- 无标题文档
查看论文信息

论文中文题名:

 倾斜煤层综放面瓦斯涌出量预测与抽采技术研究及应用    

姓名:

 赵华    

学号:

 G13295    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085224    

学科名称:

 工学 - 工程 - 安全工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 矿井瓦斯灾害防治    

第一导师姓名:

 李树刚    

第一导师单位:

  西安科技大学    

论文提交日期:

 2022-03-02    

论文答辩日期:

 2021-12-03    

论文外文题名:

 Research and Application of Gas Emission Forecast and Drainage Technology in Fully Mechanized Caving Face of Inclined Coal Seam    

论文中文关键词:

 倾斜煤层 ; 综放开采 ; 瓦斯涌出规律 ; 灰色理论 ; 瓦斯抽采    

论文外文关键词:

 Inclined coal seam ; fully mechanized caving mining ; gas emission law ; grey theory ; gas drainage    

论文中文摘要:

随着煤炭资源开采深度的不断增大,瓦斯灾害事故日益频发,严重影响煤矿安全高效开采,对矿井经济效益及社会形象造成深远的影响。倾斜煤层的瓦斯精准抽采是一个技术难题,在开采此类煤层时应先解决开采前后的瓦斯涌出问题,因而进行倾斜煤层的瓦斯涌出量预测显得尤为重要。国内外科研工作者也在此方面开展了大量矿井瓦斯涌出预测、瓦斯抽采技术的研究,取得了明显的效果。但如何就硫磺沟煤矿倾斜煤层形成一套有针对性的矿井瓦斯抽采技术体系,对确保硫磺沟煤矿工作面安全高效回采方面具有十分重要的意义。

针对硫磺沟煤矿(4-5)06综放工作面倾斜煤层埋深大、瓦斯含量高等特点,通过对矿井地质和工作面情况进行调研分析,获得(4-5)06工作面煤层和瓦斯赋存特征,通过测量采集煤样的瓦斯基础参数,更详尽地得到(4-5)06工作面煤层瓦斯赋存规律,在此基础上,利用瓦斯涌出量关键因素分析动态预测系统对(4-5)06综放工作面回采过程中的瓦斯构成及涌出量进行预测,并结合灰色理论与现场实时观测瓦斯涌出规律,分析得到瓦斯涌出规律与各影响因素之间的关系,由此制定了相应的瓦斯抽采措施;基于数值模拟及现场监测的方法得到(4-5)06综放工作面覆岩“三带”高度,并在此基础上进行高位钻场的设计。通过对以上瓦斯抽采措施应用总结,构建出一套适用于硫磺沟煤矿综放回采工作面的瓦斯抽采治理技术体系,然后应用于现场实践,指导工作面进行瓦斯抽采工作。

根据实时监测该技术系统应用过程的效果,对采集到的数据进行分析。利用行业规程中的指标对技术体系实施效果进行检验,获得了较好的效果,保证硫磺沟煤矿综放回采工作面的安全高效开采。有效治理瓦斯灾害,对高瓦斯矿井安全生产意义重大。

论文外文摘要:

With the continuous increase in the mining depth of coal resources, gas disaster accidents have become more frequent, which seriously affects the safe and efficient mining of coal mines, and has a profound impact on the economic benefits and social image of the mine. Accurate gas drainage of inclined coal seams is a technical problem. When mining such coal seams, the gas problem before and after mining should be solved first. Therefore, it is particularly important to predict the amount of gas emission from inclined coal seams. Researchers at home and abroad have also carried out a large number of studies on mine gas emission prediction and gas drainage technology in this regard, and have achieved significant results. However, how to form a targeted mine gas drainage technology system for the inclined coal seams of the Liuhuanggou Coal Mine is of great significance for ensuring the safe and efficient mining of the working face of the Liuhuanggou Coal Mine.

For LiuHuangGou (4-5) 06 fully-mechanized caving coal mine coal seam buried depth, high gas content, etc, through research analysis of mine geological and mining conditions, obtain (4-5) 06 working face of coal seam and gas occurrence characteristics, basis of coal sample was taken by measuring the gas parameters, more detail get (4-5) 06 working face of coal seam gas occurrence regularity, on this basis, the use of critical gas emission factor analysis dynamic prediction system (4-5) 06 full-mechanized caving mining face in the process of the gas composition and volume of forecast, and combining the gray theory and the real time observation gas emission law, analysis law of gas emission and the relationship between various influencing factors, thus formulated the corresponding gas extraction; Based on the method of numerical simulation and field monitoring, the "three belts" height of overlaying rock in (4-5) 06 fully mechanized caving face was obtained, and the design of high drilling field was carried out on this basis. Through the application and summary of the above gas extraction measures, a set of gas extraction control technology system suitable for fully mechanized caving mining face in Sulfagou coal mine is constructed, and then applied in field practice to guide the gas extraction work in working face.

According to the effect of real-time monitoring of the application process of the technology system, the collected data are analyzed. The implementation effect of the technical system is tested by using the indexes in the industry regulations, and a good effect is obtained to ensure the safe and efficient mining of the fully mechanized caving face in Susulagou coal mine. Effective control of gas disaster is of great significance to the safety production of high gas mines and plays an important role in promoting the further improvement of national coal mine safety situation.

参考文献:

[1] 孙超,姜琳,袁广玉. “十四五”期间我国煤炭供需趋势分析[J]. 煤炭工程,2021,53(05):193-196.

[2] 林柏泉. 矿井瓦斯防治理论与技术[M]. 中国矿业大学出版社,2010.

[3] 袁亮. 我国深部煤与瓦斯共采战略思考[J]. 煤炭学报,2016,41(01):1-6.

[4] 刘之琳,田亚峻,李永龙,等. 欧洲主要产煤国煤矿瓦斯利用技术及展望[J]. 煤炭技术,2018,37(03):168-169.

[5] 俞启香. 矿井瓦斯防治[M]. 中国矿业大学出版社,1992.

[6] 周世宁,林柏泉. 煤层瓦斯赋存与流动理论[M]. 北京:煤炭工业出版社,1999.

[7] 张彦青.“下三带”理论对承压水上采煤底板突水的预测研究[J].山西煤炭,2014,34(04):50-52.

[8] 钱鸣高,刘听成. 矿山压力及其控制[M]. 北京:煤炭工业出版社,1991.

[9] 陈炎光,钱鸣高. 中国煤矿采场围岩控制[M]. 徐州:中国矿业大学,1994.

[10] 黄庆享,钱鸣高,石平五.浅埋煤层采场老顶周期来压的结构分析[J]. 煤炭学报, 1999,24(6):581-585.

[11] 潘城,邓康宇,闫化晴.基于岩层质量指数对采场直接顶运动参数的分析[J].煤炭技术,2015,34(08):20-22.

[12] Jiang F X, Jiang G. Theory and Technology for Hard Roof Control of Longwall Face in Chinese Collieries[J]. Journal of Coal Science&Engineering. 1998(2).

[13] 钱鸣高,茅献彪,缪协兴. 采场覆岩中关键层上载荷的变化规律[J]. 煤炭学报,1998,23(2):135-150.

[14] 姜海军,曹胜根,张云,等.浅埋煤层关键层初次破断特征及垮落机理研究[J].采矿与安全工程学报,2016,33(5):860-866.

[15] 左建平,孙运江,文金浩,等.岩层移动理论与力学模型及其展望[J].煤炭科学技术,2018,46(01):1-11+87.

[16] 王志强,李鹏飞,王磊,等. 再论采场“三带”的划分方法及工程应用[J]. 煤炭学报, 2013, 38(S2): 287-293.

[17] Palchik V. Formation of fractured zones of overburden due to long wall mining[J]. Enviro- nmental Geology,2003,(44):28-38.

[18] Das S K. Observations and classification of roof strata behavior over longwall coal mining panels in India[J]. International Journal of Rock Mechanics and Mining Sciences,2000, (37):585-597.

[19] 茅献彪,缪协兴,钱鸣高. 采动覆岩中关键层的破断规律研究[J]. 中国矿业大学学报,1998(11):39-42.

[20] 缪协兴,茅献彪,钱鸣高. 采场覆岩中关键层的复合效应分析[J]. 矿山压力与顶板管理,1999(3-4):19-21.

[21] 许家林,钱鸣高. 岩层采动裂隙分布在绿色开采中的应用[J]. 中国矿业大学学报,2004,33(02):17-20+25.

[22] Liang Y. Theory and practice of integrated coal production and gas extraction[J]. International Journal of Coal Science&Technology,2015,2(01):3-11.

[23] Guo H, uan L. An integrated approach to study of strata behaviour and gas flow dynamics and its application[J]. International Journal of Coal Science&Technology,2015,2(01):12-21.

[24] 张庆贺,杨科,袁亮,等.基于位移连续监测的采场两带变形垮落特性试验研究[J].工程科学与技术,2019,51(03):36-42.

[25] 郭玉森,林柏泉,吴传始. 围岩裂隙演化与采动卸压瓦斯储运的耦合关系[J]. 采矿与安全工程学报,2007,(04):414-417.

[26] 李树刚,林海飞,赵鹏翔,等. 采动裂隙椭抛带动态演化及煤与甲烷共采[J]. 煤炭学报,2014,39(08):1455-1462.

[27] 李树刚,丁洋,安朝峰,等. 近距离煤层重复采动覆岩裂隙形态及其演化规律实验研究[J]. 采矿与安全工程学报,2016,33(05):904-910.

[28] 李树刚,石平五,钱鸣高. 覆岩采动裂隙椭抛带动态分布特征研究[J]. 矿山压力与顶板管理,1999,(Z1):44-46.

[29] 解兴智. 浅埋煤层房柱式采空区下长壁开采矿压显现特征[J]. 煤炭学报, 2012, 213(06): 898-902.

[30] 孙魁,王英,李成,等.巨厚煤层顶板离层水致灾机理研究[J].河南理工大学学报(自然科学版),2018, 181(02):14-21.

[31] 张鑫,乔伟,雷利剑,等.综放开采覆岩离层形成机理[J].煤炭学报,2016,41(S2):342-349.

[32] 苏仲杰,于广明,杨伦. 覆岩离层变形力学模型及应用[J]. 岩土工程学报,2002,24(6):778-781.

[33] 柏立田,张兴阳,徐钧. 泥岩顶板巷道裂隙演化规律及控制的应用研究[J]. 煤炭工程,2010,(9):66-69.

[34] 胡晓阳. 基于异速生长理论的采动覆岩离层时空分布规律与沉陷模型研究[D].青岛理工大学,2015.

[35] 杨科,谢广祥. 综放开采采动裂隙分布及其演化特征分析[J]. 矿业安全与环保,2009,36(04):1-3+91.

[36] 林海飞,李树刚,赵鹏翔,等. 我国煤矿覆岩采动裂隙带卸压瓦斯抽采技术研究进展[J]. 煤炭科学技术,2018,46(01):28-35.

[37] 刘洪永,程远平,周红星,等. 综采长壁工作面推进速度对优势瓦斯通道的诱导与控制作用[J]. 煤炭学报,2015,40(04):809-815.

[38] 赵鹏翔,卓日升,李树刚,等. 综采工作面推进速度对瓦斯运移优势通道演化的影响[J]. 煤炭科学技术,2018,46(07):99-108.

[39] 孙继平. 基于物联网的煤矿瓦斯爆炸事故防范措施及典型事故分析[J]. 煤炭学报,2011,36(07):1172-1176.

[40] 李泽瑜,孟祥云.矿井瓦斯涌出量预测方法[J]. 辽宁工程技术大学学报(自然科学版), 2014, 33(09):1212-1216.

[41] 何清.工作面瓦斯涌出量预测研究现状及发展趋势[J].矿业安全与环保,2016,228(04):98-101.

[42] 王佑安. 苏联煤矿瓦斯抽放的发展[J]. 煤矿安全,1989(10):34-37.

[43] B. H.普济廖夫, 徐建春. 苏联东部地区各矿煤与瓦斯突出的防治现状和前景[J]. 煤炭工程师,1990(06):53-58.

[44] 马文诚. 苏联顿巴斯矿区采掘过程中煤与瓦斯突出的防治[J]. 煤炭科学技术,1990(02):57-59.

[45] 员争荣,tanislaw NAWRAT. 波兰煤矿瓦斯高效抽放技术特点[J]. 煤田地质与勘探,2006(06):27-29.

[46] Airey E M. Gas emission from broken coal. An experimental and theoretical investigation[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1968,5(6):475-494.

[47] Fu H, Zi H, Meng X, et al. A new method of mine gas dynamic prediction based on EKF-WLS-SVR and chaotic time series analysis[J]. Chinese Journal of Sensors and Actuators,2015,28(1):126-131.

[48] Shepherd J, Rixon L K, riffiths L. Outbursts and geological structures in coal mines: A review[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts,1981,18(4):267-283.

[49] Carol, J, Bibler, et al. Status of worldwide coal mine methane emissions and use[J]. International Journal of Coal Geology,1998. 23(35): 283-310.

[50] Airey E M. Gas emission from broken coal. An experimental and theoretical investigation[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1968, 5(6):475-494.

[51] Chenjun Q I, Wang Z, Xie C, et al. Study on Description of Empirical Formula on Gas Desorption of Coal Particles in Low Temperature Environment[J]. Safety in Coal Mines,2016,47(10): 29-32.

[52] 李晓华,周炳秋,韩真理,等. 基于GIS的瓦斯涌出动态预测可视化系统[J]. 煤矿安全, 2016, 47(04): 99-102.

[53] Ning W. Study on Visualization of Gas Geology information at tunneling face based on GIS[J]. Coal Mine Modernization,2012.

[54] 陈洋,刘恩,陈大力,等. 瓦斯涌出量分源预测法的发展与实践研究[J]. 煤矿安全,2010,41(02):73-76.

[55] 张春璞. 分源预测法在生产矿井瓦斯涌出量预测中的应用[J]. 煤炭技术,2014,33(10):37-39.

[56] 陈洋,陈大力,罗海珠. 煤中水分对煤吸附甲烷量的影响[J]. 煤矿安全,2010,41(04):117-119.

[57] 李绪萍,王岩,任杰. 采煤工作面瓦斯分源预测及误差分析[J]. 煤炭技术,2017,36(05):151-152.

[58] 刘硕,王俊峰,温伟,等. 分源法瓦斯预测原理的运用[J]. 煤炭技术,2014,33(05):66-68.

[59] 祁晨君,王兆丰. 青龙煤矿瓦斯涌出预测效果及误差来源分析[J]. 煤炭技术,2016,35(01):205-207.

[60] 张许良,单菊萍,彭苏萍.瓦斯含量及涌出量预测的数学地质技术与方法[J].煤炭学报,2009, 174(03):350-354.

[61] 秦玉金,苏伟伟,姜文忠,等.我国矿井瓦斯涌出量预测技术研究进展及发展方向[J].煤矿安全,2020, 556(10):52-59.

[62] 王艳双.矿井瓦斯涌出量预测研究中的数学模型[J].煤炭技术,2015, 263(11):185-187.

[63] 梁栋. IACA-WNN模型在瓦斯涌出量中预测及瓦斯防治技术研究[D]. 西安科技大学,2018.

[64] 牛沛东. 下沟矿特厚煤层综放工作面瓦斯综合抽采技术研究与应用[D]. 煤炭科学研究总院,2018.

[65] Karacan C Özgen, Goodman, Gerrit V R. Analyses of geological and hydrodynamic controls on methane emissions experienced in a Lower Kittanning coal mine[J]. International Journal of Coal Geology,2012, (98):110-127.

[66] Karacan, Felicia A, et al. A review of capture and utilization practices with benefits to mining safety and to greenhouse gas reduction[J]. International Journal of Coal Geology,2011,86(2):121-156.

[67] Aziz N, D Black, Ren T. Keynote paper Mine gas drainage and outburst control in Australian underground coal mines[J]. Procedia Engineering,2011,26:84-92.

[68] Tulu I B, Esterhuizen G S, Heasley K A. Calibration of FLAC3D to simulate the shear resistance of fully grouted rock bolts[J]. U. s. rock Mechanics/geomechanics Symposium,2012.

[69] Shirin L N, Dudlya N A, Fedorenko E A. Methane Drainage Borehole Drilling Technology Status of Ukraine[J]. Procedia Earth and Planetary Science,2011,3:47-52.

[70] Tanguturi K, Balusu R, Morla R, et al. Effect of buoyancy on methane gas distribution and gas control strategies at tailgate region in a gassy coal mine[C]//9th International Conference on CFD in the minerals and process Industries, Melbourne. 2013: 1-6.

[71] F Wang, Ren T X, F Hungerford, et al. Advanced directional drilling technology for gas drainage and exploration in Australian coal mines[J]. Procedia Engineering,2011,26:25-36.

[72] Qu Q, Guo H, Loney M. Analysis of longwall goaf gas drainage trials with surface directional boreholes[J]. International Journal of Coal Geology,2016,156:59-73.

[73] Zhao S, Lin B Q, Li X Z, et al. Study and Application of the Technology of Progressive and Large Diameter Buried Drainage Pipe by Crossing-Hole[J]. Procedia Engineering, 2011, (26):852-862.

[74] 袁亮,郭华,李平,等.大直径地面钻井采空区采动区瓦斯抽采理论与技术[J].煤炭学报,2013, 220(01):1-8.

[75] 程志恒,卢云,苏士龙,等.采空区顶板高位走向长钻孔高效抽采瓦斯机理研究[J].煤炭科学技术,2020, 543(02):136-142.

[76] 孟祥军,陈功华,阮国强,等.青龙煤矿高位定向钻孔瓦斯抽采实践[J]. 工矿自动化,2019,45(12):91-96.

[77] 陈康,杨志超,王福海,等. FLAC-(3D)数值模拟在高位钻孔参数优化中的应用[J]. 能源技术与管理, 2015, 40(05):195-197.

[78] 李家彪. 新安矿采空区高位钻孔瓦斯抽采技术研究[D]. 河南理工大学,2011.

[79] 卜小平. 中国煤层气产业发展途径与前景分析[D]. 中国地质大学(北京),2011.

[80] 周红星,王亮,程远平,等.低透气性强突出煤层瓦斯抽采导流通道的构建及应用[J].煤炭学报,2012, 216(09):1456-1460.

[81] 金银财,王子越.高预应力强力支护系统在高瓦斯煤层巷道中的应用[J].煤炭技术,2019, 302(02):97-99.

[82] 王忠文. 矿井火灾诱发爆炸动态演化规律及防治技术研究[D]. 中国矿业大学(北京),2013.

[83] 易丽军. 突出煤层密集钻孔瓦斯预抽实验室与数值试验研究[D]. 中国矿业大学,2008.

[84] 赵恒. 煤矿瓦斯综合抽采技术及应用[J]. 山西化工,2019,39(04):112-113+125.

[85] 李润芝. 蒋家河矿钻孔预抽瓦斯参数的优化研究[D].辽宁工程技术大学,2017.

[86] 杨庆军. 厚煤层长钻孔封孔工艺的比对分析研究[J]. 煤炭技术,2017,36(03):224-226.

[87] 王巨丰. 瓦斯抽采钻孔周围煤体中瓦斯流动的探讨[J]. 煤矿现代化,2017(01):83-85.

[88] 孟晓红,吴世跃,王志豪. 高位长距离钻孔在矿井瓦斯抽采中的应用[J]. 煤炭技术,2016,35(05):206-208.

[89] 范春阳. 桃园矿Ⅱ8221工作面高位定向长钻孔瓦斯抽采技术研究[D]. 安徽理工大学,2019.

[90] 周爱桃,李志磊,杜锋,等. 采空区埋管抽放治理上隅角瓦斯技术研究[J]. 煤炭技术, 2015, 34(02): 114-116.

中图分类号:

 TD712    

开放日期:

 2022-03-09    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式