矿源煤矸石混凝土抗压强度试验研究[J]. 土木工程学报, 2022, Doi:10.15951/j.tmgcxb.21121197. [20] 李文龙. 掺玻璃纤维粉煤灰煤矸石骨料混凝土强度与抗裂性能试验研究[J]. 建筑结构, 2020, 50(13): 49-53. [21] 王长龙, 乔春雨, 王爽, 等. 煤矸石与铁尾矿制备加气混凝土的试验研究[J]. 煤炭学报, 2014, 39(4): 764-770. [23] 张清峰, 王东权. 煤矸石地基在强夯冲击荷载作用下的物理模型试验研究[J]. 岩石力学与工程学报, 2013, 32(5): 1049-1056. [25] 赵军宝, 刘平喜, 郭辰明. 煤矸石堆填与高填方场地电厂的地基处理[J]. 武汉大学学报(工学版), 2020, 53(S1): 245-248. [28] 郭帅杰, 宋绪国, 罗强, 等. 基于荷载传递理论的刚性桩复合地基沉降计算[J]. 铁道工程学报, 2015, 32(10): 44-50. [29] 何桥敏, 胡卫国. 考虑桩土界面摩阻力的CFG桩复合地基沉降计算方法[J]. 武汉理工大学学报(交通科学与工程版), 2016, 40(3): 482-485. [30] 但汉成, 李亮, 赵炼恒, 等. CFG桩复合地基桩土应力比计算与影响因素分析[J]. 中国铁道科学, 2008, 29(5): 7-12. [31] 武崇福, 郭维超, 李雨浓, 等. 考虑负摩阻力的刚性桩复合地基中性面深度及桩土应力比计算[J]. 岩土工程学报, 2016, 38(2): 278-287. [32] 雷金波, 姜弘道, 郑云扬, 等. 带帽桩复合地基复合桩土应力比的计算及影响因素分析[J]. 岩土工程学报, 2005, 27(11): 1300-1305. [33] 亓乐, 施建勇, 曹权. 刚性桩复合地基垫层合理厚度确定方法[J]. 岩土力学, 2009, 30(11): 3423-3428. [34] 商拥辉, 徐林荣, 陈钊锋. 高铁CFG桩-筏复合地基固结解析解及特性[J]. 中国铁道科学, 2021, 42(1): 1-8. [35] 张艳美, 潘振华, 张鸿儒, 等. 多桩型复合地基作用机理与动力特性研究[J]. 地震工程学报, 2015, 37(1): 82-87. [40] 李继才, 郦能惠, 丛建, 等. 大型储罐CFG桩复合地基变形性状和变刚度调平设计[J]. 岩土工程学报, 2018, 40(6): 1111-1116. [41] 庞振飞. 湿陷性黄土区复合地基承载性状研究[D]. 北京: 中国地质大学, 2020. [42] 任锐, 谢永利, 来弘鹏. 长短桩在湿陷性黄土中作用机理的数值分析[J]. 郑州大学学报(工学版), 2010, 31(1): 48-51. [43] 廖廷周. CFG与MIP组合型桩复合地基变形分析与沉降预测[D]. 成都: 西南交通大学, 2011. [46] 鲍跃全, 李惠. 人工智能时代的土木工程[J]. 土木工程学报, 2019, 52(5): 1-11. [49] 陈昌富, 邱琳淇, 毛凤山, 等. 基于加权扰动共生生物搜索算法桩网复合地基优化设计[J]. 岩土力学, 2019, 40(11): 4477-4485+4514. [51] 邓兴波. CFG桩复合地基智能优化设计系统开发研究[D]. 西安: 西安理工大学, 2020. [53] 丁继辉, 冯俊辉, 张攀星, 等. CFG芯水泥土环组合桩复合地基动力特性试验研究[J]. 工程力学, 2015, 32(S1): 284-288. [54] 许兴旺. 高速铁路CFG桩+挤密桩工程实践及研究[J]. 铁道工程学报, 2016, 33(4): 36-40. [55] 沈宇鹏, 田亚护, 冯瑞玲. GC-CFG组合桩复合地基处理高速铁路基底的应用研究[J]. 土木工程学报, 2013, 46(2): 136-142. [58] 李连祥, 符庆宏. 临近基坑开挖复合地基侧向力学性状离心试验研究[J]. 土木工程学报, 2017, 50(6): 85-94. [60] 顾行文, 谭祥韶, 黄炜旺, 等. 倾斜软土CFG桩复合地基上的路堤破坏模式研究[J]. 岩土工程学报, 2017, 39(S1): 111-115. [61] 张树明, 蒋关鲁, 廖祎来, 等. 加固范围及边坡坡率对CFG桩-网复合地基受力变形特性影响分析[J]. 岩石力学与工程学报, 2019, 38(1): 192-202. [62] 尹小卡, 杜思义, 王涛涛. 砂土液化与水泥粉煤灰碎石桩施工参数关系的试验研究[J]. 岩土力学, 2021, 42(9): 2518-2524. [63] 陈永辉, 王新泉. 塑料套管混凝土桩技术及应用[M]. 北京: 中国建筑工业出版社, 2017. [64] 牛婷婷, 刘汉龙, 丁选明, 等. 高铁列车荷载作用下桩网复合地基振动特性模型试验[J]. 岩土力学, 2018, 39(3): 872-880. [65] 齐昌广, 刘汉龙, 陈永辉, 等. 塑料套管混凝土桩承载试验及沉降计算方法研究[J]. 岩土工程学报, 2016, 38(12): 2302-2308. [66] 费康, 彭劼. ABAQUS岩土工程实例详解[M]. 北京: 人民邮电出版社, 2017. [67] 张峰, 刘莹, 许兆义, 等. 武广高铁CFG桩复合地基工后沉降影响因素[J]. 西南交通大学学报, 2015, 50(5): 783-788. [68] 赵明华, 徐泽宇, 张承富. 带锥形桩帽复合地基桩土应力比计算及其数值模拟[J]. 湖南大学学报(自然科学版), 2020, 47(3): 1-10. [69] 蒋鹏程. 粉土地基CFG桩与螺杆桩复合地基承载特性对比分析[J]. 铁道学报, 2019, 41(4): 125-132. [70] 高广运, 戴益波, 雷丹, 等. 高铁桩网复合路基环境振动影响因素分析[J]. 振动与冲击, 2018, 37(23): 253-260. [71] 马永峰, 周丁恒, 张志豪, 等. 大型石化CFG桩复合地基现场试验与数值模拟[J]. 中国海洋大学学报(自然科学版), 2016, 46(1): 86-92. [72] 曹金凤, 石亦平. ABAQUS有限元分析常见问题解答[M]. 北京: 机械工业出版社, 2016. [73] 许胜才, 范秋雁, 崔峰. 基于ABAQUS的特殊双排桩支护结构三维有限元模拟[J]. 地下空间与工程学报, 2015, 11(6): 1514-1521. |
中图分类号: | TU473.1 |
开放日期: | 2022-06-13 |