论文中文题名: |
CoCrFeNiMnx高熵合金微观组织及力学性能研究
|
姓名: |
刘旭亮
|
学号: |
20211225055
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
085600
|
学科名称: |
工学 - 材料与化工
|
学生类型: |
硕士
|
学位级别: |
工程硕士
|
学位年度: |
2023
|
培养单位: |
西安科技大学
|
院系: |
材料科学与工程学院
|
专业: |
材料与化工
|
研究方向: |
高熵合金
|
第一导师姓名: |
余竹焕
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2023-06-19
|
论文答辩日期: |
2023-06-06
|
论文外文题名: |
Research on Microstructure and Mechanical Properties of CoCrFeNiMnx High Entropy Alloy
|
论文中文关键词: |
CoCrFeNiMnx高熵合金 ; 真空电弧熔炼 ; 定向凝固 ; 微观组织 ; 压缩性能
|
论文外文关键词: |
CoCrFeNiMnx high entropy alloys ; vacuum arc melting ; directional solidification ; microstructure ; compression performance
|
论文中文摘要: |
︿
高熵合金是近年来出现的一种新型合金,具有优异的物理、软磁、化学、机械性能。目前关于高熵合金的研究还处于探索阶段,虽然已取得一定的进展,但具体到工程应用仍存部分问题尚需解决。如成分改变对高熵合金结构的影响规律尚不清晰,制备工艺对高熵合金的组织形貌以及力学性能的影响机理尚不明确。为了进一步探究高熵合金的组织演变规律及性能影响因素,本文选择CoCrFeNiMnx高熵合金为研究对象,探究了Mn对电弧熔炼和定向凝固两种工艺下CoCrFeNiMnx高熵合金组织结构及压缩性能的影响规律,分析了定向凝固工艺对CoCrFeNiMn0.25和CoCrFeNiMn0.75高熵合金组织结构及压缩性能的影响机理。得到以下主要结论:
添加Mn元素可以细化CoCrFeNiMnx高熵合金的组织,合金微观形貌由等轴晶转变为树枝晶组织。树枝晶组织存在明显的成分偏析,其中Co、Fe、Ni元素在枝晶干富集,Mn和Ni元素在枝晶间富集,Cr元素均匀分布在树枝晶组织中,这由混合焓和凝固路径所决定。Mn含量的增加显著改善了电弧熔炼CoCrFeNiMnx高熵合金的抗压强度和压缩延展性,合金的抗压强度由3070MPa增加到3830MPa,增幅达到24.8%,合金的压缩应变由53.12%增加到73.29%。其中Mn0.25合金具有优异的性能,FCC结构的存在提高了合金的压缩延展性。
定向凝固CoCrFeNiMnx高熵合金的晶体结构均为FCC1和FCC2混合结构,合金的枝晶干富集Co、Cr和Fe元素,枝晶间富集Mn和Ni元素。结合FCC晶体结构以及Mn元素提高FCC相稳定性的作用,CoCrFeNiMnx高熵合金的压缩性能随着Mn含量的增加大幅提升,合金的抗压强度由3410MPa增加到4620MPa,增幅达到35.5%,合金的压缩应变由68.29%增加到79.53%。
两种制备工艺下,添加Mn元素可以改善合金的抗压强度和压缩延展性。EDS结果表明,定向凝固降低了合金元素的偏析程度。经过定向凝固处理后,合金沿着(200)方向表现出晶体的择优生长,较低的冷却速率使形核速率降低,合金组织中的树枝晶尺寸发生增大。晶界强化和高熵效应的共同作用使得合金具有优异的性能,CoCrFeNiMn0.25合金的抗压强度由3830MPa增大至4350MPa,压缩应变由55.89%增大至73.14%。
﹀
|
论文外文摘要: |
︿
High entropy alloys are new types of alloys that have emerged in recent years. They have excellent physical, soft-magnetic, chemical and mechanical properties. At present, research on high entropy alloys is still in the exploratory stage. Although some progresses have been made, there are still some problems to be solved in engineering applications. For example, the influence laws of the composition changes on the structure of high entropy alloys and the influence mechanisms of preparation processes on the microstructures and mechanical properties of high entropy alloys are still not clear. In order to further explore the microstructure evolution and the performance influencing factors of high entropy alloys, this paper selectes CoCrFeNiMnx high entropy alloy as the research object to explore the influence of Mn on the microstructures and compressive properties of CoCrFeNiMnx high entropy alloy under arc melting and directional solidification, and to analyze the influence mechanism of directional solidification on the microstructures and compressive properties of CoCrFeNiMn0.25 and CoCrFeNiMn0.75 high entropy alloys. The main conclusions are as follows:
The addition of Mn element can refine the microstructure of CoCrFeNiMnx high entropy alloy, and the microstructure of the alloy changes from equiaxed crystal structure to dendritic structure. There is obvious composition segregation in dendritic structure, Co, Fe and Ni elements in dendrite structure were enriched in the dendritic, Mn and Ni elements were enriched in the interdendritic, and Cr element was evenly distributed in dendrite structures, This was determined by the mixing enthalpy and solidification path.The increase of Mn content significantly improves the compressive strength and compressive ductility of arc-melted CoCrFeNiMnx high entropy alloys, and the compressive strength of the alloy was increased from 3070MPa to 3830MPa, the growth rate reached 24.8%, and the compressive strain of the alloy was increased from 53.12% to 73.29%. Among them, Mn0.25 alloy has excellent properties, and the existence of FCC structure improved the compressive ductility of the alloy.
The crystal structure of directional solidification CoCrFeNiMnx high entropy alloy is FCC1 and FCC2 mixed structure, Co, Cr and Fe elements were riched in the dendritic, and Mn and Ni elements were riched in the inter-dendritice. Combined with FCC crystal structure and the effect of Mn element on improving the stability of FCC phase, the compressive property of CoCrFeNiMnx high entropy alloy was greatly improved with the increase of Mn content. The compressive strength of the alloy was increased from 3410MPa to 4620MPa, the growth rate reached 35.5%, and the compressive strain of the alloy was increased from 68.29% to 79.53%.
Under the two preparation processes, the addition of Mn element can ameliorate the compressive strength and compressive ductility of the alloy. The results of EDS showed that directional solidification reduced the segregation degree of alloy elements. After directional solidification, the alloys showed preferential crystal growth along (200) direction, and the lower cooling rate reduced the nucleation rate, and the dendrite size in the alloy’s structure increasesed. The combined action of grain boundary strengthening and high entropy effect made the alloy have excellent properties. The compressive strength of CoCrFeNiMn0.25 alloy increasesed from 3830MPa to 4350MPa, and the compressive strain increasesed from 55.89% to 73.14%.
﹀
|
参考文献: |
︿
[1]Yeh J W. Alloy design strategies and future trends in high entropy alloys[J]. Journal of Metals, 2013, 65(12): 1759-1771. [2]Ye Y F, Wang Q, Lu J, et al. High entropy alloy: challenges and prospects[J]. Mater Today, 2016, 19(06): 349-362. [3]Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high entropy alloys[J]. Progress in Materials Science, 2014, 61(03): 1-93. [4]Dada M, Popoola P, Mathe N. Recent advances of high entropy alloys for aerospace applications: A review[J]. World Journal of Engineering, 2023, 20(01): 43-74. [5]Yeh J W, Chen S K, Lin S J, et al. Nanostructured high entropy alloys with multiple principal elements: novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(05): 299-303. [6]Vaidya M, Anirudha K, Marshal A, et al. Phase evolution and stability of nanocrystalline CoCrFeNi and CoCrFeMnNi high entropy alloys[J]. Journal of Alloys and Compounds, 2019, 770: 1004-1015. [7]Cheng J C, Qin H L, Li C, et al. Deformation and damage of equiatomic CoCrFeNi high-entropy alloy under plate impact loading[J]. Materials Science and Engineering: A, 2023, 862: 144432-144448. [8]George E P, Raabe D, Ritchie R O. High entropy alloys[J]. Nature Reviews Materials, 2019, 4(08): 515-534. [9]Yeh J W, Chen Y L, Lin S J, et al. High-entropy alloy-a new era of exploitation[C]. Materials Science Forum. 2007, 560: 1-9. [10]Kozak R, Sologubenko A, Steurer W. Single-phase high-entropy alloys-an overview[J]. Zeitschrift Firkristal Lographie Crystalline Materials, 2015, 230(01): 55-68. [11]Tian Y, Lu C, Shen Y, et al. Microstructure and corrsion property of CrMnFeCoNi high entropy alloy coating on Q235 substrate via mechanical alloying method[J]. Surfaces and Inferfaces, 2019, 15: 135-140. [12]Tian Y Z, Sun S J, Lin H R, et al. Fatigue behavior of CoCrFeMnNi high-entropy alloy under fully reversed cyclic deformation[J]. Journal of Materials Science & Technology, 2019, 35(03): 334-340. [13]He J W, Wang H, Wu Y, et al. Precipitation behavior and its effects on tensile properties of FeCoNiCr high-entropy alloys[J]. Intermetallics, 2016, 79: 41-52. [14]Han C, Fang Q, Shi Y, et al. Recent advances on high-entropy alloys for 3D printing[J]. Advanced Materials, 2020, 32(26): 1903855-1903860. [15]Mehmood M A, Mujahid M, Godfrey A, et al. Development and characterization of boride-reinforced CoCrFeNi composites[J]. Journal of Alloys and Compounds, 2023, 947: 169535-169540. [16]Yuan L J, Tao R, Wen P C, et al. Molecular dynamics simulation of chemical short-range order strengthening in FCC FeNiCrCoAlx alloys[J]. Physica B: Condensed Matter, 2023, 649: 414447-414452. [17]Jiao M, Lei Z, Wu Y, et al. Manipulating the ordered oxygen complexes to achieve high strength and ductility in medium-entropy alloys[J]. Nature Communications, 2023, 14(01): 806-810. [18]Tang Z, Huang L, He W, et al. Alloying and processing effects on the aqueous corrosion behavior of high-entropy alloys[J]. Entropy, 2014, 16(02): 895-911. [19]温丽华, 寇宏超, 王一川, 等. AlxCoCrCuFeNi多主元高熵合金的组织与力学性能[J]. 特种铸造及有色合金, 2009, 29(06): 579-581. [20]李兆峰, 蒋鹏, 杨学东. TiCu0.5Al0.5Cr0.2Ni0.1高熵合金微观组织及性能研究[J]. 材料开发与应用, 2020, 35(03): 10-15. [21]Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high entropy alloy for cryogenic applications[J]. Science, 2014, 345(6201): 1153-1158. [22]王伟彤, 陈淑英, 张勇, 等. 高熵合金强韧化方法及力学性能的研究进展[J]. 材料导报, 2021, 35(17): 17043-17050. [23]Sunkari U, Reddy S R, Athira K S, et al. Effect of niobium alloying on the microstructure, phase stability and mechanical properties of CoCrFeNi2.1Nbx high entropy alloys: experimentation and thermodynamic modeling[J]. Materials Science Engineering: A, 2020, 793: 139897-139899. [24]Starovoytov O N, Gao M, Guo S, et al. Comparative studies of the ground state properties for Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20[J]. Supplemental Proceedings, 2013, 1137-1145. [25]Li Y, Lee J, Kang B, et al. Microstructure and elevated-temperature mechanical properties of refractory AlMo0.5NbTa0.5TiZr high entropy alloy fabricated by powder metallurgy[J]. Materials Science, 2017, 1801: 263-269. [26]刘明亮, 杜大帆, 李九霄, 等. 精密铸件反重力铸造凝固组织与缺陷控制研究进展[J]. 精密成形工程, 2023, 15(01): 199-207. [27]黄朋朋, 芦刚, 严青松, 等. 凝固压差对真空差压铸造ZL114A合金微观组织及高温蠕变性能的影响[J]. 中国有色金属学报, 2020, 30(07): 1535-1543. [28]李勇, 郑碰菊, 张建波, 等. 定向凝固技术的研究现状及发展趋势[J]. 材料导报, 2014, 28(23): 108-112. [29]Yu Z H, Yan Y W, Gao W, et al. Microstructures and compressive properties of AlxCoCrFeNi high entropy alloys prepared by arc melting and directional solidification[J]. Materials Research Express, 2022, 9(01): 016510-016518. [30]Kear B H, Thompson E R. Aircraft gas turbine materials and processes[J]. Science, 1980, 208(4446): 847-856. [31]Ma D, Zhao Y, Xu W, et al. Comparative investigation of the undercooling capacity and single-crystal castability of some Ni-based superalloys[J]. Crystals, 2023, 13(01): 57-63. [32]Xia J J, Yu J, Lu S W, et al. Surface morphology evolution during chemical mechanical polishing based on microscale material removal modeling for monocrystalline silicon[J]. Materials, 2022, 15(16): 5641-5645. [33]Li M, Guo X, Dai S, et al. Effect of grinding damage on cutting force and ductile machining during single grain scratching of monocrystalline silicon[J]. Materials Science in Semiconductor Processing, 2022, 151: 107019-107021. [34]Paik S, Naveen K N, Dutta B K, et al. Experimental investigation and crystal plasticity simulation with damage for single crystal copper subjected to tensile load[J]. Metals and Materials International, 2022, 29(03): 618-633. [35]Zhang P, Li X J, Zhang J S, et al. Study on chip formation mechanism of single crystal copper using molecular dynamics simulations[J]. Nanoscale Research Letters, 2022, 17(01): 91-94. [36]Tiller W A, Jackson K A, Rutter J W, et al. The redistribution of solute atoms during the solidification of metals[J]. Acta Metallurgica, 1953, 1(04): 428-437. [37]Mullins W W, Sekerka R F. Application of linear programming theory to crystal faceting[J]. Journal of Physics and Chemistry of Solids, 1962, 23(06): 801-803. [38]Wollkind D J, Segel L A. A nonlinear stability analysis of the freezing of a dilute binary alloy[J]. Philosophical Transactions of the Royal Society A, 1970, 268(1191): 351-380. [39]Hunt J D, Jackson K, Jackson K H. Lamellar and rod eutectic growth[J]. Dynamics of Curved Fronts, 1966, 236: 1129-1142. [40]Langer J S, Miller K H. Theory of dendritic growth-I elements of a stability analysis[J]. Acta Metallurgica, 1978, 26(11): 1681-1687. [41]Ben J E, Garik P. The formation of patterns in non-equilibrium growth[J]. Nature, 1990, 343(6258): 523-530. [42]Hunt J D, Lu S Z. Numerical modelling of cellular and dendritic array growth: spacing and structure predictions[J]. Materials Science and Engineering: A, 1993, 173(02): 79-83. [43]Liang D, Jones H. Predictions of the Hunt-Lu array model compared with measurements for the growth undercooling of Al3Fe dendrites in Al-Fe alloys[J]. Scripta Materialia, 1997, 37(07): 911-913. [44]Brener E, Muller K H, Temkin D. Kinetic phase diagram and scaling relations for stationary diffusional growth[J]. Europhysics Letters, 1992, 17(06): 535-538. [45]Singer H M, Singer L I, Bilgram J H, et al. Morphology diagram of thermal dendritic solidification by means of phase-field models in two and three dimensions[J]. Journal of Crystal Growth, 2006, 296(01): 58-68. [46]Xing H, Dong X, Wu H, et al. Degenerate seaweed to tilted dendrite transition and their growth dynamics in directional solidification of non-axially oriented crystals: a phase-field study[J]. Scientific Reports, 2016, 6(01): 26625-26628. [47]杨平, 李吉春, 汪雪梅. 铝发热剂中金属铝和氧化铝的分析[J]. 冶金分析, 2000, 20(06): 50-52. [48]Shen Z L, Liu Y, Su H J, et al. Research progress on microstructure and property regulation of ultra-high temperature oxide eutectic ceramics by high gradient directional solidification technology[J]. Journal of Northwestern Polytechnical University, 2022, 40(02): 229-242. [49]王晓娟, 刘林, 赵新宝, 等. 添加碳和硼改善第三代镍基定向凝固高温合金的显微组织和偏析行为[J]. 材料导报, 2019, 33(20): 3452-3459. [50]Han J L, Tang J B, Ghasemian M B, et al. Liquid metal core-shell structures functionalised via mechanical agitation: the example of Field's metal[J]. Journal of Materials Chemistry, 2019, 7(30): 17876-17887. [51]Peng P, Li S, Zheng W, et al. Morphology evolution of abnormal tertiary dendrite by diffusion controlled remelting/resolidification in directionally solidified Sn-Mn peritectic alloy[J]. Materials Chemistry and Physics, 2022, 278: 125637-125640. [52]Xu X, Hao Y, Wu Q, et al. Effect of minor addition of Co on nonequilibrium solidification of deeply undercooled Cu based alloys[J]. Materials Characterization, 2023,199: 112800-112812. [53]Zhang W, Liu Z, Feng S, et al. High Temperature rupture life of Nickel-based superalloy under directional solidification with high temperature gradient[J]. Materials Science Forum, 2017, 898(01): 422-429. [54]Zheng S, Shen J, Lu X, et al. Three-dimensional lamellar orientation and stress condition induced sudden fracture of directional solidified γ-TiAl alloys produced by electromagnetic confinement[J]. Materialia, 2022, 21: 101306-101310. [55]Ren N, Panwisawas C, Li J, et al. Solute enrichment induced dendritic fragmentation in directional solidification of Nickel-based superalloys[J]. Acta Materialia, 2021, 215: 117043-117049. [56]Liu X, Lou Y, Yu B, et al. Directional solidification casting technology of heavy-duty gas turbine blade with liquid metal cooling (LMC) process[J]. China Foundry, 2019, 16: 23-30. [57]Yuan H, Zhao L, You Q, et al. Removal of inclusions from Nickel-based superalloy by induced directional solidification during electron beam smelting[J]. Vacuum, 2018, 156: 39-47. [58]Luo L, Wei C, Li X, et al. Research on microstructure evolution of Al-Al2Cu eutectic by regional melting under directional solidification[J]. Crystal Research and Technology, 2019, 54(10): 1900108-1900110. [59]Xu X, Ding H, Huang H, et al. Microstructure formation and columnar to equiaxed transition during cold crucible directional solidification of a high-Nb TiAl alloy[J]. Journal of Materials Research and Technology, 2021, 11: 2221-2234. [60]李天佑, 费宏明, 杜海文, 等. 隔热笼开度对高效多晶硅定向凝固的影响[J]. 铸造技术, 2018, 39(05): 1076-1078. [61]Miracle D B, Majumdar B, Wertz K, et al. New strategies and tests to accelerate discovery and development of multi-principal element structural alloys[J]. Scripta Materialia, 2017, 127: 195-200. [62]Zhang Y, Xu P, Zhu J, et al. The emergence of considerable room temperature magnetocaloric performances in the transition metal high-entropy alloys[J]. Materials Today Physics, 2023, 32: 101031-101039. [63]Zhang Y, Yang X, Liaw P K. Alloy design and properties optimization of high-entropy alloys[J]. The Journal of The Minerals, 2012, 64(07): 830-838. [64]曾鹏, 李方杰, 沙业雨, 等. 热处理温度对AlxCoCrFeNi系高熵合金组织和硬度的影响[J]. 上海金属, 2020, 42(03): 67-71. [65]王虎, 王智慧. 等离子熔覆法制备AlxCoCrFeNi高熵合金微观组织与性能研究[J]. 材料导报, 2018, 32(04): 589-592. [66]马胜国, 王志华. CoCrFeNiAlx系高熵合金的动态力学性能和本构关系[J]. 爆炸与冲击, 2021, 41(11): 4-14 [67]王波, 许晓东, 赵东宏. 合金化对汽车活塞用铸造铝合金的组织和性能影响[J]. 热加工工艺, 2021, 50(05): 68-71. [68]侯丽丽, 要玉宏, 梁霄羽, 等. AlxFeCoNiB0.1高熵合金的微观组织和力学性能[J]. 稀有金属材料与工程, 2019, 48(01): 111-115. [69]曲明洋, 李廷取, 颜丙辉, 等. AlxCoFeNiMo高熵合金的结构演变及力学性能[J]. 铸造, 2020, 69(01): 11-15. [70]熊梅, 甘章华, 戴义, 等. Cr含量对FeNiMnCuCrx系高熵合金微观结构和电化学性能的影响[J]. 腐蚀与防护, 2017, 38(03): 172-175. [71]陈旭, 胡佳宣, 张彦, 等. 铬对(CuFeNiMn)1-xCrx高熵合金显微组织与腐蚀性能的影响研究[J]. 湘潭大学学报, 2020, 42(03): 24-31. [72]白莉, 王宇哲, 杨小光, 等. Cr合金微观组织元素对FeMnNiCr高熵与性能的影响[J]. 热加工工艺, 2020, 49(22): 53-56. [73]许金亮, 汪涛, 张陕南, 等. 铸态CrxNbTiZr高熵合金的组织与性能研究[J]. 稀有金属与硬质合金, 2020, 48(04): 53-58. [74]Aliyu A, Srivastava C. Corrosion behavior and protective film constitution of AlNiCoFeCu and AlCrNiCoFeCu high entropy alloy coatings[J]. Surfaces and Interfaces, 2021, 27: 101481-101489. [75]孙辉, 武会宾, 张游游, 等. Cr含量对CrMnFeNi系高熵合金腐蚀行为的影响[J]. 材料工程, 2022, 50(11): 127-134. [76]李安敏, 黄宇炜, 陈若怀, 等. NixAlTiCrFeCoCu高熵合金的显微组织与性能[J]. 机械工程材料, 2017, 41(05): 53-58. [77]刘聪. AlCoCuFeNix系高熵合金组织与性能的研究[D]. 南昌: 南昌大学, 2019. [78]Zhu C Y, Hao W U, Zhu H G, et al. Mechanical properties and fracture mechanism of as-cast MnFeCoCuNix high entropy alloys[J]. Transactions of Nonferrous Metals Society of China, 2021, 31(01): 222-231. [79]陈冲, 李红菊. Ni含量对AlCrCuNixTi高熵合金微观组织和硬度的影响[J]. 特种铸造及有色合金, 2019, 39(06): 643-646. [80]张敏华, 魏雷, 李丰梅, 等. Al、Ni对AlCoCrFeNiTi0.5高熵合金组织结构的影响[J]. 热加工工艺, 2014, 43(24): 91-97. [81]刘德飘, 刘贵仲, 郭景杰. Ni元素对AlFeCoCrCuNix高熵合金组织及电化学腐蚀性能的影响[J]. 稀有金属与硬质合金, 2015, 43(05): 49-74. [82]戴义, 甘章华, 周欢华, 等. AlMgZnSnCuMnNix高熵合金的微观结构和电化学性能[J]. 腐蚀与防护, 2014, 35(09): 871-875. [83]连世海, 彭文屹, 章爱生. FeCoNiAlCux多主元高熵合金组织与力学性能的研究[J]. 热加工工艺, 2017, 46(12): 1-5. [84]史秀丽, 王灿明, 孙宏飞, 等. 元素Cu对CuxAlFeNiCrTi(x=0, 0.5, 1.0)高熵合金组织性能的影响[J]. 材料保护, 2018, 51(01): 58-75. [85]张华, 王干廷, 唐群华, 等. Al0.5FeCoCrNi(Si0.2, Ti0.5)高熵合金的高温氧化性能[J]. 腐蚀与防护, 2013, 34(07): 561-565. [86]马明星, 王志新, 周家臣, 等. Ti掺杂对CoCrCuFeMn高熵合金组织结构和耐磨性的影响[J]. 机械工程学报, 2020, 56(10): 110-116. [87]郭世彬, 肖传栋, 辛丽雪, 等. Nb含量对FeAlCuCrNiNbx系高熵合金组织及性能的影响[J]. 焊接, 2019, 10: 21-24. [88]陶继闯, 卢一平. Mo含量对Al0.1CoCrCu0.5FeNiMox高熵合金的组织结构、力学性能及耐蚀性能的影响[J]. 材料导报, 2020, 34(08): 8096-8099. [89]邢逸凡, 王伟丽, 郑风勤. Mn对CoCrFeNi基高熵合金组织及性能的影响[J]. 热加工工艺, 2020, 49(10): 37-40. [90]Kawamura M, Asakura M, Okamoto N L, et al. Plastic deformation of single crystals of the equiatomic CrMnFeCoNi high entropy alloy in tension and compression from 10K to 1273K[J]. Acta Materialia, 2021, 203: 116454-116467. [91]侯丽丽, 梁霄羽, 要玉宏, 等. B含量对FeCrCoNiMn高熵合金组织及力学性能的影响[J]. 稀有金属材料与工程, 2018, 47(10): 3203-3207. [92]饶湖常, 戴品强, 陈鼎宁, 等. 碳含量对FeCoCrNiMnCx高熵合金显微组织与性能的影响[J]. 机械工程材料, 2016, 40(08): 76-80. [93]王海燕, 唐群华, 李小军, 等. N对CoCrFeMnNi高熵合金抗氧化性能的影响[J]. 金属热处理, 2017, 42(12): 71-77. [94]Zhou J, Cheng Y, Chen Y, et al. Composition design and preparation process of refractory high-entropy alloys: A review[J]. International Journal of Refractory Metals and Hard Materials, 2022, 105: 105836-105841. [95]Lu S, Li X, Liang X, et al. Effect of Al content on the oxidation behavior of refractory high-entropy alloy AlMo0.5NbTa0.5TiZr at elevated temperatures[J]. International Journal of Refractory Metals and Hard Materials, 2022, 105: 105812-105821. [96]徐琴, 陈德志, 王聪锐, 等. 镧对NbMoTiVSi0.2难熔高熵合金显微组织与力学性能的影响[J]. 中国有色金属学报, 2021, 31(02): 512-520. [97]曾琪皓, 张松, 胥永刚, 等. Hf含量对NbMo0.5HfxTiZrCrAl难熔高熵合金组织及力学性能的影响[J]. 稀有金属材料与工程, 2022, 51(03): 1024-1030. [98]江洪林, 胡志方, 袁学韬, 等. TiZrHfNbSc难熔高熵合金的组织和力学性能[J]. 稀有金属材料与工程, 2020, 49(08): 2820-2824. [99]薛彦均, 尉文超, 王毛球, 等. Si对FeMoCrVTiSi高熵合金组织和力学性能的影响[J]. 特种铸造及有色合金, 2020, 40(01): 112-116. [100]李安敏, 徐飞, 郭宝航, 等. AlNiFeCuCoCrVx高熵合金的显微组织与力学性能[J]. 机械工程材料, 2019, 43(04): 48-52. [101]葛大梁, 刘贵仲, 周敏, 等. AlxCrFeNiCuVTi系高熵合金的组织和力学性能研究[J]. 热加工工艺, 2013, 42(08): 47-49. [102]Roksolana K, Walter S. High entropy alloys in light transition metal systems[J]. Acta Crystallographica. Section A, Foundations and Advances, 2014, 70(A): 943-946. [103]Youssef K M, Zaddach A J, Niu C, et al. A novel low-density, high hardness high entropy alloy with close-packed single-phasenano crystalline structures[J]. Materials Research Lelters, 2014, 3(02): 95-99. [104]Yang X, Chen S Y, Cotton J D, et al. Phase stability of low-density, multiprincipal component alloys containing aluminum, magnesium, and lithium[J]. The Journal of The Minerals, 2014 ,66(10): 2009-2020. [105]Du X H, Wang R, Chen C, et al. Preparation of a light-weight MgCaAlLiCu high-entropy alloy[J]. Key Engineering Materials, 2017, 727: 132-135. [106]Li R, Gao J C, Fan K. Study to microstructure and mechanical properties of Mg containing high entropy alloys[J]. Materials Science Forum, 2010, 650(938): 265-271. [107]Xu J J, Chen Y Q. Steady spatially-periodic eutectic growth with the effect of triple point in directional solidification[J]. Acta Materialia, 2014, 80: 220-238. [108]Ma S G, Zhang S F, Zhang Y, et al. A successful synthesis of the CoCrFeNiAl0.3 single-crystal, high-entropy alloy by bridgman solidification[J]. The Journal of The Minerals, 2013, 65(12): 1751-1758. [109]徐义库, 李聪玲, 黄兆皓, 等. 定向凝固CoCrCuFeNiTi0.8高熵合金的组织与力学性能[J]. 中国有色金属学报, 2021, 31(06): 1494-1504. [110]郑辉庭. CoCrFeNi系高熵合金定向凝固组织演变及力学性能[D]. 哈尔滨: 哈尔滨工业大学, 2020. [111]黄顺友. CoCrFeNi系高熵合金定向凝固组织演变及力学性能[D]. 哈尔滨: 哈尔滨工业大学, 2020. [112]邱明星. 定向凝固对CuCrFeNiMn系多主元合金组织及力学性能的影响研究[D]. 哈尔滨: 哈尔滨工程大学, 2017. [113]张仰庆. Al-Co-Fe-Ni系共晶高熵合金定向凝固组织和力学性能[D]. 西安: 西安工业大学, 2020. [114]葛玉会. AlCoCrFeNi2.1共晶高熵合金定向凝固组织及性能研究[D]. 西安: 西安理工大学, 2019. [115]Feng S L, Ai Z J, He J Y, et al. Effect of annealing and hot isostatic pressing on the structure and hydrogen embrittlement resistance of powder-bed fusion-printed CoCrFeNiMn high-entropy alloys[J]. Metals, 2023, 13(03), 630-639. [116]Dobeš F, Hadraba H, Chlup Z, et al. Different types of particle effects in creep tests of CoCrFeNiMn high-entropy alloy[J]. Materials, 2022, 15(20), 7363-7371. [117]Zdeněk C, Stanislava F, Hynek H, et al. Fatigue behaviour and crack initiation in CoCrFeNiMn high-entropy alloy processed by powder metallurgy[J]. Metals, 2019, 9(10), 1110-1121. [118]Bi G J, Zhu Z G, Weng F, et al. Microstructure and enhanced strength of laser aided additive manufactured CoCrFeNiMn high entropy alloy[J]. Materials Science Engineering A, 2019, 12(05), 744. [119]Tong Z P, Wan W B, Liu H L, et al. Combination of annealing and laser shock peening for tailoring microstructure and mechanical properties of laser directed energy deposited CrMnFeCoNi high-entropy alloy[J]. Additive Manufacturing, 2023, 61: 103345-103348. [120]Zhang J L, Yu F P, Zhang D M, et al. Microstructure and mechanical behaviors of GdxCoCrCuFeNi high-entropy alloys[J]. Materials Science Engineering: A, 2017, 707: 708-716. [121]Misjak F, Depla D, Braeckman B, et al. The influence of Ge and In addition on the phase formation of CoCrCuFeNi high-entropy alloy thin films[J]. Thin Solid Films, 2016, 616: 703-710. [122]Otto F, Dlouhy A, Pradeep K G, et al. Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures[J]. Acta Materialia, 2016, 112: 40-52. [123]Tan Y M, Li J S, Wang J, et al. Effect of Mn addition on the microstructures and mechanical properties of cocrfenipd high entropy alloy[J]. Entropy, 2019, 21(03): 288-294. [124]Joo S H, Kato H, Jang M J, et al. Structure and properties of ultrafine-grained CoCrFeMnNi high-entropy alloys produced by mechanical alloying and spark plasma sintering[J]. Journal of Alloys and Compounds, 2016, 698: 591-604. [125]高炜, 余竹焕, 阎亚雯, 等. Cr对FeCoNiAlCrx高熵合金组织与力学性能的影响[J]. 材料工程, 2023, 51(02): 91-97. [126]Laplanche G, Berglund S, Reinhart C, et al. Phase stability and kinetics of σ-phase precipitation in CrMnFeCoNi high-entropy alloys[J]. Acta Materialia, 2018, 161: 338-351. [127]Peng P, Li S, Chen W, et al. Phase selection and microhardness of directionally solidified AlCoCrFeNi2.1 eutectic high-entropy alloy[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(08): 1281-1290. [128]Zheng H T, Chen R R, Qin G, et al. Transition of solid-liquid interface and tensile properties of CoCrFeNi high-entropy alloys during directional solidification[J]. Journal of Alloys and Compounds, 2019, 787: 1023-1031. [129]赵堃, 邓志峰, 赵中国, 等. 非等原子(FeCoNiCr)100-xMnx高熵合金的微观组织和力学性能[J]. 中国有色金属学报, 2022, 32(05): 1351-1359.
﹀
|
中图分类号: |
TG146
|
开放日期: |
2023-06-19
|