- 无标题文档
查看论文信息

论文中文题名:

 矿井煤层瓦斯预抽诱导钻孔周边煤体自燃的演化规律    

姓名:

 刘华    

学号:

 20220226159    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085224    

学科名称:

 工学 - 工程 - 安全工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 煤火灾害防治    

第一导师姓名:

 郭军    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-18    

论文答辩日期:

 2023-06-04    

论文外文题名:

 Evolution law of coal spontaneous combustion around the borehole induced by coal seam gas pre-drainage in mine    

论文中文关键词:

 煤自燃 ; 瓦斯抽采 ; 钻孔漏风 ; 灾害防治 ; 影响规律    

论文外文关键词:

 Coal spontaneous combustion ; Gas extraction ; Drilling air leakage ; Disaster prevention ; Influence law    

论文中文摘要:

为应对深部煤层瓦斯含量高、压力大、渗透性系数低等难题,常常采用增大抽采负压、减小钻孔间距、增透卸压等措施提高瓦斯抽采效率,然而,这些措施容易导致抽采过程中钻孔周边煤体出现漏风现象,从而导致钻孔周边煤体自燃。针对此类问题,本文以某矿215工作面为工程背景,结合理论、实验、现场综合研究方法,探究了预抽钻孔煤体漏风氧化规律,建立了瓦斯抽采诱导钻孔周边煤体自燃的数学模型,模拟分析了不同因素瓦斯抽采钻孔周边煤体的气体浓度和煤体自燃的影响因素,研究了矿井煤层瓦斯预抽诱导钻孔周边煤体自燃的演化规律。

(1)为了研究煤层瓦斯抽采过程中巷道及钻孔围岩裂隙的发育规律及漏风通道,通过理论分析、实验测试和现场试验相结合的方法,利用SAS-2000型多场耦合岩体动态扰动三轴流变实验系统对煤岩体进行单轴压缩实验,获得试验煤体的物理力学特性参数为COMSOL数值模拟提供依据;根据煤岩体损伤断裂力学理论基础,研究了瓦斯抽采钻孔周边煤岩体应力及裂隙发育规律,分析了瓦斯抽采条件下钻孔围岩的漏风途径;通过现场试验,通过SF6示踪气体对煤矿井下抽采钻孔进行漏风测定,分析了钻孔周边煤体的漏风规律,定性分析了钻孔周边漏风途径主要分为:巷道煤壁侧漏风、钻孔裂隙漏风及封孔段漏风;定量分析了抽采钻孔周边的最小漏风速率介于0.19~0.68 m/min之间,平均漏风速率为0.41 m/min,钻孔的漏风范围大于4.35 m。

(2)基于某矿215工作面现场情况,分析了影响瓦斯抽采与煤自燃的内、外在因素,确定了瓦斯抽采和煤体自燃的影响因素。通过煤氧化升温实验研究了煤自燃特性参数随风量的变化规律,得出了耗氧速率、CO产生率和放热强度随温度和风量变化的函数关系式,为研究数值模拟瓦斯抽采诱导煤自燃提供实验依据。

(3)运用COMSOL数值模拟软件,结合某矿215工作面煤层实际参数,通过数值模拟的方法,建立了瓦斯抽采诱导钻孔周边煤体自燃的数值模型,通过现场对试验钻孔内的CO体积分数和瓦斯抽采量进行监测,将其监测结果与模型钻孔监测点数据进行分析对比,从而验证了模型的准确性,揭示了不同抽采负压、封孔深度和抽采时间对钻孔周边煤体的氧体积分数、一氧化碳体积分数和温度场的影响规律。结果表明:抽采负压为13 kPa、封孔深度大于18 m时,可有效预防钻孔周边煤体自燃,为瓦斯抽采钻孔周边煤体自燃的防治提供理论指导。

论文外文摘要:

In order to deal with the problems of high gas content, high pressure, and low permeability coefficient in deep coal seams, measures such as increasing negative pressure in extraction, reducing borehole spacing, increasing permeability and pressure relief are often adopted to improve gas extraction efficiency. However, these measures are easy to as a result, air leakage occurs in the coal body around the drilling hole during the extraction process, which leads to spontaneous combustion of the coal body around the drilling hole. In view of such problems, this paper takes the 215 working face of a certain mine as the engineering background, combines theory, experiment and field comprehensive research methods, explores the law of air leakage and oxidation of coal in pre-drainage drilling, and establishes the gas drainage induced spontaneous combustion of coal around the drilling. The mathematical model was used to simulate and analyze the gas concentration and coal spontaneous combustion of different factors around the gas drainage borehole, and the evolution law of coal spontaneous combustion around the borehole induced by mine coal seam gas pre-drainage was studied.

In order to study the development law of roadway and surrounding rock fissures and air leakage channels in the process of coal seam gas drainage, through the combination of theoretical analysis, experimental test and field test, the SAS-2000 multi-field coupling rock mass dynamic The disturbed triaxial rheology experiment system conducts uniaxial compression experiments on coal and rock mass, and obtains the physical and mechanical characteristic parameters of the test coal mass to provide the basis for COMSOL numerical simulation; according to the theoretical basis of coal and rock mass damage and fracture mechanics, the gas drainage drilling The surrounding coal and rock mass stress and the development of cracks are analyzed, and the gas leakage path of the surrounding rock of the drilling is analyzed under the condition of gas drainage; through the field test, the gas leakage of the coal mine underground drainage drilling is measured by the SF6 tracer gas, and the drilling is analyzed. The law of air leakage in the surrounding coal body is analyzed qualitatively, and the air leakage paths around the borehole are mainly divided into: air leakage at the side of the coal wall of the roadway, air leakage in the borehole fissure, and air leakage in the sealing section; quantitative analysis is made on the minimum air leakage around the drainage borehole The velocity ranges from 0.19 to 0.68 m/min, the average air leakage rate is 0.41 m/min, and the air leakage range of the borehole is greater than 4.35 m.

Based on the site situation of 215 working face in a certain mine, the internal and external factors affecting gas drainage and coal spontaneous combustion were analyzed, and the influencing factors of gas drainage and coal spontaneous combustion were determined. Through the coal oxidation temperature rise experiment, the change rule of the coal spontaneous combustion characteristic parameters with the air volume was studied, and the functional relationship of the oxygen consumption rate, CO production rate and heat release intensity with the temperature and air volume were obtained, which was used to study the numerical simulation of gas drainage induction. Coal spontaneous combustion provides an experimental basis.

Using COMSOL numerical simulation software, combined with the actual parameters of the 215 working face coal seam in a mine, a numerical model of coal spontaneous combustion around the borehole induced by gas drainage was established by means of numerical simulation, and the volume fraction of CO in the test borehole and the The gas extraction volume was monitored, and the monitoring results were analyzed and compared with the data of the model borehole monitoring points, thereby verifying the accuracy of the model and revealing the impact of different drainage negative pressure, sealing depth and extraction time on the surrounding coal of the borehole. The influence law of oxygen volume fraction, carbon monoxide volume fraction and temperature field of body. The results show that when the drainage negative pressure is 13 kPa and the sealing depth is greater than 18 m, it can effectively prevent the coal spontaneous combustion around the drilling, and provide theoretical guidance for the prevention and treatment of the coal spontaneous combustion around the gas drainage drilling.

参考文献:

[1] 武强, 涂坤, 曾一凡, 等. 打造我国主体能源(煤炭)升级版面临的主要问题与对策探讨[J]. 煤炭学报, 2019,44(6):1625-1636.

[2] 闫浩, 张吉雄, 鞠杨, 等. 上保护层开采下充实率控制裂隙发育规律及瓦斯抽采研究[J]. 采矿与安全工程学报, 2018,35(6):1262-1268.

[3] 煤矿安全网. 事故快报[EB/OL].[2023-04-05]. https://www.mkaq.org/sggl/shigukb/.

[4] 范超军, 王一琦, 杨雷, 等. 2012-2021年我国煤矿安全事故统计与规律分析[J]. 矿业研究与开发, 2023,43(4):182-188.

[5] 王耀锋. 中国煤矿瓦斯抽采技术装备现状与展望[J]. 煤矿安全, 2020,51(10):67-77.

[6] Zhuo H, Qin B, Qin Q, et al. Modeling and simulation of coal spontaneous combustion in a gob of shallow buried coal seams[J]. Process Safety and Environmental Protection, 2019,131:246-254.

[7] 褚廷湘. 顶板巷瓦斯抽采诱导遗煤自燃机制及扰动效应研究[D]. 重庆:重庆大学, 2017.

[8] Onifade M, Genc B, Carpede A. A new apparatus to establish the spontaneous combustion propensity of coals and coal-shales[J]. International Journal of Mining Science and Technology, 2018,28(4):649-655.

[9] Kong X, Wang E, He X, et al. Mechanical characteristics and dynamic damage evolution mechanism of coal samples in compressive loading experiments[J]. Engineering Fracture Mechanics, 2019,210:160-169.

[10] Yao D, Jiang N, Wang X, et al. Mechanical behaviour and failure characteristics of rocks with composite defects of different angle fissures around hole[J]. Bulletin of Engineering Geology and the Environment, 2022,81(7):290.

[11] 来兴平, 方贤威, 单鹏飞, 等. 脆性孔洞煤样承载过程破坏模式及能量阶段蓄积释放规律分析[J]. 采矿与安全工程学报, 2021,38(5):1005-1014.

[12] Wang H, Tian H. Oblique Crack propagation of brittle rock under uniaxial compression and its influencing factors[J]. Wireless Communications and Mobile Computing, 2022,10: 1951885.

[13] Feng X, Hu Q, Ding Z, et al. Crack propagation and AE/EMR response characteristics of pre-holed coal specimens under uniaxial compression[J]. Sustainability, 2022,14(22): 15196.

[14] Jing C, Zhang L. Characterization of tensile crack propagation and energy evolution during the failure of coal-rock samples containing holes[J]. Sustainability, 2022,14(21):14279.

[15] 王磊, 陈礼鹏, 刘怀谦, 等. 不同初始瓦斯压力下煤体动力学特性及其劣化特征[J]. 岩土力学, 2023,44(1):144-158.

[16] Li G, Ma F, Guo J, et al. Experimental research on deformation failure process of roadway tunnel in fractured rock mass induced by mining excavation[J]. Environmental Earth Sciences, 2022,81(8):243.

[17] 武旭, 郭宇明, 孙景来, 等. 正交型裂隙岩石单轴压缩作用下的能量演化规律[J]. 地下空间与工程学报, 2021,17(S1):114-119.

[18] 李东文, 赵光明, 刘之喜, 等. 单轴压缩下岩石全应力应变过程中能量演化特征[J]. 煤矿安全, 2023,54(2):135-144.

[19] 杨小彬, 程虹铭, 裴艳宇. 不同加载方式下岩石变形及峰后能量演化特征研究[J]. 岩石力学与工程学报, 2020,39(S2):3229-3236.

[20] Zhang Z, Xie H, Zhang R, et al. Deformation damage and energy evolution characteristics of coal at different depths[J]. Rock Mechanics and Rock Engineering, 2019,52:1491-1503.

[21] Shang S, Zhang Q, Zhao Y, et al. Experimental research of the geo-stress evolution law and effect in the intact coal and gas outburst process[J]. Frontiers in Earth Science, 2023,10:1036165.

[22] 刘应科, 龙昭熹, 邓淇, 等. 煤体受载损伤过程能量演化规律与破坏特征试验[J]. 西安科技大学学报, 2023,43(1):65-72.

[23] Wang T, Kang Q, Zhang X, et al. Study on the influence of hole defects with different shapes on the mechanical behavior and damage law of coal and rock[J]. Plos one, 2022,17(3):e0265753.

[24] 孔凯, 尹大伟, 张虎, 等. 岩-煤组合体试样变形场与能量演化特征试验研究[J]. 山东科技大学学报(自然科学版), 2022,41(5):30-39.

[25] Tang Y, Okubo S, Xu J, et al. Progressive failure behaviors and crack evolution of rocks under triaxial compression by 3D digital image correlation[J]. Engineering geology, 2019,249:172-185.

[26] 乔元栋, 程虹铭. 基于COMSOL的顺层抽采钻孔漏气通及带压封孔技术研究[J]. 煤炭工程, 2019,51(7):114-119.

[27] Wang H, Wang E, Li Z, et al. Study on sealing effect of pre-drainage gas borehole in coal seam based on air-gas mixed flow coupling model[J]. Process Safety and Environmental Protection, 2020,136:15-27.

[28] Zhang Y, Zou Q, Guo L. Air-leakage model and sealing technique with sealing-isolation integration for gas-drainage boreholes in coal mines[J]. Process Safety and Environmental Protection, 2020,140:258-272.

[29] Zhao D, Pan J. Numerical simulation on reasonable hole-sealing depth of boreholes for gas extraction[J]. AIP Advances, 2018,8(4):045003.

[30] 王永龙, 王振锋, 孙玉宁, 等. 煤壁应力峰值动态移动诱发封孔漏气机理研究[J]. 安全与环境学报, 2016,16(5):129-134.

[31] 胡胜勇, 刘红威. 煤层瓦斯抽采钻孔漏气机理及应用研究进展[J]. 煤矿安全, 2016,47(5):170-173.

[32] 周福宝, 孙玉宁, 李海鉴, 等. 煤层瓦斯抽采钻孔密封理论模型与工程技术研究[J]. 中国矿业大学学报, 2016,45(3):433-439.

[33] Liu T, Lin B, Fu X, et al. Modeling air leakage around gas extraction boreholes in mining-disturbed coal seams[J]. Process Safety and Environmental Protection, 2020,141:202-214.

[34] Zhang J, Li B, Liu Y, et al. Dynamic multifield coupling model of gas drainage and a new remedy method for borehole leakage[J]. Acta Geotechnica, 2022,17(10):4699-4715.

[35] Wang Z, Hurter S, You Z, et al. Influences of negative pressure on air-leakage of coalseam gas extraction: Laboratory and CFD-DEM simulations[J]. Journal of Petroleum Science and Engineering, 2021,196:107731.

[36] 王宁, 张天军, 范京道, 等. 煤矿瓦斯抽采封孔质量检测技术与应用[J]. 煤炭技术, 2019,38(8):87-89.

[37] 王志明, 孙玉宁, 王永龙, 等. 瓦斯抽采钻孔动态漏气圈特性及漏气处置研究[J]. 中国安全生产科学技术, 2016,12(5):139-145.

[38] 文虎, 王文, 程小蛟, 等. 不同抽采条件对采空区煤自燃“三带”的影响研究[J]. 矿业安全与环保, 2020,47(6):1-7.

[39] 司俊鸿, 王乙桥, 程根银, 等. 沿空留巷采空区煤自燃堵漏控风机制数值模拟研究[J]. 矿业安全与环保, 2022,49(2):40-45+51.

[40] 姜亦武, 杨俊生, 赵鹏翔, 等. 倾斜高瓦斯煤层抽采条件下采空区漏风规律数值模拟[J]. 西安科技大学学报, 2021,41(1):46-54.

[41] Zhao Y, Qi Q, Jia X, et al. Numerical simulation of coal spontaneous combustion around a borehole induced by negative pressure gas drainage[J]. Geofluids, 2021,2021:1-11.

[42] Li J, Zhao Y, Du J. Prevention technology of coal spontaneous combustion induced by gas drainage in deep coal seam mining[J]. Fire, 2022,5(3):65.

[43] Wen H, Yu Z, Deng J, et al. Spontaneous ignition characteristics of coal in a large-scale furnace: An experimental and numerical investigation[J]. Applied Thermal Engineering, 2017,114:583-592.

[44] 慕兰兰, 传金平, 杨小彬, 等. 砚北煤矿特厚易自燃煤层邻近采空区瓦斯抽采与煤自燃耦合研究[J]. 矿业安全与环保, 2023,50(1):25-36.

[45] 贾廷贵, 娄和壮, 刘剑, 等. 综放采空区瓦斯与煤自燃多场耦合模拟研究[J]. 中国安全生产科学技术, 2019,15(9):88-93.

[46] Lu Y, Gu W, Wang G, et al. Numerical assessment of the influences of the coal spontaneous combustion on gas drainage methods optimization and its application[J]. Combustion Science and Technology, 2021,193(12):2158-2174.

[47] Zheng Y, Li Q, Zhu P, et al. Study on multi-field evolution and influencing factors of coal spontaneous combustion in goaf[J]. Combustion Science and Technology, 2023,195(2): 247-264.

[48] Gui X, Xue H, Zhan X, et al. Measurement and numerical simulation of coal spontaneous combustion in goaf under Y-type ventilation mode[J]. ACS omega, 2022,7(11):9406-9421.

[49] Lei C, Jiang L, Bao R, et al. Study on multifield migration and evolution law of the oxidation heating process of coal spontaneous combustion in dynamic goaf[J]. ACS Omega, 2023,10:3c01107.

[50] 宋博, 王大鹏, 李雨成, 等. 基于不同漏风源浅埋煤层采空区自燃“三带”分布规律研究[J]. 中国安全生产科学技术, 2022,18(6):38-44.

[51] 牛阔, 杜文州, 王厚旺, 等. 基于采空区流场的遗煤自燃危险区域判定及复合惰化技术研究[J]. 矿业安全与环保, 2021,48(1):23-27.

[52] 徐宇, 李孜军, 翟小伟, 等. 开采过程中采空区煤自燃与瓦斯复合致灾隐患区域研究[J]. 煤炭学报, 2019,44(S2):585-592.

[53] Xie S, Wang G, Wang E, et al. Determination of hazardous zone of coal spontaneous combustion in ultra-long working face based on the gob porosity evolution and flow field distribution[J]. Applied Sciences, 2023,13(7):4574.

[54] 邢震. 高瓦斯矿井采空区瓦斯与煤自燃耦合规律研究[J]. 工矿自动化, 2020,46(3):6-11+20.

[55] 杜瀚林, 于贵生. 高瓦斯易自燃煤层高抽巷瓦斯抽采与浮煤自燃耦合研究[J]. 煤矿安全, 2019,50(12):163-169.

[56] Zhang C, Jiao D, Zhang M, et al. Study on multipoint and zoning coordinated prevention of gas and coal spontaneous combustion in highly gassy and spontaneous combustion-prone coal seam[J]. ACS omega, 2022,7(20):17305-17329.

[57] 赵奇, 王雪峰, 黄戈, 等. 采空区瓦斯抽采技术与浮煤自燃耦合治理研究[J]. 煤炭科学技术, 2017,45(10):111-116.

[58] Gao K, Qi Z, Jia J, et al. Investigation of coupled control of gas accumulation and spontaneous combustion in the goaf of coal mine[J]. AIP Advances, 2020,10(4):045314.

[59] Zou J, Zhang R, Zhou F, et al. Hazardous area reconstruction and law analysis of coal spontaneous combustion and gas coupling disasters in goaf based on DEM-CFD[J]. Acs Omega, 2023,10:2c07236.

[60] 余明高, 赵志军, 褚廷湘, 等. 瓦斯抽采对采空区浮煤自燃影响及防治措施[J]. 河南理工大学学报(自然科学版), 2011,30(5):505-509.

[61] 范加锋. 低位巷瓦斯抽采条件下采空区遗煤自燃规律研究[J]. 工矿自动化, 2023,49(2):102-108+124.

[62] 周西华, 李昂, 白刚, 等. 综放工作面采空区瓦斯抽采对氧化升温带影响[J]. 辽宁工程技术大学学报(自然科学版), 2017,36(9):897-902.

[63] 张俭让, 陈伟, 张荃. 高抽巷瓦斯抽采对工作面安全开采的影响分析[J]. 西安科技大学学报, 2016,36(1):13-18.

[64] 褚廷湘, 姜德义, 余明高, 等. 顶板巷瓦斯抽采诱导煤自燃机制及安全抽采量研究[J]. 煤炭学报, 2016,41(7):1701-1710.

[65] 宋志刚, 张永明. 瓦斯抽采下采空区自然发火监测分析[J]. 煤矿安全, 2016,47(11):190-192.

[66] 杜瀚林, 于贵生. 高瓦斯易自燃煤层高抽巷瓦斯抽采与浮煤自燃耦合研究[J]. 煤矿安全, 2019,50(12):163-169.

[67] Taraba B, Michalec Z. Effect of longwall face advance rate on spontaneous heating process in the gob Area-CFD modelling[J]. Fuel, 2011,90(8):2790-2797.

[68] Xia T, Zhou F, Liu J, et al. A fully coupled hydro-thermo-mechanical model for the spontaneous combustion of underground coal seams[J]. Fuel, 2014,125:106-115.

[69] Liang Y, Zhou R. Numerical simulation of coupled thermal-hydrological-mechanical-chemical processes in the spontaneous combustion of underground coal seams[J]. Geofluids, 2021,10:9572502.

[70] Shi G Q, Liu M, Wang Y M, et al. Computational fluid dynamics simulation of oxygen seepage in coal mine goaf with gas drainage[J]. Mathematical Problems in Engineering, 2015,10:723764.

[71] 程志恒, 卢云, 李海涛, 等. 高位钻孔不同封孔方法质量检测及其优选[J]. 中国安全生产科学技术, 2020,16(6):61-67.

[72] 张天军, 宋爽, 李树刚, 等. 瓦斯抽采钻孔封孔质量检测技术与应用[J]. 西安科技大学学报, 2017,37(5):623-629.

[73] 齐庆杰, 赵尤信, 贾新雷, 等. 深部煤层抽采钻孔自然发火原因分析与防治[J]. 中国安全科学学报, 2019,29(1):37-42.

[74] Jia X, Qi Q, Zhao Y, et al. Determination of the Spontaneous combustion hazardous zone and analysis of influencing factors in bedding boreholes of a deep coal seam[J]. ACS omega, 2021,6(12):8418-8429.

[75] Zou Q, Lin B, Zheng C, et al. Novel integrated techniques of drilling-slotting-separation-sealing for enhanced coal bed methane recovery in underground coal mines[J]. Journal of Natural Gas Science and Engineering, 2015,26:960-973.

[76] 徐精彩. 煤自燃危险区域判定理论[M]. 煤炭工业出版社, 2001.

[77] 赵阳升, 胡耀青. 孔隙瓦斯作用下煤体有效应力规律的实验研究[J]. 岩土工程学报, 1995(3):26-31.

[78] 张玉莹. 钻孔瓦斯抽采有效半径的数值模拟研究[D]. 河南:河南理工大学, 2015.

[79] 范亚飞. 顺层钻孔瓦斯抽采有效半径测定方法及布孔参数优化研究[D]. 西安:西安科技大学, 2019.

[80] 张俊伟. 瓦斯抽采钻孔漏气对抽采效果的影响研究[D]. 河南:河南理工大学, 2018.

[81] 贾新雷. 钻孔瓦斯抽釆引发煤层自燃影响机制及预防技术研究[D]. 辽宁:辽宁工程技术大学, 2022.

[82] 赵尤信. 深部煤层顺层瓦斯抽采诱发煤体自燃规律及预防技术研究[D]. 辽宁:辽宁工程技术大学, 2019.

中图分类号:

 TD752    

开放日期:

 2023-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式