论文中文题名: | 葫芦素煤矿小煤柱综采面采空区煤自燃规律及防控技术研究 |
姓名: | |
学号: | 21220226096 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085700 |
学科名称: | 工学 - 资源与环境 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2024 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 煤火灾害防治 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2024-06-20 |
论文答辩日期: | 2024-06-01 |
论文外文题名: | Research on the law of spontaneous combustion of coal in the goaf of fully mechanized mining faces with small coal pillars in Hulusu Coal Mine and its prevention and control technology |
论文中文关键词: | |
论文外文关键词: | Coal spontaneous combustion ; Comprehensive mining face with small coal pillars ; Wireless monitoring ; “Three belts” in goaf ; Prevention and control techniques. |
论文中文摘要: |
葫芦素煤矿为高矿压矿井,为平衡矿压提高回采率,采用留设小煤柱的开采方式。在开采过程中小煤柱易受矿压和综采扰动影响破碎裂隙,致使采空区的漏风量增大,靠近小煤柱侧采空区的遗煤量增多,导致煤柱和遗煤发生氧化。这些因素势必会增加采空区煤氧化自燃的危险性,因此,对于小煤柱综采面采空区煤自燃防控研究很有必要。本文以葫芦素煤矿2-1煤层21404小煤柱综采工作面为研究对象,开展了小煤柱综采面采空区煤自燃规律及防控技术的研究。 (1)通过不同氧浓度下的煤自燃程序升温实验研究,得出2-1煤自然发火的临界温度为60~70℃,干裂温度为100~110℃,确定出2-1煤自燃指标气体为CO、C2H4、C2H2。得到2-1煤自燃耗氧速率、放热强度和极限参数,分析出低氧状态可以减缓煤自燃进程。 (2)构建了集O2、CO等气体传感器于一体的采空区煤自燃无线监测系统,并在葫芦素煤矿21404工作面采空区进行了应用,得到了该采空区100m埋深范围内O2和CO浓度的变化规律。得出进风侧采空区测点埋深27m时氧浓度降至18%,埋深99m时降至10%,回风侧测点埋深11m时氧浓度降至18%,61.5m时降至8%。 (3)采用示踪气体SF6对小煤柱综采面采空区漏风规律进行测定,得出21404工作面采空区与相邻小煤柱老空区通过回风巷道存在气体交换现象,对21404工作面采空区煤自燃有一定影响。为确定21404工作面采空区危险区域分布,通过观测工作面推进速度、采空区浮煤厚度及采空区氧气浓度分布,结合煤自燃极限参数和采空区流场数值模拟结果,确定出21404工作面采空区煤自燃危险区域范围,进风侧为27m~111.7m,回风侧为11m~66m,得出21404工作面最小安全推进速度为2.4m/d。 (4)结合2-1煤自燃特征温度和指标气体确立了21404工作面采空区煤自燃分级预警体系,运用无线监测系统对21404工作面采空区煤自燃进行分级预警。根据小煤柱综采面采空区漏风规律,确立了小煤柱喷涂与充填堵漏的漏风治理措施。根据采空区煤自燃规律,结合模拟得到距21404工作面70m的采空区处为注氮最佳位置,2000m3‧h-1为注氮最优量。根据采空区煤自燃危险区域划分范围,采用粉煤灰与凝胶剂复合灌浆技术,沿工作面进回风侧采空区每间隔85m灌注一道复合浆体墙,从而达到阻隔漏风,隔绝氧气的效果,能够有效阻隔采空区煤自燃危险区域。研究结果为留设小煤柱开采工作面煤自燃防控工作具有指导意义。 |
论文外文摘要: |
The Hulusu Coal Mine is a high-pressure mine. In order to balance the mine pressure and improve the recovery rate, the mining method of leaving small coal pillars is adopted. However, during the mining process, small coal pillars are easily affected by mining pressure and disturbances caused by comprehensive excavating, leading to increased air leakage in the goaf area. The quantity of residual coal near the side of the small coal pillars increased, which caused oxidation of coal pillars and residual coal. These factors increase the risk of coal oxidation and spontaneous combustion in the goaf area, and it is necessary to conduct research on prevention and control of coal self-ignition in the goaf area of small coal pillars. This article takes the 21404 small coal pillar comprehensive excavation face of the 2-1 coal seam in the Hulusu Coal Mine as the research object and carries out research on the laws of coal self-ignition and prevention and control technology in the goaf area of small coal pillars. (1)Through the experimental research of coal spontaneous combustion program heating at different oxygen concentrations, it was determined that the critical temperature for natural ignition of 2-1 coal is 60-70℃, the dry cracking temperature is 100-110℃. The indicators gases for 2-1 coal self-ignition were determined to be CO, C2H4, C2H2. The oxygen consumption rate, heat release intensity, and limit parameters of 2-1 coal self-ignition were obtained. The analysis shows that a low oxygen state can slow down the process of coal self-ignition. (2)A wireless monitoring system was constructed, integrating O2, CO and other gas sensors for monitoring the spontaneous combustion of coal in the goaf area. The system was applied in the goaf area of the 21404 working face of the Hulusu Coal Mine. The changes in O2 and CO concentrations within a depth of 100m in the goaf area were obtained. The results showed that the oxygen concentration decreased to 18% at a depth of 27m from the intake side, and to 10% at a depth of 99m. On the return air side, the oxygen concentration decreased to 18% at a depth of 11m, and to 8% at a depth of 61.5m. (3)Tracer gas SF6 was used to measure the air leakage law in the goaf area of the small coal pillars in the comprehensive mining face. Combined with the numerical simulation of Fluent software, it is found that an obvious vortex area is generated in the goaf at the return corner of the 21404 working face To determine the distribution of dangerous areas in the goaf area of the 21404 working face, the advance speed of the working face, the thickness of floating coal in the goaf area, and the distribution of oxygen concentration were observed. Combining with the limit parameters of coal spontaneous combustion and the numerical simulation results of the flow field in the goaf area, the dangerous area range of coal spontaneous combustion in the goaf area of the 21404 working face was determined. The intake side is from 27m to 111.7m, and the return air side is from 11m to 66m. The minimum safe advance speed of the 21404 working face was determined to be 2.4m/d. (4)Combining the self-ignition characteristic temperature and indicator gas of 2-1 coal, the coal spontaneous combustion grading warning system for the goaf area of the 21404 working face was established, and the wireless classification was used for the warning of coal combustion spontaneous in the goaf area of the 21404 working face. Based on the air leakage law in the goaf area of the small coal pillars in the comprehensive mining face, the leakage control measures of spraying and filling sealing were established. The optimal nitrogen injection line is 70m, and the optimal nitrogen injection amount is 2000m3.h-1. According to the range of the dangerous area of coal spontaneous combustion in the goaf area, the composite grouting technology of fly ash and gel agent was used to inject a composite slurry wall every 85m along the intake and return air sides of the goaf area in the working face to block air leakage and isolate oxygen. The results can effectively block the dangerous areas in the goaf area. |
参考文献: |
[1]谢和平, 吴立新, 郑德志. 2025年中国能源消费及煤炭需求预测[J]. 煤炭学报, 2019, 44(07):1949-1960. [2]马晓敏. 《世界能源统计年鉴2023》中文编译版发布[N]. 中国矿业报, 2023-11-23(002). [4]王嘉瑞. 煤矿深部开采软岩巷道支护技术研究[D]. 昆明: 昆明理工大学, 2016. [5]齐庆新, 潘一山, 舒龙勇, 等. 煤矿深部开采煤岩动力灾害多尺度分源防控理论与技术架构[J]. 煤炭学报, 2018, 43(07): 1801-1810. [9]黄显华. 易自燃煤层残留煤柱开采防灭火技术研究[D]. 北京: 中国矿业大学, 2015. [11]王博. 复杂条件下小煤柱动压巷道围岩控制技术研究[J]. 煤炭与化工, 2018, 41(10): 15-17, 22. [12]于涛. 石炭系小煤柱掘进工作面巷道及相邻采空区防灭火技术[J]. 煤炭技术, 2020, 39(01): 141-144. [14]王楠. 煤自然发火胶体防灭火材料性能实验研究[D]. 西安: 西安科技大学, 2011. [17]暴雪峰. 煤柱宽度对煤巷稳定性的影响[J]. 西部探矿工程, 2021, 33(04): 162-165. [18]常啸, 崔增斌. 巷旁煤柱留设宽度对巷道底鼓及破坏形式的作用分析[J]. 山西冶金, 2021, 44(01): 69-71. [19]李海洋. 小煤柱沿空留巷围岩控制应用研究[J]. 山东煤炭科技, 2021, 39(01): 88-90. [20]赵启峰, 田多, 李万名, 等. 动压巷道煤柱载荷特征及其对围岩应力的影响[J]. 矿业安全与环保, 2012, 39(01): 20-22. [25]王瑞青. SF6测定漏风技术在煤矿的应用研究[J]. 煤矿现代化, 2019(02): 67-69. [28]张作华, 陈开岩, 李尚国, 等. 示踪气体测量理论在矿井漏风定量测量中应用[J]. 能源技术与管理, 2007, (06): 32-33. [32]王福生, 王建涛, 顾亮, 等. 煤自燃预测预报多参数指标体系研究[J]. 中国安全生产科学技术, 2018, 14(06): 45-51. [33]朱兆伟, 刘佳媛, 宝银昙. 巷道煤体温度探测仪的开发与应用[J]. 西安科技大学学报, 2014, 34(02): 152-157. [35]王栋, 陆伟, 李金亮, 等. 煤矿输气与控制共用管线的高正压束管监测系统研究[J]. 煤炭科学技术,2019, 47(12):141−144. [36]邹永洺. 基于示踪气体法的覆岩“竖三带”测定[J]. 煤矿安全, 2019, 50(05): 7-10. [37]秦汝祥, 陶远, 何宗礼, 等. 近巷煤体高温区域红外成像探测与分析[J]. 煤田地质与勘探, 2014, 42(04): 90-92. [38]杨宏民. 预测煤自然发火的新方法-气味检测法[J]. 煤矿安全, 2000(05): 35-37. [39]刘骏跃, 陈明. 多传感器信息融合火灾预报技术研究[J]. 工矿自动化, 2003(05): 14-16. [40]张鑫, 隋金雪, 张岩. 信息融合技术在火灾探测中的应用研究[J]. 中国安全科学学报, 2011, 21(06): 94-98. [41]关联合. 矿井重大危险源监测识别及预测预警系统开发[J]. 矿业安全与环保, 2014, 41(03): 43-46+50. [42]孟凡成, 李长录. 基于无线传感器网络的煤层自燃火源定位监测[J]. 煤炭科学技术, 2009, 37(04): 91-93. [45]王银辉, 艾兴, 赵涛, 等. 高瓦斯沿空留巷采空区自燃危险区域数值模拟[J]. 中国安全生产科学技术, 2017, 13(04): 53-58. [47]文虎, 于志金, 翟小伟, 等. 沿空留巷采空区氧化带分布特征与关键参数分析[J]. 煤炭科学技术, 2016, 44(01): 138-143. [48]韦涌清, 贾宝山, 刘继文. 易自燃煤层煤巷自燃防治技术试验研究[J]. 辽宁工程技术大学学报, 2003(04): 463-464. [49]朱红青, 刘鹏飞, 刘星魁, 等. 沿空巷破碎煤体自燃耗氧及升温特征数值模拟[J]. 煤炭科学技术, 2011, 39(11): 63-66. [50]程卫民, 张孝强, 王刚, 等. 综放采空区瓦斯与遗煤自燃耦合灾害危险区域重建技术[J]. 煤炭学报, 2016, 41(03): 662-671. [54]邓军, 雷昌奎, 曹凯, 等. 采空区煤自燃预测的随机森林方法[J]. 煤炭学报, 2018, 43(10): 2800-2808. [56]夏同强. 瓦斯与煤自燃多场耦合致灾机理研究[D]. 江苏: 中国矿业大学, 2015. [57]时国庆, 王德明, 仲晓星, 等. 综放面采空区氧化带分布规律的CFD模拟[J]. 采矿与安全工程学报, 2010, 27(04): 568-571. [58]李庆军, 万清生, 周金生, 等. 东荣三矿综一轻放面自燃危险性预测[J]. 煤矿安全, 2006, 37(09): 21-23. [59]曾强, 王德明, 蔡忠勇. 煤田火区裂隙场及其透气率分布特征[J]. 煤炭学报, 2010, 35(10): 1670-1673. [60]文虎, 徐精彩, 葛岭梅, 等. 煤自燃性测试技术及数值分析[J]. 北京科技大学学报, 2001, 23(06): 499-501. [61]徐精彩, 文虎, 张辛亥, 等. 综放面采空区遗煤自燃危险区域判定方法的研究[J]. 中国科学技术大学学报, 2002, 32(06): 672-677. [62]邓军, 肖旸, 陈晓坤, 等. 矿井火灾多源信息融合预警方法的研究[J]. 采矿与安全工程学报, 2011, 28(04): 638-643. [63]于志金, 文虎, 陈晓坤, 等. 大型煤自燃试验的火源演化特征模拟[J]. 煤炭科学技术, 2017, 45(01): 89-93+141. [64]王芳. 深部采空区环境高温对遗煤自燃过程的影响模拟研究[J]. 西安: 西安科技大学, 2020. [65]彭荧, 王海桥, 陈世强, 等. 高温热源对采空区气体微流动场影响模拟研究[J]. 煤, 2017, 26(08): 1-9. [66]龙熙华, 张雅荣, 张兵, 等. 煤自燃温度场三维对流扩散方程的有限元解法[J]. 兰州理工大学学报, 2014, 40(06): 152-155. [67]徐向晨. 长平煤矿Ⅲ4309工作面区段小煤柱注浆加固技术研究[D]. 辽宁: 辽宁工程技术大学, 2017. [68]李春杰. 小煤柱沿空掘巷注浆支护技术研究[J]. 能源技术与管理, 2020, 45(03): 110-112. [69]杨宗坡. 沿空送巷小煤柱裸注加固支护技术探讨[J].煤炭技术, 2020, 39(01): 26-28. [70]金永飞, 李海涛, 岳宁芳, 等. 变氧浓度环境下煤自然发火气体预报指标优选[J]. 煤矿安全, 2014, 45(11): 27-30. [71]邓军, 张敏, 雷昌奎, 等. 不同变质程度煤自燃特性及低温氧化动力学分析[J]. 安全与环境学报, 2021, 21(01): 94-100. [72]赵建会, 张辛亥. 矿用灌浆注胶防灭火材料流动性能的实验研究[J]. 煤炭学报, 2015, 40(02): 383-388. [73]秦波涛, 王德明, 李增华. 防灭火稠化剂悬砂机理及应用[J]. 煤炭学报, 2008, 33(11): 1287-1291. [76]文虎, 徐精彩, 葛岭梅, 等. 采空区注氮防灭火参数研究[J]. 湘潭矿业学院学报, 2001, 16(02): 15-18. [77]朱红青, 李峰, 张振羽, 等. 非间隔式注氮防灭火装置动力参数[J]. 煤炭学报, 2012, 37(07): 1184-1189. [79]易欣, 张敏, 邓军. 煤自燃指标体系分析与优选实验研究[J]. 煤矿安全, 2023, 54(01): 85-93. [82]徐精彩. 煤层自燃危险区域判定理论[M] 北京: 煤炭工业出版社, 2001. [83]王振国, 王克军, 项宗文, 等. 俄霍布拉克矿煤自燃预警临界值研究[J]. 能源技术与管理, 2024, 49(01): 111-114. |
中图分类号: | TD752.2 |
开放日期: | 2024-06-28 |