- 无标题文档
查看论文信息

论文中文题名:

 梁桥结构中屈曲约束支撑多级抗震机理研究    

姓名:

 朱诗敏    

学号:

 18204059039    

保密级别:

 保密(2年后开放)    

论文语种:

 chi    

学科代码:

 081406    

学科名称:

 工学 - 土木工程 - 桥梁与隧道工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 桥梁与隧道工程    

研究方向:

 桥梁抗震理论与减隔震技术    

第一导师姓名:

 刘群峰    

第一导师单位:

  西安科技大学    

论文提交日期:

 2021-06-16    

论文答辩日期:

 2021-05-29    

论文外文题名:

 Study on Multi-level Seismic Mechanism of Buckling Restrained Braces in Beam Bridge Structure    

论文中文关键词:

 多级抗震机理 ; 梁桥结构 ; 屈曲约束支撑 ; 粘滞阻尼器 ; 参数分析    

论文外文关键词:

 Multi-level seismic mechanism ; Beam bridge structures ; Buckling restrained braces ; Fluid viscous damper ; Parametric study    

论文中文摘要:

       由支座支撑的城市梁桥上部结构在强震作用下会发生较大的水平位移。为减小地震作用下主梁漂移,实现多级抗震目标,本文提出两种组合减震措施:流体粘滞阻尼器(FVD)联合板式橡胶支座(RB)减震措施,屈曲约束支撑(BRB)联合铅芯橡胶支座(LRB)多级减震措施。本研究以一座Y型墩人行钢结构连续梁桥(20m+30m+20m)为工程背景,利用OpenSees软件建立全桥模型并进行动力学分析,研究两种组合减震措施在梁桥结构中的多级抗震机理,并基于抗震机理进行了粘滞阻尼器和屈曲约束支撑的参数优化分析。主要研究内容如下:

(1)采用非线性时程分析研究粘滞阻尼器联合板式橡胶支座减震措施在梁桥结构中的多级抗震机理,提出粘滞阻尼器在不同桥宽和地震频率下的优化设计建议。研究发现,在支座支撑梁桥的墩梁之间安装粘滞阻尼器可显著降低上部结构的水平位移和支座剪切需求。进一步参数分析表明,采用适当的阻尼系数和速度指数,可以使得安装粘滞阻尼器梁桥的动力学响应对地震动特征周期不敏感。

(2)提出一种屈曲约束支撑联合铅芯橡胶支座的抗震措施,采用非线性时程分析研究其在梁桥结构中的多级抗震机理。研究发现,增加屈曲约束支撑核心区面积可显著降低主梁的水平位移和支座剪切需求,但同时也增加了桥墩的内力和位移响应。设置间隙可有效降低墩底内力和墩顶位移响应,但是会增加主梁位移和支座剪切需求。

(3)对比研究铅芯橡胶支座、屈曲约束支撑及其组合减震措施下的桥梁动力学响应,提出组合减震措施在近、远断层地震动作用下的性能优化措施。对桥墩内力、位移响应及其损伤概率等主要性能的研究表明:经过参数优化设计的屈曲约束支撑和铅芯橡胶支座的组合减震措施,既可降低主梁位移和支座的剪切需求,又可减低桥墩内力和墩顶位移。该组合减震措施适应于城市钢结构梁桥的多级抗震设防目标,具备向工程实际推广的潜力。

论文外文摘要:

     The upper structure of the urban girder bridge supported by the bearings has a large horizontal displacement under strong earthquakes. In order to reduce the drift of the girder under the earthquakes and achieve the goal of multi-level earthquake resistance, this paper proposes two composite damping measures: one is fluid viscous dampers (FVD) working with plate rubber bearing (RB), the other is buckling restrained braces (BRB) working with lead rubber bearing (LRB). This research studies the pedestrian bridge with spans(20 m + 30 m + 20 m), which is a steel structure supported by Y-shaped pier. Aiming at studying the multi-level seismic mechanism of two damping measures in bridge structure, we use OpenSees to establish the bridge model and analyse dynamic characters. Based on the above mechanism, the parameter optimization analysis of viscous damper and buckling restrained braces is carried out. The main research contents are as follows:

(1) The multi-level seismic mechanism of viscous dampers combined with plate rubber bearing damping measures in the beam bridge structure is studied by the non-linear time history analysis method, and the optimal design of viscous dampers under different bridge widths and seismic frequencies is proposed. The study found that installing viscous dampers between the piers and beams of the bearing-supported beam bridge can significantly reduce the horizontal drift of the superstructure and the need for bearing shear. Further parameter analysis shows that the dynamic response of the beam bridge with viscous damper can be insensitive to the characteristic period of ground motion by using appropriate damping coefficients and velocity exponents.

(2) ‘BRB + LRB’ is proposed for seismic resistance, and its multi-level seismic mechanism in the bridge structure is studied by way of the nonlinear time history method. The study found that increasing the core area of buckling restrained braces can significantly reduce the horizontal displacement of the girder and the shear demand of the bearing, but it also increases the internal force and displacement response of the pier. Although setting the gap can effectively reduce the internal force of the pier bottom and the displacement response of the pier top, it will increase the displacement of girder and the shear demand of bearing.

(3) This study contrasts the dynamic response of the bridge under the lead rubber bearing, buckling restrained braces and their composite damping measures and puts forward a optimization method of performance of the composite damping measures under the action of near and far fault ground motions. The research on the main performance of the pier's internal force, displacement response and its damage probability shows that parameter optimization design and the composite damping measures of ‘BRB + LRB’ not only reduce the horizontal displacement of girder and the shear demand of bearing, but also decrease internal force of the pier bottom and the displacement response of the pier top. The composite seismic reduction measure applies to the multi-level seismic fortification targets of urban steel bridges, and has potential to be popularized in the actual projects.

参考文献:

[1] Toru T. Buckling-Restrained Brace: History, Design and Applications[J]. Key Engineering Materials, 2018, 763: 50-60.

[2] Corte G D, D’aniello M, Landolfo R, et al. Review of steel buckling-restrained braces[J]. Steel Construction, 2011.

[3] Sarno L D, Manfredi G. Experimental tests on full‐scale RC unretrofitted frame and retrofitted with buckling‐restrained braces[J]. Earthquake Engineering Structural Dynamics, 2012, 41(2).

[4] 孙得璋, 张昊宇, 李思汉, 等. 一种多级耗能复合型防屈曲支撑[P]. 中国:CN201920502483.3, 2019.04.12.

[5] 杜永峰, 郑辉. 连梁软钢阻尼器设计及其多级耗能的实现[J]. 湖南科技大学学报(自然科学版), 2019, 34(04): 50-57.

[6] 周云, 商城豪, 张超. 消能减震技术研究与应用进展[J]. 建筑结构, 2019, 49(19): 33-48.

[7] 周云. 防屈曲耗能支撑结构设计与应用[M]. 北京: 中国建筑工业出版社, 2007.

[8] Priestley M J N. Performance Based Seismic Design[J]. Bulletin of the New Zealand Society for Earthquake Engineering, 2000, 33(3): 2483-2493(11).

[9] Hamburger R, Rojahn C, Moehle J, et al. The ATC-58 Project: Development of Next-Generation Performance-Based Earthquake Engineering Design Criteria for Buildings[C]. World Conference on Earthquake Engineering, 2004.

[10] Lehman D, Moehle J, Mahin S, et al. Experimental Evaluation of the Seismic Performance of Reinforced Concrete Bridge Columns[J]. Journal of Structural Engineering, 2004, 130(6): 869-879.

[11] Ghobarah A. Performance-based design in earthquake engineering: State of development[J]. Engineering Structures, 2001, 23(8): 878-884.

[12] 王焕定, 赵桂峰. 多级变刚度耗能减震体系的研究[J]. 哈尔滨工业大学学报, 2003(02): 234-237.

[13] 许文俊. 基于多级限位耗能装置的新型结构体系抗震性能分析[D]. 大连理工大学, 2011.

[14] 陈云, 陈超, 刘涛, 等. 分级屈服型金属阻尼器减震性能分析[J]. 地震工程与工程振动, 2018, 38(04): 85-92.

[15] Li G Q, Sun Y Z, Jiang J, et al. Experimental study on two-level yielding buckling-restrained braces[J]. Journal of Constructional Steel Research, 2019, 159: 260-269.

[16] Cao S, Ozbulut O E, Wu S, et al. Multi-level SMA/lead rubber bearing isolation system for seismic protection of bridges[J]. Smart Materials and Structures, 2020, 29(5): 055045.

[17] 任文杰, 牛杰, 何小林. 新型自复位变摩擦阻尼器力学性能研究[J]. 工程抗震与加固改造, 2017, 39(02): 136-142+135.

[18] 袁万城, 曹新建, 荣肇骏. 拉索减震支座的开发与试验研究[J]. 哈尔滨工程大学学报, 2010, 31(12): 1593-1600.

[19] 彭天波, 于训涛, 王立志, 等. 多道防线抗震球型钢支座的开发和试验[J]. 同济大学学报(自然科学版), 2012, 40(07): 992-995.

[20] Jinkoo K, Hyungjun S. Seismic loss assessment of a structure retrofitted with slit-friction hybrid dampers[J]. Engineering Structures, 2016, 130: 336-350.

[21] Lee J, Kang H, Kim J. Seismic performance of steel plate slit-friction hybrid dampers[J]. Journal of Constructional Steel Research, 2017, 136: 128-139.

[22] 王剑明, 伍大成, 赵鹏贤, 等. 桥梁分级减震支座抗震性能分析[J]. 交通科技, 2019(06): 68-71.

[23] Lee C-H, Kim J, Kim D-H, et al. Numerical and experimental analysis of combined behavior of shear-type friction damper and non-uniform strip damper for multi-level seismic protection[J]. Engineering Structures, 2016, 114.

[24] Do-Hyun K, K. J Y, Myeong-Han K, et al. Wind-induced vibration control of tall buildings using hybrid buckling-restrained braces[J]. The Structural Design of Tall Special Buildings, 2012, 23(7): 549-562.

[25] Marshall J D, Charney F A. A hybrid passive control device for steel structures, II: Physical testing[J]. Journal of Constructional Steel Research, 2010, 66(10).

[26] E. I Y, Justin M, A. C F. A visco-plastic device for seismic protection of structures[J]. Journal of Constructional Steel Research, 2007, 63: 1515-1528.

[27] Ranaei O, Aghakouchak A A. A new hybrid energy dissipation system with viscoelastic and flexural yielding strips dampers for multi-level vibration control[J]. Archives of Civil Mechanical Engineering, 2019, 19(2): 584-597.

[28] Karavasilis T L, Sause R, Ricles J M. Seismic design and evaluation of steel moment‐resisting frames with compressed elastomer dampers[J]. Earthquake Engineering and Structural Dynamics, 2012, 41(3): 411-429.

[29] Shen C. Cyclic Behavior of Structural Steels. II: Theory[J]. Journal of Engineering Mechanics, 1995.

[30] 汪家铭, 中岛正爱, 陆烨. 屈曲约束支撑体系的应用与研究进展(Ⅰ)[J]. 建筑钢结构进展, 2005(01): 1-12.

[31] 郭彦林, 童精中, 周鹏. 防屈曲支撑的型式、设计理论与应用研究进展[J]. 工程力学, 2016, 33(09): 1-14.

[32] Tsai K C, Hsiao P C. Pseudo‐dynamic test of a full‐scale CFT/BRB frame—Part II: Seismic performance of buckling‐restrained braces and connections[J]. Earthquake Engineering & Structural Dynamics, 2008, 37(7): 1099-1115.

[33] 罗开海, 孔祥雄, 程绍革. 一种新型屈曲约束支撑的研制与试验研究[J]. 建筑结构, 2010, 40(10): 1-6.

[34] 赵俊贤, 吴斌, 欧进萍. 新型全钢防屈曲支撑的拟静力滞回性能试验[J]. 土木工程学报, 2011, 44(04): 60-70.

[35] Guo Y L, Zhou P, Wang M Z, et al. Experimental and numerical studies of hysteretic response of triple-truss-confined buckling-restrained braces[J]. Engineering Structures, 2017, 148: 157-174.

[36] Sarno L D, Manfredi G. Seismic retrofitting with buckling restrained braces: Application to an existing non-ductile RC framed building[J]. Soil Dynamics & Earthquake Engineering, 2010, 30(11): 1279-1297.

[37] Celik O C, Bruneau M. Seismic behavior of bidirectional-resistant ductile end diaphragms with buckling restrained braces in straight steel bridges[J]. Engineering Structures, 2009, 31(2): 380-393.

[38] Celik O C, Bruneau M. Skewed Slab-on-Girder Steel Bridge Superstructures with Bidirectional-Ductile End Diaphragms[J]. Journal of Bridge Engineering, 2011, 16(2): 207-218.

[39] Wei X, Bruneau M. Analytical investigation of Buckling Restrained Braces' applications in bidirectional ductile end diaphragms for seismic performance of slab-on-girder bridge[J]. Engineering Structures, 2017, 141: 634-650.

[40] Wei X, Bruneau M. Analytical investigation of bidirectional ductile diaphragms in multi-span bridges[J]. Earthquake Engineering and Engineering Vibration, 2018, 17(2): 235-250.

[41] Bazaez R, Dusicka P. Design Implementation of Buckling Restrained Braces for Seismic Retrofitting of Reinforced Concrete Multi-Column Bridge Bents[C]. Structures Congress 2015, 2015: 485-496.

[42] Sosorburam P, Yamaguchi E. Seismic Retrofit of Steel Truss Bridge Using Buckling Restrained Damper[J]. Applied Sciences, 2019, 9(14): 2791.

[43] Guo W, Li J, Xiang N. Seismic Performance of the Buckling-Restrained Brace Central Buckle for Long-Span Suspension Bridges[J]. Journal of Earthquake and Tsunami, 2018, 12(05).

[44] 周锡元, 李中锡. 规则型隔震桥梁结构的简化分析方法[J]. 土木工程学报, 2001(03): 53-58+66.

[45] 徐略勤, 傅沛瑶, 李建中, 等. 板式橡胶支座梁桥的典型横向震害及其影响因素分析[J]. 振动与冲击, 2020, 39(02): 209-217.

[46] 龚恋, 徐略勤, 李建中, 等. 近场地震下采用板式橡胶支座的简支梁桥横向位移控制[J]. 结构工程师, 2018, 34(02): 70-78.

[47] 贾毅, 赵人达, 王永宝, 等. 多跨长联连续梁桥粘滞阻尼器参数敏感性分析[J]. 吉林大学学报(工学版), 2019, 49(06): 1871-1883.

[48] 史俊, 徐略勤, 鲁小罗. 设置黏滞阻尼器的纵飘斜拉桥地震响应简化分析方法[J]. 应用数学和力学, 2019, 40(12): 1335-1344.

[49] Nagarajaiah S, Sun X. Base-Isolated FCC Building: Impact Response in Northridge Earthquake[J]. Journal of Structural Engineering, 2001, 127(9): 1063-1075.

[50] 中华人民共和国交通运输部. 公路桥梁抗震设计规范. JTG/T 2231-01—2020. 北京: 中华人民共和国交通运输部, 2020.

[51] 石岩, 王东升, 韩建平. 设置BRB桥梁排架墩基于位移抗震设计方法 [J]. 土木工程学报, 2017, 50(07): 62-68+128.

[52] Wu B, Mei Y. Buckling mechanism of steel core of buckling-restrained braces[J]. Journal of Constructional Steel Research, 2015, 107: 61-69.

[53] Zona A, Dall'asta A. Elastoplastic model for steel buckling-restrained braces [J]. Journal of Constructional Steel Research, 2011, 68(1).

[54] Karavasilis T L, Kerawala S, Hale E. Hysteretic model for steel energy dissipation devices and evaluation of a minimal-damage seismic design approach for steel buildings[J]. Journal of Constructional Steel Research, 2012, 70: 358-367.

[55] Vigh L G, Zsarnoczay A, Balogh T. Eurocode conforming design of BRBF – Part I: Proposal for codification[J]. Journal of Constructional Steel Research, 2017, 135: 265-276.

[56] Dicleli M. Performance of seismic‐isolated bridges with and without elastic‐gap devices in near‐fault zones[J]. Earthquake Engineering and Structural Dynamics, 2010, 37(6): 935-954.

[57] 中华人民共和国交通运输部. 公路桥梁板式橡胶支座. JT/T 4-2019. 北京: 中华人民共和国交通运输部, 2019.

[58] Hameed A, Koo M S, Do T D, et al. Effect of Lead Rubber Bearing Characteristics on the Response of Seismic-isolated Bridges[J]. KSCE Journal of Civil Engineering, 2008, 12(3): 187-196.

[59] D., Lungu, F., et al. Correlations Between Frequency Content Indicators of Strong Ground Motions and PGV[J]. Journal of earthquake engineering, 2013, 17(3/4): 543-559.

[60] M. R E, Fadi F, Stephanie R, et al. Empirical Relationships for Frequency Content Parameters of Earthquake Ground Motions[J]. Earthquake Spectra, 2004, 20(1): 119-144.

[61] K. C A. 结构动力学:理论及其在地震工程中的应用[M]. 高等教育出版社, 2016.

[62] Dicleli M, Mehta A. Seismic performance of chevron braced steel frames with and without viscous fluid dampers as a function of ground motion and damper characteristics[J]. Steel Construction, 2008, 63(8): 1102-1115.

[63] Dicleli M, Buddaram S. Effect of isolator and ground motion characteristics on the performance of seismic‐isolated bridges[J]. Earthquake Engineering Structural Dynamics, 2010, 35(2): 233-250.

[64] Liang Q Q, Fragomeni S. Nonlinear analysis of circular concrete-filled steel tubular short columns under axial loading[J]. Journal of Constructional Steel Research, 2009, 66(12): 159-169.

[65] Susantha K a S, Ge H, Usami T. Uniaxial stress–strain relationship of concrete confined by various shaped steel tubes[J]. Engineering Structures, 2001, 23(10): 1331-1347.

[66] 中华人民共和国交通运输部. 公路桥梁铅芯隔震橡胶支座. JT / T 822-2011. 北京: 中华人民共和国交通运输部, 2011.

[67] Mazza F. Seismic demand of base-isolated irregular structures subjected to pulse-type earthquakes[J]. Soil Dynamics and Earthquake Engineering, 2018, 108.

[68] Fema. Quantification of building seismic performance factors[R]. FEMA P695, Washington, D.C.: Applied Technology Council Federal Emergency Management Agency, 2009.

[69] Atik L A, Abrahamson R. An Improved Method for Nonstationary Spectral Matching[J]. Earthquake Spectra, 2010, 26(3): 601-617.

[70] Nielson B G. Analytical fragility curves for highway bridges in moderate seismic zones[D]. Georgia Institute of Technology, 2005: 400.

[71] Jian Z, Yili H. Evaluating effectiveness and optimum design of isolation devices for highway bridges using the fragility function method[J]. Engineering Structures, 2009, 31(8).

[72] 吴文朋, 李立峰. 桥梁结构系统地震易损性分析方法研究[J]. 振动与冲击, 2018, 37(21): 273-280.

[73] E. J, Padgett, G. B, et al. Selection of optimal intensity measures in probabilistic seismic demand models of highway bridge portfolios[J]. Earthquake Engineering & Structural Dynamics, 2008, 37(5): 711-725.

[74] Xiang N, Alam M S. Displacement-based seismic design of bridge bents retrofitted with various bracing devices and their seismic fragility assessment under near-fault and far-field ground motions[J]. Soil Dynamics and Earthquake Engineering, 2019, 119.

中图分类号:

 U442.55    

开放日期:

 2023-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式