- 无标题文档
查看论文信息

论文中文题名:

     

姓名:

 孟祥振    

学号:

 18104053009    

保密级别:

     

论文语种:

 chi    

学科代码:

 081401    

学科名称:

  - -     

学生类型:

     

学位级别:

     

学位年度:

 2022    

培养单位:

 西    

院系:

 建筑与土木工程学院    

专业:

 土木工程    

研究方向:

     

第一导师姓名:

 张慧梅    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-05-12    

论文答辩日期:

 2022-12-23    

论文外文题名:

 Macroscopic and mesoscopic physical and mechanical properties and damage constitutive model of red sandstone under freeze-thaw action    

论文中文关键词:

 冻融循环 ; 力学特性 ; 分形维数 ; 损伤变量 ; 本构模型    

论文外文关键词:

 freeze-thaw cycle ; mechanical properties ; fractal dimension ; damage variable ; constitutive model    

论文中文摘要:
<p>使</p> <p>13</p> <p>2T<sub>2</sub>线使</p> <p>3PFC<sup>2D</sup></p> <p>45-</p> <p>5使广</p>
论文外文摘要:
<p>The freeze-thaw action in cold region changes the mesoscopic&nbsp;structure of rock, which leads to the deterioration of macroscopic mechanical properties and seriously threatens the safety and stability of rock engineering. Therefore, it is of great theoretical and engineering significance to study the physical and mechanical properties and failure mechanism of rock under freeze-thaw conditions for engineering construction and safe service in cold regions. Based on the background of rock mass engineering in cold region, this paper systematically studies the macroscopic and mesoscopic characteristics and damage evolution law of dry and saturated red sandstone under freeze-thaw action by means of laboratory test, numerical simulation and theoretical analysis.&nbsp;The main research results are as follows:</p> <p>(1)&nbsp;The freeze-thaw cycle test of red sandstone was&nbsp;carried out, and the variation of mass, volume and longitudinal wave velocity with the number of freeze-thaw cycles was studied and compared. The results show that with the increase of freeze-thaw cycles, the mass and volume of dry red sandstone decrease rapidly, and the change rate shows a concave upward trend. The mass and volume of saturated red sandstone increase first and then decrease. The longitudinal wave velocity of dry and saturated red sandstone continues to decrease, and its change rate gradually increases. Under the same number of freeze-thaw cycles, the rate of three macroscopic&nbsp;physical parameters of saturated red sandstone in the reduction process is significantly greater than that of dry red sandstone, indicating that the presence of pore water causes red sandstone to be greatly affected by freeze-thaw action,&nbsp;and the deterioration of internal structure is aggravated.</p> <p>(2) The nuclear magnetic resonance test of red sandstone after freeze-thaw cycles was carried out, and the T<sub>2</sub>&nbsp;spectrum distribution curve and spectrum area were obtained. The variation of mesoscopic&nbsp;structure characteristics with the number of freeze-thaw cycles was studied.&nbsp;The results show that the freeze-thaw action makes the pore structure of red sandstone&nbsp;redistribute, resulting in a decrease in bound water and an increase in the number of pores.&nbsp;At the initial stage of freeze-thaw, the dry red sandstone mainly shows&nbsp;the expansion between pores and the generation of large pores, and&nbsp;the saturated red sandstone mainly shows&nbsp;the generation and expansion of small pores. With the increase of freeze-thaw cycles, all kinds of pores in dry red sandstone increases, while the increase rate of large pores is relatively slow. The generation rate of small pores in saturated red sandstone slows down, and&nbsp;the generation and development trend of large&nbsp;pores is developed.&nbsp;The fractal dimension of dry and saturated red sandstone increases with the increase of freeze-thaw cycles.&nbsp;Combined with the variation characteristics of the number of pores, the saturated red sandstone is greatly affected by freeze-thaw&nbsp;action, the internal pores develop faster and the pore structure is more complex.</p> <p>(3) The mechanical properties test of red sandstone after freeze-thaw cycles was carried out. The relationship between macro mechanical properties and freeze-thaw cycles and confining pressure was analyzed, and the correlation between mesoscopic&nbsp;structure change and macro mechanical response was quantitatively described. The results show that the freeze-thaw cycles cause the development of internal mesoscopic&nbsp;structure, which is shown in the macroscopic&nbsp;view as the decrease of the bearing capacity and the increase of deformation&nbsp;of red sandstone. The confining pressure inhibits the internal damage and restricts the lateral deformation, which is shown in the macroscopic&nbsp;view as&nbsp;the red sandstone resistances to damage and deformation ability is enhanced. Based on PFC<sup>2D</sup>&nbsp;simulation results, it is shown that the process of deformation and failure of red sandstone can be effectively simulated by using the equivalent substitution of mesoscopic mechanical parameters for freeze-thaw effect. With the increase of freeze-thaw cycles, the crack evolution rate decreases, indicating that the compressibility of red sandstone is enhanced and the brittleness is weakened. According to the comprehensive comparison of the variation of macroscopic mechanical parameters and mesoscopic&nbsp;cracks, dry red sandstone shows the characteristics of faster crack propagation rate, higher compressive strength and lower deformation.</p> <p>(4) Considering the influence of initial damage, freeze-thaw and load factors, the total area of rock micro elements is abstracted into five parts: non-damage, initial damage, freeze-thaw damage, load damage and coupled damage. According to the influence of effective bearing area reduction on each damage, the total damage variable is determined. Based on the expansion characteristics of mesoscopic structure, porosity and fractal dimension are introduced to determine the initial and freeze-thaw damage variables. Considering the influence of the existing damage on the continuous transformation of non-damage part into damage dynamic evolution process, the load damage variable is determined. Assuming that the damage part does not bear the force, a damage constitutive model of freeze-thaw rock under unidirectional stress state is established. The rationality of the model is verified by test results, and the damage characteristics and macro mechanical behavior of red sandstone under freeze-thaw and load are theoretically characterized. The results show that the model can not only reflect the pre-peak stress-strain behavior of rock under freeze-thaw action, but also describe the post-peak brittle failure characteristics.</p> <p>(5) The inhibition effect of confining pressure on damage is quantitatively characterized by the change of macroscopic&nbsp;characteristic parameters, and the effective initial and freeze-thaw damage variables of rock are determined by modifying the mesoscopic damage variables. Assuming that damage parts bear residual stress and non-damage part bears effective stress, a damage constitutive model of freeze-thaw rock under triaxial stress state is established through the total damage effect. The rationality of the model is verified by test results. The results show that the model can better describe the whole process of rock deformation and failure, and reflect the influence of freeze-thaw cycle and confining pressure on the mechanical properties of rock. When the confining pressure is constant, with the increase of freeze-thaw cycles, the damage of red sandstone is intensified, which shows that the compressive strength decreases and the plasticity increases. When the freeze-thaw cycle is constant, with the increase of confining pressure, the damage inhibition of red sandstone is more significant, which is manifested by the increase of stiffness and strength, and the plastic characteristics are gradually enhanced.&nbsp;the expressions between&nbsp;the number of freeze-thaw cycles, confining pressure and mechanical parameters are determined, the mechanical parameter data required in the process of determining the constitutive model is reduced, making the model more applicable.</p>
参考文献:

[1]康永水. 裂隙岩体冻融损伤力学特性及多场耦合过程研究[J]. 岩石力学与工程学报, 2012, 31(9): 1944-1944.

[2]刘泉声, 黄诗冰, 康永水, 等. 裂隙岩体冻融损伤研究进展与思考[J]. 岩石力学与工程学报, 2015, 34(3): 452-471.

[3]Ruedrich J, Kirchner D, Siegesmund S. Physical weathering of building stones induced by freeze-thaw action: a laboratory long-term study[J]. Environmental Earth Sciences, 2011, 63(7): 1573-1586.

[4]AL-Omari, A, Beck, et al. Critical degree of saturation: a control factor of freeze-thaw damage of porous limestones at Castle of Chambord, France[J]. Engineering Geology, 2015, 185(3): 71-80.

[5]陈卫忠, 谭贤君, 于洪丹, 等. 低温及冻融环境下岩体热、水、力特性研究进展与思考[J]. 岩石力学与工程学报, 2011, 30(7): 1318-1336.

[6]Tien YM, Kuo MC, Juang CH. An experimental investigation of the failure mechanism of simulated transversely isotropic rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(8): 1 163-1 181.

[7]黄书岭, 钟鹏举, 丁秀丽. 绿泥石片岩单轴压缩特征强度各向异性特征研究[J]. 岩石力学与工程学报, 2021, 40(增2): 3182-3190.

[8]陈永泽, 刘俊新, 冒海军, 等. 单轴压缩下页岩力学特性的各向异性试验研究[J]. 金属矿山, 2015, 44(12): 33-37.

[9]张寅, 李哲, 宋士康, 等. 自然与饱水状态下砂岩压缩破坏力学特性及声发射特征[J]. 煤田地质与勘探, 2022, 50(2): 98-105.

[10]Sonmez H, Gokceoglu C, Medley E W, et al. Estimating the uniaxial compressive strength of avolcanic bimrock[J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(4):554-561.

[11]文圣勇, 韩立军, 宗义江, 等. 不同含水率红砂岩单轴压缩试验声发射特征研究[J]. 煤炭科学技术, 2013, 41(8): 46-48.

[12]Torok A, Vasarhelyi B. The influence of fabric and water content on selected rock mechanical parameters of travertine, examples from Hungary[J]. Engineering Geology, 2010, 115(3/4): 237-245.

[13]滕腾, 杜玉冰, 陈朋飞, 等. 砂岩变形率与水理效应的力学特性研究[J]. 矿业科学学报, 2020, 5(3): 342-352.

[14]Ait-Epping P, Diamond LW, Haring MO, et al. Prediction of water-rock interaction and porosity evolution in a granitoid-hosted enhanced geothermal system using constraints from the 5 km Basel-1 well[J]. Applied geochemistry, 2013, 38: 121-133.

[15]熊赞民, 高全臣, 邬爱清, 等. 不同围压下灰岩的强度与变形特性试验研究[J]. 岩土力学, 2007, 28(增1): 111-113.

[16]Hao XJ, Wang SH, Xu QS, et al. Influences of confining pressure and bedding angles on the deformation fracture and mechanical characteristics of slate[J]. Construction and Building Materials, 2020, (243): 1-11.

[17]周意超, 陈从新, 刘秀敏, 等. 荆门石膏矿岩遇水软化力学特性试验研究[J]. 岩土力学, 2017, 38(10): 2847-2854.

[18]Duda M, Renner J. The weakening effect of water on the brittle failure strength of sandstone[J]. Geophysical Journal International, 2013, 192: 1 091-1108.

[19]宋勇军, 雷胜友, 毛正君, 等. 干燥和饱水状态下炭质板岩力学特性试验[J]. 煤炭科学技术, 2014, 42(10): 48-52.

[20]刘登新, 胡鹏, 赵立财. 饱水对红层地区岩石力学特性影响的试验研究[J]. 水运工程, 2022(4): 166-179.

[21]Bayram F. Predicting mechanical strength loss of natural stones after freeze- thaw in cold regions[J]. Cold Regions Science and Technology, 2012, 84(12): 98-102.

[22]Javier MM, David B, Miguel GH, et al. Non-linear decay of building stones during freeze-thaw weathering processes[J]. Construction and Building Materials, 2013: 443-454.

[23]Luo XD, Jiang N, Zuo CQ, et al. Damage characteristics of altered and unaltered diabases subjected to extremely cold freeze-thaw cycles[J]. Rock Mechanics and Rock Engineering, 2014, 47(6): 1-11.

[24]贾海梁, 项伟, 谭龙, 等. 砂岩冻融损伤机制的理论分析和试验验证[J]. 岩石力学与工程学报, 2016, 35 (5): 879-895.

[25]Jiang HB. The relationship between mechanical properties and gradual deterioration of microstructures of rock mass subject to freeze-thaw cycles[J]. Earth Sciences Research Journal, 2018, 22(1): 53-57.

[26]张慧梅, 杨更社. 水分及冻融环境下岩石抗拉力学特性[J]. 湖南科技大学学报, 2013, 28(3): 35-40.

[27]闻磊, 李夕兵, 尹彦波, 等. 冻融循环作用下花岗斑岩和灰岩物理力学性质对比分析及应用研究[J]. 冰川冻土, 2014, 36(3): 632-639.

[28]Momeni A , Abdilor Y , Khanlari G R , et al. The effect of freeze- thaw on physical and mechanical properties of granitoid hard rocks[J]. Bulletin of Engineering Geology and the Environment, 2016, 75(4):1649-1656.

[29]申艳军, 杨更社, 荣腾龙, 等. 岩石冻融循环试验建议性方案探讨[J]. 岩土工程学报, 2016, 38(10): 1775-1782.

[30]申艳军, 杨更社, 王婷, 等. 岩石内孔隙/裂隙冻胀力模型及其适用性评价[J]. 冰川冻土, 2019, 41(1): 117-128.

[31]卢阳, 邬爱清, 徐平. 三江源区岩体冻融风化特征及影响主因分析[J]. 长江科学院院报. 2016, 33(4): 39-45.

[32]闻磊, 李夕兵, 苏伟. 冻融循环影响下金属矿山边坡坚硬岩石物理力学性质研究[J]. 采矿与安全工程学报, 2015, 32(4): 689-696.

[33]高峰, 熊信, 周科平, 等. 冻融循环作用下饱水砂岩的强度劣化模型[J]. 岩土力学, 2019, 40(3):926-932.

[34]Demirdag S. Effect of freezing-thawing and thermal shock cycles on physical and mechanical properties of filled and unfilled travertines[J]. Construction and Building Materials. 2013, 47: 1395-1401.

[35]Yamabe, Neaupane K M. Determination of some thermo-mechanical properties of Sirahama sandstone under subzero temperature condition[J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(7): 1029-1034.

[36]徐光苗, 刘泉声, 彭万巍, 等. 低温作用下岩石基本力学性质试验研究[J]. 岩石力学与工程学报, 2006, 25(12): 2503-2508.

[37]崔圣华, 杨晴雯, 芮雪莲, 等.裂隙岩体循环冻融变形特征及影响因素分析[J]. 地质科技通报, 2021, 40(6): 205-215.

[38]王来贵, 高晗, 郭子钰, 等. 受冻融循环作用的砂岩宏观变形特征研究[J]. 实验力学, 2020, 35(6): 1113-1120.

[39]刘向峰, 郭子钰, 王来贵, 等. 冻融循环作用下石窟砂岩物理力学性质损伤规律研究[J]. 实验力学, 2020, 35(5): 943-954.

[40]Chen TC, Yeung M R, Mori N. Effect of water saturation on deterioration of welded tuff due to freeze-thaw action[J]. Cold Regions Science and Technology, 2004,38(2/3): 127-136.

[41]方杰, 姚强岭, 王伟男, 等. 含水率对泥质粉砂岩强度损伤及声发射特征影响的研究[J]. 煤炭学报, 2018, 43(增2):412-419.

[42]訾凡, 杨更社, 贾海梁. 饱和度对泥质粉砂岩冻结力学性质的影响[J]. 冰川冻土, 2018, 40(4): 748-755.

[43]宋勇军, 杨慧敏, 谭皓, 等. 冻融环境下不同饱和度砂岩损伤演化特征研究[J]. 岩石力学与工程学报, 2021, 40(8): 1513-1524.

[44]李家欣, 袁维, 王伟, 等. 冻融循环条件下白云岩物理力学特性[J]. 科学技术与工程, 2020, 20(2): 755-762.

[45]李富平,王浩程,夏冬,等.冻融作用对黄砂岩声发射特征影响的试验研究[J]. 矿业研究与开发, 2021, 41(2): 67-73.

[46]张慧梅, 杨更社. 岩石冻融力学实验及损伤扩展特性[J]. 中国矿业大学学报, 2011, 40(1): 140-145+151.

[47]Khanlari G, Abdilor Y. The influence of wet-dry,freeze-thaw and heat-cool cycles on physical and mechanical properties of upper red sandstones,central part of Iran[J]. Bulletin of Engineering Geology and the Environment, 2015, 74(4): 1287-1300.

[48]Yavuz H. Effect of freeze-thaw and thermal shock weathering on the physical and mechanical properties of an andesite stone[J]. Bulletin of Engineering Geology and the Environment, 2011, 70(2): 187-192.

[49]韩财宝, 朱婷, 王春霞. 冻融循环与围压对岩石物理力学性质影响研究[J]. 安阳师范学院学报, 2021(2): 13-16.

[50]彭成, 涂福豪, 樊军伟. 冻融循环作用下泥岩的力学特性及损伤机理研究[J]. 南华大学学报, 2021, 35(3): 44-50.

[51]乔趁, 王宇, 宋正阳, 等. 饱水裂隙花岗岩周期冻胀力演化特性试验研究[J].岩土力学, 2021, 42(8): 2141-2150.

[52]刘畅, 徐必根, 唐绍辉. 岩石冻融荷载耦合试验及物理力学特性研究[J]. 有色金属, 2013, 5: 48-53.

[53]俞缙, 傅国锋, 陈旭, 等. 冻融循环后砂岩三轴卸围压力学特性试验研究[J]. 岩石力学与工程学报, 2015, 34(10): 2001-2009.

[54]刘红岩, 刘冶, 邢闯锋, 等. 循环冻融条件下节理岩体损伤破坏试验研究[J]. 岩土力学, 2014, 35(6): 1547-1 554.

[55]杨更社, 奚家米, 邵学敏, 等. 冻结条件下岩石强度特性的试验[J]. 西安科技大学学报, 2010, 30(1): 14-18.

[56]Chen YL, Ni J, Jiang LH, et al. Experimental study on mechanical properties of granite after freeze-thaw cycling. Environment Earth Science, 2014, 71(8): 3349-3354.

[57]闻磊, 李夕兵, 唐海燕, 等. 变温度区间冻融作用下岩石物理力学性质研究及工程应用[J]. 工程力学, 2017, 34(5): 247-256. 

[58]Wang C, Li S, Zhang T, et al. Experimental study on mechanical characteristics and fracture patterns of unfrozen/freezing saturated coal and sandstone[J]. Materials,2019, 12(6): 992.

[59]杨鸿锐, 刘平, 孙博, 等. 冻融循环对麦积山石窟砂砾岩微观结构损伤机制研究[J]. 岩石力学与工程学报, 2021, 40(3): 545-555.

[60]Takarli M, Prince W, Siddique R. Damage in granite under heating/cooling cycles and water freeze-thaw condition[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(7): 1164-1165.

[61]陈有亮, 王朋, 张学伟, 等. 花岗岩在化学溶蚀和冻融循环后的力学性能试验研究[J]. 岩土工程学报, 2014, 36(12): 2226-2235.

[62]韩铁林, 师俊平, 陈蕴生, 等. 不同化学腐蚀下砂岩冻融力学特性劣化的试验研究[J]. 固体力学学报, 2017, 38(6): 503-520.

[63]丁梧秀, 徐桃, 王鸿毅, 等. 水化学溶液及冻融耦合作用下灰岩力学特性试验研究[J]. 岩石力学与工程学报, 2015, 34(5): 979-985.

[64]Ni J, Chen YL, Wang P. Effect of chemical erosion and freeze-thaw cycling on the physical and mechanical characteristics of granites[J]. Bulletin of Engineering Geology and the Environment, 2017, 76(1): 169−179.

[65]Zhang J, Deng HW, Taheri A, et al. Degradation of physical and mechanical properties of sandstone subjected to freeze-thaw cycles and chemical erosion[J]. Cold Regions Science and Technology, 2018, 155:37-46.

[66]崔凯, 刘桂山, 吴国鹏, 等. 不同条件下贺兰口岩画载体岩石冻融损伤特征与机制研究[J]. 岩石力学与工程学报, 2019, 38(9): 1797-1808.

[67]Fang XY, Xu JY, Wang PX. Compressive failure characteristics of yellow sandstone subjected to the coupling effects of chemical corrosion and repeated freezing and thawing[J]. Engineering Geology, 2018, 233(31): 160-171.

[68]张峰瑞, 姜谙男, 江宗斌, 等. 化学腐蚀-冻融综合作用下岩石损伤蠕变特性试验研究[J]. 岩土力学, 2019(10): 3879−3888.

[69]李存宝, 谢和平, 谢凌志. 页岩起裂应力和裂纹损伤应力的试验及理论[J]. 煤炭学报, 2017, 42(4): 969-976.

[70]李志刚, 徐光黎, 黄鹏, 等. 粉砂质板岩力学特性及各向异性特性[J]. 岩土力学,2018, 39(5): 1737-1746. 

[71]孙梓航. 超声波振动频率对花岗岩破碎规律影响的研究[D]. 吉林大学, 2017.

[72]张培森, 赵成业, 李腾辉,等. 红砂岩三轴加载过程中波速变化及能量演化规律试验研究[J]. 岩石力学与工程学报, 2021, 40(7):1-14.

[73]王常彬, 曹安业, 井广成, 等. 单轴受载下岩体破裂演化特征的声发射CT成像[J]. 岩石力学与工程学报, 2016, 35(10): 2044-2053.

[74]潘汝江, 何翔, 肖维民, 等. CT扫描技术在岩心三维重建中的应用[J]. CT理论与应用研究, 2018, 27(3): 71-78.

[75]任建喜, 葛修润. 单轴压缩岩石损伤演化细观机理及其本构模型研究[J]. 岩石力学与工程学报, 2001, 20(4): 425-431.

[76]朱红光, 谢和平, 易成, 等. 岩石材料微裂隙演化的CT识别[J]. 岩石力学与工程学报, 2011, 30(06): 1230-1238.

[77]王琨, 周航宇, 赖杰, 等. 核磁共振技术在岩石物理与孔隙结构表征中的应用[J]. 仪器仪表学报, 2020, 41(2): 103-116.

[78]王为民, 叶朝辉, 郭和坤. 陆相储层岩石核磁共振物理特征的实验研究[J]. 波谱学杂志, 2001, 18(2):113-121.

[79]孙中光, 姜德义, 谢凯楠, 等. 基于低场磁共振的北山花岗岩热损伤研究[J]. 煤炭学报, 2020, 45(3): 1081-1088.

[80]赵杰, 姜亦忠, 王伟男,等. 用核磁共振技术确定岩石孔隙结构的实验研究[J]. 测井技术, 2003, 27(3): 185-188+265.

[81]钟祖良, 罗玮坤, 刘新荣, 等. 基于核磁共振技术的酸性环境下灰岩力学特性劣化试验[J]. 煤炭学报, 2017, 42(7): 1740-1747.

[82]洪国敏, 王创业, 盛晓雅, 等. 基于核磁共振技术的石灰岩孔隙结构特征研究[J]. 现代矿业, 2019, 35(10): 75-78.

[83]秦庆词, 李克钢, 李明亮, 等. 基于核磁共振技术的白云岩微观损伤致劣机制研究[J]. 岩石力学与工程学报, 2022, 41(增1): 2944-2954.

[84]王萍, 屈展. 基于核磁共振的脆硬性泥页岩水化损伤演化研究[J]. 岩土力学, 2015, 36(3): 687-693.

[85]张娜, 王水兵, 严成钢, 等. 基于核磁共振技术的泥岩水化损伤孔隙结构演化试验[J]. 煤炭学报, 2019, 44( 增1): 110-117.

[86]白松涛, 程道解, 万金彬, 等. 砂岩岩石核磁共振T2谱定量表征[J].石油学报, 2016, 37(3): 382-391+414.

[87]李亚丁, 杨成, 冯顺, 等. 利用核磁共振研究页岩孔径分布的方法[J].地质论评, 2017, 63(S1): 119-120.

[88]宋勇军, 张磊涛, 任建喜, 等. 基于核磁共振技术的弱胶结砂岩干湿循环损伤特性研究[J]. 岩石力学与工程学报, 2019, 38(4): 825-831.

[89]周科平, 胡振襄, 高峰, 等. 基于核磁共振技术的大理岩三轴压缩损伤规律研究[J]. 岩土力学, 2014, 35(11):3117-3122.

[90]Cai YY, Yu J, Fu GF, et al. Experimental investigation on the relevance of mechanical properties and porosity of sandstone after hydrochemical erosion[J]. Journal of Mountain Science, 2016, 13(11): 2053-2068.

[91]Li H, Yang DM, Zhong ZL, et al. Experimental investigation on the micro damage evolution of chemical corroded limestone subjected to cyclic loads[J]. International Journal of Fatigue, 2018, 113: 23-32.

[92]Li H, Zhong ZL, Liu XR, et al. Micro-damage evolution and macro-mechanical property degradation of limestone due to chemical effects[J]. International Journal of Rock Mechanics and Mining Sciences, 2018,110: 257-265.

[93]林允. 砂岩孔隙结构化学腐蚀效应与力学行为演化规律研究[D].中南大学, 2019.

[94]周科平, 李杰林, 许玉娟, 等. 冻融循环条件下岩石核磁共振特性的试验研究[J]. 岩石力学与工程学报, 2012, 31(4): 731-737.

[95]李杰林, 周科平, 柯波. 冻融作用下岩石细观结构损伤的低场核磁共振研究[J]. 西安科技大学学报, 2018, 38(2): 266-272.

[96]李杰林, 朱龙胤, 周科平, 等. 冻融作用下砂岩孔隙结构损伤特征研究[J]. 岩土力学, 2019, 49(9): 3524-3532.

[97]Ke B, Zhou KP, Deng HW, et al. NMR pore structure and dynamic characteristics of sandstone caused by ambient freeze-thaw action[J]. Shock and Vibration, 2017.

[98]刘新喜, 侯勇, 徐泽佩. 冻融作用下炭质页岩微结构损伤特性研究[J]. 武汉理工大学学报, 2017, 39(1): 42-47.

[99]杨秀荣, 姜谙男. 基于核磁共振的冻融片麻岩蠕变特性试验研究[J]. 实验力学, 2020(3): 463-471.

[100]田镇, 张君岳, 王贵宾, 等.冻融红砂岩微观结构损伤试验研究[J].矿业研究与开发, 2021, 41(10): 61-66.

[101]张二锋, 杨更社, 刘慧. 冻融循环作用下砂岩细观损伤演化规律试验研究[J]. 煤炭工程, 2018, 50(10): 50-55.

[102]Zhai C, Wu SL, Liu SM, et al. Experimental study on coal pore structure deterioration under freeze-thaw cycles[J]. Environment Earth Sciences, 2017, 76: 507.

[103]袁军伟, 夏静怡, 初绍飞, 冻融循环对煤体孔隙结构的改造特征[J]. 煤矿安全, 2022, 53(2): 33-39.

[104]程桦, 陈汉青, 曹广勇, 等. 多孔岩石冻融水分迁移损伤机制及试验验证[J]. 岩石力学与工程学报, 2020, 39(9): 16-26.

[105]杨晶. 基于核磁共振成像的混凝土冻融损伤特征[J]. 长江科学院院报, 2020, 37(4): 131-135.

[106]薛慧君, 申向东, 邹春霞, 等. 基于NMR的风积沙混凝土冻融孔隙演变研究[J]. 建筑材料学报, 2019, 22(2): 199-205.

[107]许玉娟, 周科平, 李杰林, 等. 冻融岩石核磁共振检测及冻融损伤机制分析[J]. 地球物理学报, 2012, 33(10): 3001-3005.

[108]于恩毅, 金爱兵, 孙浩, 等. 超低温冻融循环下灰岩抗压强度与孔隙率的演化特征及衰减模型[J]. 矿业研究与开发, 2021, 41(10): 55-60.

[109]陈辉, 殷浩杰, 张军辉, 等. 寒区矿山边坡冻融岩石细观结构及分形维数研究[J]. 矿业研究与开发, 2022, 42(4): 50-54.

[110]王创业, 李仕璋, 刘沂琳. 冻融循环条件下砂岩物理力学劣化特性的实验研究[J].科学技术与工程, 2021, 21(23): 9969-9975.

[111]朱志勇. 页岩循环冻融试验研究[J]. 公路与汽运, 2017(5): 105-113.

[112]王子一, 康向涛, 江明泉, 等. 冻融循环作用下砂岩劣化试验研究[J]. 矿业研究与开发, 2022, 42(5): 139-143.

[113]姜德义, 张水林, 陈结, 等. 砂岩循环冻融损伤的低场核磁共振与声发射概率密度研究[J]. 岩土力学, 2019, 40(2): 436-444.

[114]Li JL, Kaunda R B, Zhu LY, et al. Experimental study of the pore structure deterioration of sandstones under freeze-Thaw cycles and chemical erosion[J]. Advances in Civil Engineering, 2019, 2019(PT.1): 1-12.

[115]田维刚. 多因素耦合作用下岩石冻融损伤机理试验研究[D]. 中南大学, 2014.

[116]Deng HW, Yu ST, Deng JR. Damage characteristics of sandstone subjected to coupled effect of freezing-thawing cycles and acid environment[J]. Advance in Civil Engineering, 2018: 1-10.

[117]傅国峰. 化学和冻融循环共同作用后砂岩力学性能和劣化机制研究[D]. 华侨大学, 2016.

[118]俞缙, 张欣, 蔡燕燕, 等. 水化学与冻融循环共同作用下砂岩细观损伤与力学性能劣化试验研究[J]. 岩土力学, 2019, 40(2): 455-464.

[119]Gao F, Wang QL, Deng HW, et al. Coupled effects of chemical environments and freeze-thaw cycles on damage characteristics of red sandstone[J]. Bulletin of Engineering Geology and the Environment, 2017, 16:1481-1490.

[120]龚囱, 曲文峰, 行鹏飞, 等. 岩石损伤理论研究进展[J]. 铜业工程, 2011(1): 7−11.

[121]曹文贵, 张升, 赵明华. 软化与硬化特性转化的岩石损伤统计本构模型之研究[J]. 工程力学, 2006, 23(11): 110-115.

[122]黄海峰,巨能攀,蓝康文,等. 岩石统计损伤软化模型及其参数反演[J]. 长江科学院院报, 2018, 35(6): 102-106.

[123]Chen X, Liao ZH, Peng X. Deformability characteristics of jointed rock masses under uniaxial compression[J]. International Journal of Mining Sciences and Technology, 2012, 22(2): 213-221.

[124]Li HZ, Liao HJ, Xiong GD, et al. A three-dimensional statistical damage constitutive model for geomaterials[J]. Journal of Mechanical Science and Technology, 2015, 29(1):71-77.

[125]曹文贵, 莫瑞, 李翔. 基于正态分布的岩石软硬化损伤统计本构模型及其参数确定方法探讨[J]. 岩土工程学报, 2007, 29(5): 671-675.

[126]温韬, 唐辉明, 刘佑荣, 等. 影响因子修正的新型岩石损伤统计本构模型[J]. 中国矿业大学学报, 2016, 45(1): 141-149.

[127]蒋维, 邓建, 李隐. 基于对数正态分布的岩石损伤本构模型研究[J]. 地下空间与工程学报, 2010, 6(6): 1190-1194.

[128]Li SC, Xu J, Tao YQ, et al. Study on damage constitutive model of rocks based on lognormal distribution[J]. Journal of Coal Science and Engineering, 2007, 13(4): 430-433.

[129]赵红鹤, 高富强, 杨小林. 基于不同分布的分段式岩石损伤本构模型[J]. 矿业研究与开发,2015,35(4):64-67.

[130]岳洋. 基于不同分布的岩石损伤本构模型的比较[J]. 山西建筑, 2010, 36(24): 137-138.

[131]秦跃平, 张金峰, 王林. 岩石损伤力学理论模型初探[J]. 岩石力学与工程学报, 2003, 22(4): 646−650.

[132]Li YW, Jia D, Rui ZH, et al. Evaluation method of rock brittleness based on statistical constitutive relations for rock damage[J]. Journal of Petroleum Science and Engineering, 2017, 153:123-132.

[133]曹文贵, 方祖烈, 唐学军. 岩石损伤软化统计本构模型之研究[J]. 岩石力学与工程学报,1998, 17(6): 628-633.

[134]Lin Y, Gao F, Zhou KP, et al. Mechanical properties and statistical damage constitutive model of rock under a coupled chemical-mechanical condition[J]. Geofluids, 2019, 2019(6):1-17.

[135]房智恒. 基于Mohr-Coulomb准则的岩石损伤本构模型研究[J].矿业工程研究, 2017, 32(1): 7-13.

[136]石崇, 蒋新兴, 朱珍德, 等. 基于 Hoek-Brown准则的岩石损伤本构模型研究及其参数探讨[J]. 岩石力学与工程学报, 2011, 30(增1): 2647-2652.

[137]曹瑞琅, 贺少辉, 韦京, 等. 基于残余强度修正的砂岩损伤软化统计本构模型研究[J]. 岩土工程学报, 2013, 34(6): 1652-1660.

[138]Zhou HW, Wang CP, Han BB, et al. A creep constitutive model for salt rock based on fractional derivatives[J].International Journal of Rock Mechanics and Mining Sciences, 2011, 48(1): 116-121.

[139]Deng J, Gu DS. On a statistical damage constitutive model for rock materials[J]. Computers and Geosciences, 2011, 37(2): 122-128.

[140]张慧梅, 雷利娜, 杨更社. 等围压条件下岩石本构模型及损伤特性[J]. 中国矿业大学学报, 2015, 44(1): 59-63.

[141]杨圣奇, 徐卫亚, 韦立德, 等. 单轴压缩下岩石损伤统计本构模型与试验研究[J]. 河海大学学报(自然科学版), 2004, 32(2): 200-203.

[142]李树春, 许江, 李克钢, 等. 基于Weibull分布的岩石损伤本构模型研究[J]. 湖南科技大学学报, 2007, 22(4): 225-229.

[143]Liu SQ, Zheng YL, Deng SX. Study on the Constitutive Model of Rock Damage Based on Intermediate Principal Stress Criterion[J]. Hans Journal of Civil Engineering, 2016, 5(5), 171-180.

[144]李海潮, 张升. 基于修正Lemaitre应变等价性假设的岩石损伤模型[J]. 岩土力学, 2017, 38(5): 1321-1326.

[145]周永强, 盛谦, 冷先伦, 等. 考虑残余强度和阈值影响的岩石弹性损伤统计模型[J]. 长江科学院院报, 2016, 33(3): 48-53.

[146]刘冬桥, 王焯, 张晓云. 岩石应变软化变形特性及损伤本构模型研究[J]. 岩土力学, 2017, 38(10): 2901-2908.

[147]曹文贵, 赵衡, 李翔, 等. 基于残余强度变形阶段特征的岩石变形全过程统计损伤模拟方法[J]. 土木工程学报, 2012, 45(6): 139-145.

[148]彭川. 基于残余强度的冻融受荷岩石损伤破坏特性研究(硕士)[D]. 西安: 西安科技大学, 2017.

[149]孙传猛, 曹树刚, 李勇, 等. 含初始损伤的煤统计损伤本构模型研究[J]. 中国矿业大学学报, 2016, 45(2): 244-253.

[150]杨 涛, 霍树义, 金坎辉, 等. 冻融循环下砂岩损伤演化及本构模型[J]. 地质与勘探, 2020, 56(4): 826-831.

[151]赵鑫, 袁阳, 徐涛. 冻融作用下岩石损伤演化过程研究[J]. 矿业研究与开发, 2022, 42(6): 112-118.

[152]陈有亮, 代明星, 刘明亮, 等. 含初始损伤岩石的冻融损伤试验研究[J]. 力学季刊, 2013, 34(1): 74-80.

[153]刘松明, 陈有亮, 杜曦, 等. 酸侵蚀区白砂岩冻融损伤的影响因素研究[J]. 水资源与水工程学报, 2014, 25(5): 127-131.

[154]Long GC, Liu H, Ma KL, et al. Uniaxial compression damage constitutive model of concrete subjected to freezing and thawing[J]. Journal of Central South University, 2018, 49(8):1884-1892.

[155]王震, 朱珍德, 陈会官, 等. 冻融作用下岩石力-热-水耦合本构模型研究[J]. 岩土力学, 2019, 49(7): 2608-2616.

[156]张慧梅, 杨更社. 冻融与荷载耦合作用下岩石损伤模型的研究[J]. 岩石力学与工程学报, 2010, 29(3): 471-476.

[157]Fang W, Jiang N, Luo XD. Establishment of damage statistical constitutive model of loaded rock and method for determining its parameters under freeze-thaw condition[J]. Cold Regions Science and Technology, 2019, 160: 31-38.

[158]袁小清, 刘红岩, 刘京平. 冻融荷载耦合作用下节理岩体损伤本构模型[J]. 岩石力学与工程学报,2015, 34(8): 1602-1611.

[159]阎锡东, 刘红岩, 邢闯锋, 等. 基于微裂隙变形与扩展的岩石冻融损伤本构模型研究[J]. 岩土力学, 2015, 36(12): 3489-3499.

[160]Zhou SW, Xia CC, Zhao HB, et al. Statistical damage constitutive model for rocks subjected to cyclic stress and cyclic temperature[J]. Acta Geophysica, 2017, 65(5): 893-906.

[161]Zhang HM, Meng XZ, Yang GS. A study on mechanical properties and damage model of rock subjected to freeze-thaw cycles and confining pressure[J]. Cold Regions Science and Technology, 2020, 174.

[162]Huang SB, Liu QS, Cheng AP, et al. A statistical damage constitutive model under freeze-thaw and loading for rock and its engineering application[J]. Cold Regions Science and Technology, 2018, 145: 142-150.

[163]Liu XX, Li SN, Xu ZP, et al. Research on creep model of carbonaceous shale under freeze-thaw cycle[J]. China Journal of Highway and Transport, 2019, 32(11): 137-145.

[164]王鲁男, 尹晓萌, 韩杰, 等. 化学溶液与冻融循环作用下粉砂岩强度衰减及预测模型[J]. 中南大学学报, 2020, 51(8): 2361-2372.

[165]Gao F, Xiong X, Xu CS, et al. Mechanical property deterioration characteristics and a new constitutive model for rocks subjected to freeze-thaw weathering process. International Journal of Rock Mechanics and Mining Sciences, 2021, 140.

[166]Zhou ST, Jiang N, Luo XD, et al. Uniaxial compression fractal damage constitutive model of rock subjected to freezing and thawing[J]. Periodica Polytechnica Civil Engineering, 2020, 64: 500-510.

[167]郎东明, 李天成. 冻融循环作用下岩石能量演化及损伤本构研究[J].矿业研究与开发, 2020, 40(4): 74-78.

[168]卢雪峰, 蒋建国, 陈建行, 等. 冻融循环作用下岩石的损伤演化规律[J].中国水运, 2021, 21(9): 107-108.

[169]张莉莉, 郎松军, 邓林, 等. 季冻区隧道砂岩三轴压缩力学特性及损伤本构模型研究[J]. 现代隧道技术, 2021, 58(04): 95-103.

[170]罗勇, 杨更社, 刘慧, 等. 考虑岩石微元强度呈对数正态分布的冻融岩石损伤特性[J].计算力学学报, 2022: 1-11.

[171]候超, 靳晓光, 何杰, 等. 基于最大拉应变准则的冻融岩石损伤模型研究[J].西南交通大学学报: 2022: 1-11.

[172]Yang XR, Weng L, Hu ZX. Damage evolution of rocks under triaxial compressions: an NMR investigation. KSCE journal of Civil Engineering, 2018, 22(8): 2856-2863.

[173]何雨丹, 毛志强, 肖立志, 等. 利用核磁共振T2分布构造毛管压力曲线的新方法[J]. 吉林大学学报, 2005, 35(2): 177-177.

[174]Fang T, Zhang LK, Liu NG, et al. Quantitative characterization of pore structure of tight sandstone gas reservoirs by NMR technique-taking Carboniferous -Permian tight sandstone reservoirs in eastern Linqing depression as an example[J]. Acta Petroleum Sinica, 2017, 38(8): 902-915.

[175]Yan JP, Zhang SL, Wang J, et al. Applying fractal theory to characterize the pore structure of lacustrine shale from the Zhanhua Depression in Bohai Bay Basin, eastern China[J]. Energy and fuels, 2018, 32(7): 7539-7556.

[176]李杰林, 周科平. 岩石损伤破坏核磁共振研究[M]. 中南大学出版社, 2020.

[177]Yang BD, Jiao Y, Lei ST. A study on the effects of microparameters on macroproperties for specimens created by bonded particles[J]. Engineering Computations, 2006, 23(5-6): 607-631.

[178]赵国彦, 戴兵, 马驰. 平行黏结模型中细观参数对宏观特性影响研究[J]. 岩石力学与工程学报, 2012, 31(7): 1491-1498.

[179]Ding XB, Zhang LY, Zhu HH, et al. Effect of model scale and particle size distribution on PFC2D simulation results[J]. Rock Mechanics and Rock Engineering, 2014, 47(6): 2139-2156.

[180]王创业, 王洪麒. 基于改进Harris函数的砂岩损伤本构模型研究[J]. 长江科学院院报, 2016, 33(12): 91-93+104.

[181]张全胜, 杨更社, 任建喜. 岩石损伤变量及本构方程的新探讨[J]. 岩石力学与工程学报, 2003, 22(1): 30-34.

[182]刘泉声, 黄诗冰, 康永水, 等. 岩体冻融疲劳损伤模型与评价指标研究[J]. 岩石力学与工程学报, 2015, 34(6): 1116-1127.

[183]贾海梁, 刘清秉, 项伟, 等. 冻融循环作用下饱和砂岩损伤扩展模型研究[J]. 岩石力学与工程学报, 2013, 32(增2): 3049-3055.

[184]张慧梅, 王云飞. 冻融红砂岩损伤演化多尺度分析[J]. 岩土力学, 2022, 43(8): 2103-2114.

[185]Fang W, Jiang N, Luo XD. Establishment of damage statistical constitutive model of loaded rock and method for determining its parameters under freeze-thaw condition[J]. Cold Regions Science and Technology, 2019, 160: 31-38.

中图分类号:

 TU452    

开放日期:

 2023-05-12    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式