- 无标题文档
查看论文信息

论文中文题名:

 304不锈钢和1020低碳钢异种金属焊接及裂尖力学场分析    

姓名:

 Jamshaid Khan    

学号:

 18505016001    

保密级别:

 公开    

论文语种:

 eng    

学科代码:

 080203    

学科名称:

 工学 - 机械工程 - 机械设计及理论    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 机械工程学院    

专业:

 机械设计及理论    

研究方向:

 现代机械设计方法及应用    

第一导师姓名:

 薛河    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-16    

论文答辩日期:

 2023-05-31    

论文外文题名:

 Analysis of 304 stainless steel and 1020 mild steel dissimilar metal welding and crack tip mechanical field    

论文中文关键词:

 异种金属焊接接头 ; 应力腐蚀开裂 ; 界面裂纹 ; 裂尖力学场 ; 有限元方法    

论文外文关键词:

 Dissimilar Metal Welded Joints: Stress Corrosion Cracking ; Interface CrackCrack Tip Mechanical Field ; Finite Element Method.    

论文中文摘要:

     轻水堆焊接接头的应力腐蚀开裂(SCC)是在裂纹尖端局部微观区域材料、力学和水 化学环境交互作用下的一种裂纹缓慢扩展形式,它给核电结构长期安全服役带来重大安 全隐患。以安全端异种金属焊接接头为代表的核电关键焊接结构环境致裂已成为影响压 水堆电站长期安全运行的关键问题。这种焊接接头通常是在低合金钢管嘴堆焊镍基合金 形成隔离层后,再用镍基合金焊材将安全端喷嘴与不锈钢安全端焊接在一起。异种金属 焊接接头组织和力学性能的不均匀性、几何结构的不连续性、焊接缺陷以及残余应力的 影响,给直接利用实验室数据定量预测核电异种金属焊接接头的在役寿命带来困难。为 准确分析异种金属焊接接头环境致裂裂纹尖端局部力学特征,本文完成的主要工作如下:通过国内外研究现状综述,详细探究了异种金属焊接工艺与应力腐蚀开裂机理。阐 述了异种金属焊接历史以及焊接工艺及过程;分析了常见焊接接头类型以及常见的冶金 缺陷;阐述了焊接接头中存在的应力类型以及分析应力腐蚀开裂的扩展机理。

     通过对异种金属焊接过程中碳迁移的介绍,详细阐述了核电站安全端异种金属焊接 接头中应力腐蚀开裂损伤机理,并从材料层面分析轻水反应堆中应力腐蚀开裂速率。实验和数值模拟相结合,获取了异种金属焊接接头材料的力学性能。通过疲劳拉伸 试验机和应变仪相结合,利用板状拉伸试样获取了材料力学性能,并通过有限元软件 ABAQUS 进行数值模拟建模。详细分析了不同焊接填充材料(镍基合金 625/52 等)对界面裂纹尖端力学场的影响。 重点研究在材料力学性能失配条件下,界面裂纹尖端应力应变场的分布状态,以及不同 材料力学性能对应力应变场和力学行为的影响。

本研究成果为进一步精确预测裂纹启裂和裂纹扩展速率提供理论基础。

论文外文摘要:

Stress corrosion cracking (SCC) of light water reactor welded joints is a form of slow crack expansion under the interaction of material, mechanical, water and chemical environments in the local microscopic region of the crack tip, which poses a major safety hazard to the long-term safe service of nuclear power structures. Environmental cracking of critical nuclear power welding structures represented by safety end dissimilar metal welded joints has become a key issue affecting the long-term safe operation of pressurized water reactor power plants. This type of welded joint is usually formed by overlaying a nickel-based alloy on the low-alloy steel nozzle to form an isolation layer, and then welding the safety end nozzle to the stainless steel safety end with nickel-based alloy welding material. The inhomogeneity of the organization and mechanical properties of the dissimilar metal welded joint, the discontinuity of the geometric structure, welding defects, and the influence of residual stresses make it difficult to directly predict the in-service life of nuclear dissimilar metal welded joints quantitatively using laboratory data. To accurately analyze the local mechanical characteristics of the environmental cracking tip of the dissimilar metal welded joint, the main work accomplished in this thesis is as follows: Through a review of the current state of research at home and abroad, a detailed exploration of the dissimilar metal welding process and stress corrosion cracking mechanism. Explained the history of dissimilar metal welding and the welding process and process; analysis of the common types of welded joints and common metallurgical defects; description of the type of stress present in the welder's joint; and analysis of the expansion mechanism of stress corrosion cracking. Through the introduction of carbon migration during the welding of dissimilar metals, the stress corrosion cracking damage mechanism in dissimilar metal welded joints at the safety end of nuclear power plants is elaborated, and the stress corrosion cracking rate in light water reactors is analyzed from the material level.

A combination of experiments and numerical simulations to obtain the mechanical properties of the material of the heterogeneous metal welded joints. The mechanical properties of the material were obtained through a combination of a fatigue tensile testing machine and strain gauge using a plate tensile specimen and modeled by numerical simulation with the finite element software ABAQUS. Detailed analysis of the effect of different weld filler materials (nickel-based alloy 625/52, etc.) on the mechanical field of the interface crack tip. Focus on the study of the state of distribution of the stress-strain field at the tip of the interface crack under the conditions of material mechanical properties mismatch, as well as the influence of different material mechanical properties on the stress-strain field and mechanical behavior. The study results provide a theoretical basis for accurately predicting the crack initiation and crack propagation rate.

参考文献:

[1] Fang Y J, Jiang X S, Mo D F, Zhu D G, Luo Z P. A review on dissimilar metals’ welding methods and mechanisms with interlayer[J]. The International Journal of Advanced Manufacturing Technology, 2019, 102: 2845-2863.

[2] Banovic S W, DuPont J N, Marder A R. Dilution and micro-segregation in dissimilar metal welds between super austenitic stainless steel and nickel base alloys[J]. Science and Technology of welding and Joining, 2002, 7(6): 374-383.

[3] Sun Y B, Li P, Zhang Y, Zou L, Yang X H. Study on the thermal-assisted friction stir lap welding for dissimilar materials of 6061-T6 Al alloy and thermoplastic PC[J]. Materials Letters, 2021, 304: 130687.

[4] Wang H, Yang K, Liu L. The analysis of welding and riveting hybrid bonding joint of aluminum alloy and polyether-ether-ketone composites[J]. Journal of Manufacturing Processes, 2018, 36: 301-308.

[5] Sathish T, Rangarajan S, Muthuram A, Kumar P. Analysis and modelling of dissimilar materials welding based on K-nearest neighbour predictor[J]. Materials Today: Proceedings,2020,21: 108-112.

[6] Sun J H, Yan Q, Gao W, Huang J. Investigation of laser welding on butt joints of Al/steel dissimilar materials[J]. Materials & Design, 2015, 83: 120-128.

[7] Nielsen S E. High power laser hybrid welding–challenges and perspectives[J]. Physics Procedia, 2015, 78: 24-34.

[8] Ma Z Y, Feng A H, Chen D L, Shen J. Recent Advances in Friction Stir Welding/Processing of Aluminum Alloys: Microstructural Evolution and Mechanical Properties[J]. Critical Reviews in Solid State and Materials Sciences, 2018, 43(4): 269-333.

[9] Dong L J, Ma C, Peng Q J, Han E H, Ke W. Microstructure and stress corrosion cracking of a SA508-309L/308L-316L dissimilar metal weld joint in primary pressurized water reactor environment[J]. Journal of Materials Science & Technology, 2020, 40: 1-14.

[10] Khan M, Dewan M W, Sarkar M Z. Effects of welding technique, filler metal and post-weld heat treatment on stainless steel and mild steel dissimilar welding joint[J]. Journal of Manufacturing Processes, 2021, 64: 1307-1321.

[11] Olabi A G, Hashmi M S J. Stress relief procedures for low carbon steel (1020) welded components[J]. Journal of materials processing technology, 1996, 56(1-4): 552-562.

[12] Wu D, Zhang P L, Yu Z S, Gao Y F, Zhang H, Chen H B, Chen S B, Tian Y T. Progress and perspectives of in-situ optical monitoring in laser beam welding: Sensing, characterization and modeling[J]. Journal of Manufacturing Processes, 2022, 75: 767-791.

[13] Liu M N, Fang S L, Dong H Y, Xu C Z. Review of digital twin about concepts, technologies, and industrial applications[J]. Journal of Manufacturing Systems, 2021, 58: 346-361.

[14] Tümer M, Schneider-Bröskamp C, Enzinger N. Fusion welding of ultra-high strength structural steels–A review[J]. Journal of Manufacturing Processes, 2022, 82: 203-229.

[15] Panwisawas C, Sovani Y, Turner R P, Brooks J W, Basoalto H C, Choquet I. Modelling of thermal fluid dynamics for fusion welding[J]. Journal of Materials Processing Technology, 2018, 252: 176-182.

[16] Huang J, Kaner R B. Flash welding of conducting polymer nanofibres[J]. Nature Materials, 2004, 3(11): 783-786.

[17] Sinhmar S, Dwivedi D K. Effect of weld thermal cycle on metallurgical and corrosion behavior of friction stir weld joint of AA2014 aluminium alloy[J]. Journal of Manufacturing Processes, 2019, 37: 305-320.

[18] Torkamany M J, Tahamtan S, Sabbaghzadeh J. Dissimilar welding of carbon steel to 5754 aluminum alloy by Nd: YAG pulsed laser[J]. Materials & Design, 2010, 31(1): 458-465.

[19] Anawa E M, Olabi A G. Control of welding residual stress for dissimilar laser welded materials[J]. Journal of materials processing technology, 2008, 204(1-3): 22-33.

[20] Winzer N, Atrens A, Song G, Ghali E, Dietzel W, Kainer K U, Hort N, Blawert C. A critical review of the stress corrosion cracking (SCC) of magnesium alloys[J]. Advanced Engineering Materials, 2005, 7(8): 659-693.

[21] Yao C W, Xu B S, Zhang X C, Huang J, Fu J, Wu Y X. Interface microstructure and mechanical properties of laser welding copper–steel dissimilar joint[J]. Optics and Lasers in Engineering, 2009, 47(7-8): 807-814.

[22] Lin Y C, Chen S C. Effect of residual stress on thermal fatigue in a type 420 martensitic stainless steel weldment[J]. Journal of Materials Processing Technology, 2003, 138(1-3): 22-27.

[23] Na M G, Kim J W, Lim D H. Prediction of residual stress for dissimilar metals welding at nuclear power plants using fuzzy neural network models[J]. Nuclear engineering and technology, 2007, 39(4): 337-348.

[24] Khan M M A, Romoli L, Fiaschi M, Dini G, Sarri F. Laser beam welding of dissimilar stainless steels in a fillet joint configuration[J]. Journal of Materials Processing Technology, 2012, 212(4): 856-867.

[25] Śliwa R E, Myśliwiec P, Ostrowski R, Bujny M. Possibilities of joining different metallic parts of structure using friction stir welding methods[J]. Procedia Manufacturing, 2019, 27: 158-165.

[26] Liu J, Zhang Z L, Nyhus B. Residual stress induced crack tip constraint[J]. Engineering Fracture Mechanics, 2008, 75(14): 4151-4166.

[27] Liu Y, Wang P, Fang H Y, Ma N S. Mitigation of residual stress and deformation induced by TIG welding in thin-walled pipes through external constraint[J]. Journal of Materials Research and Technology, 2021, 15: 4636-4651.

[28] Sadeghian A, Iqbal N. A review on dissimilar laser welding of steel-copper, steel-aluminum, aluminum-copper, and steel-nickel for electric vehicle battery manufacturing[J]. Optics & Laser Technology, 2022, 146: 107595.

[29] Sundaresan S, Ram G D J, Reddy G M. Microstructural refinement of weld fusion zones in α–β titanium alloys using pulsed current welding[J]. Materials Science and Engineering: A, 1999, 262(1-2): 88-100.

[30] Colegrove P, Ikeagu C, Thistlethwaite A, Williams S, Nagy T, Suder W, Steuwer A, Pirling T. Welding process impact on residual stress and distortion[J]. Science and Technology of Welding and Joining, 2009, 14(8): 717-725.

[31] Arunkumar N, Duraisamy P, Veeramanikandan S. Evaluation of mechanical properties of dissimilar metal tube welded joints using inert gas welding[J]. International Journal of Engineering Research and Applications, 2012, 2(5): 1709-1717.

[32] Chen C, Chen J, Yuan S H, Li W Z, Wang W, Li X F, Zhang W W, Wei R, Guan S K, Wang T, Zhang T, Lei N, Li F S. Microstructure, mechanical properties, corrosion resistance and anti-bacterial behavior of novel Co-free high entropy alloys[J]. Journal of Alloys and Compounds, 2022, 902: 163714.

[33] Tavares S S M, Pardal J M, Lima L D. Characterization of microstructure, chemical composition, corrosion resistance and toughness of a multipass weld joint of superduplex stainless steel UNS S32750[J]. Materials Characterization, 2007, 58(7): 610-616.

[34] Zhang Z Q, Liu X, Hu W Y, Li J H, Le Q C, Bao L, Zhu Z J, Cui J Z. Microstructures, mechanical properties and corrosion behaviors of Mg–Y–Zn–Zr alloys with specific Y/Zn mole ratios[J]. Journal of alloys and compounds, 2015, 624: 116-125.

[35] McGeorge R, Swec Jr L F. The steamhammer problem: dynamic shock loading of critical reactor piping systems[J]. Nuclear Engineering and Design, 1975, 32(1): 121-128.

[36] Osorio W R, Goulart P R, Garcia A, Santos G A, Neto C Moura. Effect of dendritic arm spacing on mechanical properties and corrosion resistance of Al 9 Wt Pct Si and Zn 27 Wt Pct Al alloys[J]. Metallurgical and Materials Transactions A, 2006, 37: 2525-2538.

[37] Pang J, Blackwood D J. Corrosion of titanium alloys in high temperature near anaerobic seawater[J]. Corrosion Science, 2016, 105: 17-24.

[38] Chung W C, Huang J Y, Tsay L W, Chun C. Microstructure and stress corrosion cracking behavior of the weld metal in alloy 52-A508 dissimilar welds[J]. Materials transactions, 2011, 52(1): 12-19.

[39] Lundin C D. Dissimilar metal welds-transition joints literature review[J]. Welding Journal, 1982, 61(2): 58-63.

[40] Pouranvari M. On the weldability of grey cast iron using nickel based filler metal[J]. Materials & Design, 2010, 31(7): 3253-3258.

[41] Mortezaie A, Shamanian M. An assessment of microstructure, mechanical properties and corrosion resistance of dissimilar welds between Inconel 718 and 310S austenitic stainless steel[J]. International Journal of Pressure Vessels and Piping, 2014, 116: 37-46.

[42] Wang Q, Wang F S, Cai C, Chen H, Ji F, Wen T. The essential role of the microstructure and composition in the corrosion resistance of laser-decontaminated surfaces[J]. Optics & Laser Technology, 2022, 152: 108111.

[43] Martínez-Pañeda E, Niordson C F, Gangloff R P. Strain gradient plasticity-based modeling of hydrogen environment assisted cracking[J]. Acta Materialia, 2016, 117: 321-332.

[44] Lei Z L, Dong Z J, Chen Y B, Huang L, Zhu R C. Microstructure and mechanical properties of laser welded Ti–22Al–27Nb/TC4 dissimilar alloys[J]. Materials Science and Engineering: A, 2013, 559: 909-916.

[45] Mai W, Soghrati S. A phase field model for simulating the stress corrosion cracking initiated from pits[J]. Corrosion Science, 2017, 125: 87-98.

[46] Zhao L Y, Xue H, Yang F Q, Suo Y H. Numerical investigation on stress corrosion cracking behavior of dissimilar weld joints in pressurized water reactor plants[J]. Frattura ed Integrità Strutturale, 2014, 8(29): 410-418.

[47] Wang S, Xue H, Wu G Y, Wang Z, Zhao K, Ni C Q. Investigation of the Inhomogeneous Mechanical and Crack Driving Force of Low Alloy Steel SA508 and Its Welded 309L/308L Stainless Steel Cladding[J]. Nuclear Science and Engineering, 2023, 197(4): 623-632.

[48] Deng P, Peng Q J, Han E H, Ke W, Sun C. Proton irradiation assisted localized corrosion and stress corrosion cracking in 304 nuclear grade stainless steel in simulated primary PWR water[J]. Journal of Materials Science & Technology, 2021, 65: 61-71.

[49] LeBlanc B, Niezrecki C, Avitabile P, Sherwood J, Chen J L. Full-field inspection of a wind turbine blade using three-dimensional digital image correlation[C]//Industrial and Commercial Applications of Smart Structures Technologies 2011. SPIE, 2011, 7979: 204-215.

[50] Cattant F, Crusset D, Féron D. Corrosion issues in nuclear industry today[J]. Materials today, 2008, 11(10): 32-37.

[51] Kain V, Roychowdhury S, Ahmedabadi P, Barua D K. Flow accelerated corrosion: experience from examination of components from nuclear power plants[J]. Engineering Failure Analysis, 2011, 18(8): 2028-2041.

[52] Sidelev D V, Kashkarov E B, Syrtanov M S, Krivobokov V P. Nickel-chromium (Ni–Cr) coatings deposited by magnetron sputtering for accident tolerant nuclear fuel claddings[J]. Surface and Coatings Technology, 2019, 369: 69-78.

[53] Yang J Q, Wang S Z, Xu D H, Guo Y, Yang C, Li Y H. Effect of ammonium chloride on corrosion behavior of Ni-based alloys and stainless steel in supercritical water gasification process[J]. International Journal of Hydrogen Energy, 2017, 42(31): 19788-19797.

[54] Talha M, Behera C K, Sinha O P. A review on nickel-free nitrogen containing austenitic stainless steels for biomedical applications[J]. Materials Science and Engineering: C, 2013, 33(7): 3563-3575.

[55] Shoji T, Peng Q, Kuniya J, Hou J, Takeda Y, Xue H, Sakaguchi K. Role of water chemistry and microstructure in stress corrosion cracking in the fusion boundary region 120 of an Alloy 182-A533B low alloy steel dissimilar weld joint in high temperature water[J]. Corrosion Science: The Journal on Environmental Degradation of Materials and its Control, 2011, 53(12): 4309-4317.

[56] Lu Z, Shoji T, Meng F, Xue H, Qiu Y, Takeda Y, Negishi K. Characterization of microstructure and local deformation in 316NG weld heat-affected zone and stress corrosion cracking in high temperature water[J]. Corrosion Science, 2011, 53(5): 1916-1932.

[57] Seifert H P, Ritter S. The influence of ppb levels of chloride impurities on the stress corrosion crack growth behaviour of low-alloy steels under simulated boiling water reactor conditions[J]. Corrosion Science, 2016, 108: 134-147.

[58] Dong L, Peng Q, Han E H, Ke W, Wang L. Microstructure and intergranular stress corrosion cracking susceptibility of a SA508-52M-316L dissimilar metal weld joint in primary water[J]. Journal of Materials Science & Technology, 2018, 34(8): 1281-1292.

[59] Kiser S D, Zhang R, Baker B A. A new welding material for improved resistance to ductility dip cracking[C]//Proc. ASM Int. Conf. on ‘Trends in welding research’, Pine Mountain, GA, USA. 2008: 639-644.

[60] Schumacher O, Marvel C J, Kelly M N, Cantwell P R, Vinci R P, Rickman J M, Rohrer G S, Harmer M P. Complexion time-temperature-transformation (TTT) diagrams: Opportunities and challenges[J]. Current Opinion in Solid State and Materials Science, 2016, 20(5): 316-323.

[61] Ezugwu E O, Wang Z M, Machado A R. The machinability of nickel-based alloys: a review[J]. Journal of Materials Processing Technology, 1999, 86(1-3): 1-16.

[62] Hu H X, Zheng Y G, Qin C P. Comparison of Inconel 625 and Inconel 600 in resistance to cavitation erosion and jet impingement erosion[J]. Nuclear Engineering and Design, 2010, 240(10): 2721-2730.

[63] Lim Y S, Kim D J, Kim S W, Kim H P. Crack growth and cracking behavior of Alloy 600/182 and Alloy 690/152 welds in simulated PWR primary water[J]. Nuclear Engineering and Technology, 2019, 51(1): 228-237.

[64] Lu Z P, Chen J J, Shoji T, Takeda Y, Yamazaki S. Characterization of microstructure, local deformation and microchemistry in Alloy 690 heat-affected zone and stress corrosion cracking in high temperature water[J]. Journal of Nuclear Materials, 2015, 465: 471-481.

[65] Wang H T, Wang G Z, Xuan F Z, Liu C J, Tu S T. Local mechanical properties of a dissimilar metal welded joint in nuclear power systems[J]. Materials Science and Engineering: A, 2013, 568: 108-117.

[66] Xue H; Wang Z; Wang S; He J; Yang H; Characterization of Mechanical Heterogeneity in Dissimilar Metal Welded Joints[J], Materials, 2021, 14(15): 4145.

[67] Dong L J, Peng Q J, Han E H, Ke W, Wang L. Microstructure and intergranular stress corrosion cracking susceptibility of a SA508-52M-316L dissimilar metal weld joint in primary water[J]. Journal of Materials Science & Technology, 2018, 34(8): 1281-1292.

[68] Ming H, Wang J, Han E H. Comparative study of microstructure and properties of low-alloy-steel/nickel-based-alloy interfaces in dissimilar metal weld joints prepared by different GTAW methods[J]. Materials Characterization, 2018, 139: 186-196.

中图分类号:

 TG407    

开放日期:

 2023-06-16    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式