- 无标题文档
查看论文信息

论文中文题名:

 C3HF7/N2/CO2抑制氢气爆炸特性及 作用机理研究    

姓名:

 梁鹤    

学号:

 19220089043    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 083700    

学科名称:

 工学 - 安全科学与工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 气体与粉尘燃爆防控    

第一导师姓名:

 罗振敏    

第一导师单位:

 西安科技大学    

第二导师姓名:

 王涛    

论文提交日期:

 2022-06-10    

论文答辩日期:

 2022-05-30    

论文外文题名:

 Study on the characteristics and mechanism of hydrogen explosion inhibition by C3HF7/N2/CO2    

论文中文关键词:

 氢气爆炸 ; 爆炸时间参数 ; 临界抑爆浓度 ; 绝热火焰温度 ; 自由基    

论文外文关键词:

 Hydrogen explosion ; Deflagration time parameters ; Critical detonation suppression concentration ; Adiabatic flame temperature ; Free radicals    

论文中文摘要:

近年来,随着世界能源结构变革,出现了以清洁低碳能源为特征的新一轮能源转型,氢能源作为21世纪最有前景替代传统化石燃料的新能源,在世界能源结构变革过程中扮演着枢纽和载体的角色,其需求不断增长。然而氢气具有爆炸极限范围宽、火焰温度高和速度快等特质,失控条件下极易酿成火灾爆炸事故,导致严重后果。本文选取七氟丙烷、二氧化碳和氮气作为抑制剂,利用20L球形密闭爆炸装置,研究了单组份抑制剂以及七氟丙烷-二氧化碳复配抑制剂对氢气爆炸压力和时间参数的影响。同时,基于化学反应动力学计算,得到了氢气抑爆过程中体系热力学及化学动力学参数变化规律,揭示了七氟丙烷和二氧化碳抑制氢气爆炸作用机理。研究成果可为高效的氢气抑爆剂的研发提供理论基础,对提升氢气燃爆灾害防控技术水平具有重要的现实意义。主要成果如下:

(1) 得到了C3HF7、惰性气体(N2、CO2)抑制氢气爆炸压力特征及临界参数的规律。惰性气体(N2、CO2)单独作用时,随着惰性气体体积分数的增加,氢气爆炸压力降低,氢气爆炸时间参数增大。相比于贫燃状态,惰性气体对化学计量比和富燃状态下的氢气爆炸压力参数和爆炸时间参数的影响更加显著。且添加CO2时抑制效果优于添加N2时。C3HF7单独作用下,处于贫燃状态且体积分数较小时,增大了氢气爆炸压力呈现出促爆效应;当C3HF7体积分数较大时,呈现出抑制作用,氢气的爆炸压力降低。当处于化学计量比和富燃条件时,氢气爆炸压力随C3HF7体积分数的增大而降低。氢气爆炸的时间参数随着C3HF7体积分数的增大,均呈抛物线增大趋势,其变化规律与化学计量比和C3HF7浓度无关。临界抑爆浓度C3HF722,以φ=0.6为例,CO2和N2单独作用时其临界抑爆浓度分别为C3HF7的3.31倍、3.92倍。

(2) 揭示了C3HF7-CO2复配抑爆剂影响氢气爆炸的作用规律。当处于贫燃条件且添加复配抑爆剂(C3HF7-CO2复配比为7:3和5:5)体积分数较低时,抑爆剂增大了氢气最大爆炸压力,呈现出促爆效应。随着复配抑爆剂中CO2比例的增大,其促爆效应明显减弱。当处于化学计量比和富燃条件时,氢气最大爆炸压力上升速率均随着复配抑爆剂体积分数的增加而降低。氢气爆炸时间参数均随着复配抑爆剂体积分数的增加呈抛物线增大趋势,且随着复配抑爆剂中CO2比例的增大其增大幅度逐渐降低。当C3HF7与CO2复配作用时,C3HF7的加入增强了CO2单独作用时的抑爆效果,同时CO2的存在降低了C3HF7在贫燃条件下的促爆效应,提升了抑爆剂使用的安全性。

(3) 揭示了抑爆剂对氢气爆炸的详细抑制机理。在贫燃条件时,添加C3F7H抑爆剂体积分数较小时表现为促爆效应,究其原因是由于C3HF7热解生成的含氟自由基参与反应,增大了热释放速率,混合可燃气体的峰值绝热火焰温度升高,释放出的额外热量增大了爆炸压力。随着C3HF7抑爆剂体积分数的增大,抑爆剂对火焰的作用效果表现为抑制作用,降低了峰值绝热火焰温度。C3HF7-CO2复配抑爆剂与C3HF7单独作用相比降低了峰值绝热火焰温度。在化学计量比和富燃条件下,C3HF7单独作用及与CO2复配作用时绝热火焰温度均呈线性降低趋势,随着复配抑爆剂中CO2所占比例的增大,其对峰值绝热火焰温度的抑制作用降低。化学抑制方面,由敏感性分析可得,生成H、OH及O自由基的链分支反应是促进质量燃烧速率增大的主要基元反应。随着抑爆剂浓度的增大,含氟基元反应对质量燃烧速率影响的敏感性系数逐渐提高,含氟自由基大量捕获H、OH及O自由基生成相对稳定的HF等产物,中断链式反应抑制了爆炸。

论文外文摘要:

In recent years, with the reform of the world energy structure, there has been a new round of energy transformation characterized by clean and low-carbon energy. Hydrogen energy is the most promising new energy to replace traditional fossil fuels in the 21st century. it plays the role of hub and carrier in the process of world energy structure reform, and its demand is increasing. However, hydrogen has the characteristics of wide explosion limit range, high flame temperature and fast speed, which can easily lead to fire and explosion accidents under the condition of out of control, resulting in serious consequences. In this paper, using heptafluoropropane, carbon dioxide and nitrogen as inhibitors, using a 20L spherical closed explosive device, the effects of one-component inhibitors and heptafluoropropane-carbon dioxide compound inhibitors on hydrogen explosion pressure and time parameters were studied. At the same time, based on the calculation of chemical reaction kinetics, the changing rules of thermodynamic and chemical kinetic parameters in the process of hydrogen explosion suppression were obtained, and the mechanism of hydrogen explosion inhibition by heptafluoropropane and carbon dioxide was revealed. The research results can provide a theoretical basis for the research and development of efficient hydrogen explosion suppressants, and have important practical significance to improve the technical level of hydrogen explosion disaster prevention and control. The main results are as follows:

(1) The characteristics and critical parameters of C3HF7, inert gas (N2, CO2) suppressing hydrogen explosion pressure are obtained. When the inert gas (N2, CO2) acts alone, the hydrogen explosion pressure decreases and the hydrogen explosion time parameter increases with the increase of the inert gas volume fraction. Compared with lean state, the influence of inert gas on the explosion pressure parameters and explosion time parameters of hydrogen in stoichiometric ratio and rich state is more significant. The inhibitory effect was higher when CO2 was added at the same time than when N2 was added. When C3HF7 acts alone, in a lean combustion state and the volume fraction is small, the explosion pressure of hydrogen increases, which is a pro-detonation effect; when the volume fraction of C3HF7 is large, the explosion pressure of hydrogen is inhibited. When in stoichiometric and rich conditions, the explosion pressure of hydrogen decreases with the increase of the volume fraction of C3HF7. With the increase of the volume fraction of C3HF7, the time parameters of hydrogen explosion all show a parabolic increase trend, and the change rule has nothing to do with the equivalence ratio and the concentration of C3HF7. The critical explosion suppression concentration is C3HF722. Taking φ=0.6 as an example, when CO2 and N2 act alone, the critical explosion suppression concentration is 3.31 times and 3.92 times that of C3HF7, respectively.

(2) The effect of C3HF7 and CO2 compound detonation inhibitor on hydrogen explosion was revealed. When in lean combustion conditions and the volume fraction of the compounded detonation inhibitor is low, and the compound ratio of C3HF7 and CO2 is 7:3 and 5:5, the detonation inhibitor increases the maximum explosion pressure of hydrogen, showing the detonation-promoting effect. With the increase of the proportion of CO2 in the compound detonation inhibitor, its detonation promoting effect is obviously weakened. Under the conditions of stoichiometric ratio and rich combustion, the increase rate of the maximum explosion pressure of hydrogen explosion decreased with the increase of the volume fraction of the compound explosion suppressor. The hydrogen explosion time parameters showed a parabolic increase trend with the increase of the volume fraction of the compound detonation inhibitor, and the increase rate gradually decreased with the increase of the CO2 ratio in the compound detonation inhibitor. When C3HF7 is combined with CO2, the addition of C3HF7 enhances the detonation suppression effect of CO2 alone, while the presence of inert gas will reduce the detonation promotion effect of C3HF7 under lean combustion conditions, and improve the safety of detonation suppressants. sex.

(3) The detailed inhibition mechanism of detonation inhibitor on hydrogen explosion was revealed. Under lean combustion conditions, the addition of C3F7H detonation inhibitor shows the effect of promoting detonation when the volume fraction is small. The reason is that the fluorine-containing radicals generated by C3HF7 pyrolysis participate in the reaction, which increases the heat release rate and the peak adiabatic flame temperature of the mixed combustible gas. As it rises, the extra heat released increases the explosion pressure. With the increase of the volume fraction of the C3HF7 detonation inhibitor, the effect of the detonation inhibitor on the flame is shown as inhibition, which reduces the peak adiabatic flame temperature. Compared with C3HF7 alone, the combination of C3HF7 and CO2 reduced the peak adiabatic flame temperature. Under the conditions of stoichiometric ratio and rich combustion, the adiabatic combustion temperature of C3HF7 alone and in combination with CO2 showed a linear decreasing trend. The suppression of flame temperature is reduced. In terms of chemical inhibition, it can be seen from the sensitivity analysis that the chain branching reaction to generate H, OH and O radicals is the main elementary reaction that promotes the increase of mass burning rate. With the increase of the concentration of the detonation inhibitor, the sensitivity coefficient of the fluorine-containing elementary reaction on the mass combustion rate gradually increased, and the fluorine-containing radicals captured a large number of H, OH and O radicals to generate relatively stable products such as HF, which interrupted the chain. The reaction inhibits combustion.

参考文献:

[1]张聪. 世界氢能技术研究和应用新进展[J]. 石油石化节能, 2014, 4(08): 56-59.

[2]魏凤,任小波,高林,等. 碳中和目标下美国氢能战略转型及特征分析[J]. 中国科学院院刊, 2021, 36(09): 1049-1057.

[3]齐媛. 氢经济基础设施建设问题研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.

[4]Yuki Ishimoto, Voldsund Mari, Nekså Petter, et al. Large-scale production and transport of hydrogen from Norway to Europe and Japan: Value chain analysis and comparison of liquid hydrogen and ammonia as energy carriers[J]. 2020.

[5]黄格省,李锦山,魏寿祥,等. 化石原料制氢技术发展现状与经济性分析[J]. 化工进展, 2019, 38(12): 5217-5224.

[6]邹才能,张福东,郑德温,等. 人工制氢及氢工业在我国“能源自主”中的战略地位[J]. 天然气工业, 2019, 39(01): 1-10.

[7]Xing Yu, Wang Changjian, He Qize. Numerical study of hydrogen dispersion in a fuel cell vehicle under the effect of ambient wind[J]. 2019, 44(40): 22671-22680.

[8]徐硕,余碧莹. 中国氢能技术发展现状与未来展望[J]. 北京理工大学学报(社会科学版), 2021, 23(06): 1-12.

[9]邵志刚,衣宝廉. 氢能与燃料电池发展现状及展望[J]. 中国科学院院刊, 2019, 34(04): 469-477.

[10]李艳超. 氢气火焰失稳传播与爆炸压力的耦合影响机制研究[D]. 大连: 大连理工大学, 2019.

[11]Hassan Nazir, Muthuswamy Navaneethan, Louis Cindrella, et al. Is the H2 economy realizable in the foreseeable future Part III: H2 usage technologies, applications, and challenges and opportunities[J]. 2020, 45(53): 28217-28239.

[12]Mark Royle, Willoughby Deborah. The safety of the future hydrogen economy[J]. 2011, 89(6): 452-462.

[13]李静媛,赵永志,郑津洋. 加氢站高压氢气泄漏爆炸事故模拟及分析[J]. 浙江大学学报(工学版), 2015, 49(07): 1389-1394.

[14]李权. 管道内障碍物对氢—空气预混火焰传播动力学影响研究[D]. 合肥: 中国科学技术大学, 2019.

[15]弓亮. 管道内高压氢气泄漏自燃机理实验与数值模拟研究[D]. 合肥: 中国科学技术大学, 2019.

[16]Xinhong Li, Ziyue Han, Renren Zhang, et al. Risk assessment of hydrogen generation unit considering dependencies using integrated DEMATEL and TOPSIS approach[J]. International Journal of Hydrogen Energy, 2020, 45(53): 29630-29642.

[17]Nilesh Ade, Wilhite Benjamin, Goyette Henry. An integrated approach for safer and economical design of Hydrogen refueling stations[J]. 2020.

[18]Wenkai Liang, Wang Yiru, Law Chung-K. Role of ozone doping in the explosion limits of hydrogen-oxygen mixtures: Multiplicity and catalyticity[J]. Combustion and Flame, 2019, 2057-10.

[19]Lijuan Huang, Wang Yu, Shufeng Pei, et al. Effect of elevated pressure on the explosion and flammability limits of methane-air mixtures[J]. Energy, 2019, 186115840.

[20]Francis Oppong, Cangsu Xu, Xiaolu Li, et al. Laminar flame characteristics of 2-ethylfuran/air mixtures: Experimental and kinetic modelling investigations[J]. Fuel, 2022, 307121785.

[21]Ruixuan Zhu, Majie Zhao, Huangwei Zhang. Numerical simulation of flame acceleration and deflagration-to-detonation transition in ammonia-hydrogen–oxygen mixtures[J]. International Journal of Hydrogen Energy, 2021, 46(1): 1273-1287.

[22]Fahui Wang, Jingning Chen, Xiaoping Wen, et al. Experimental Study on the Explosion Characteristics of CH4/O2/N2 Mixtures with Different Oxygen Enrichment Coefficients and Ignition Positions[J]. ACS Omega, 2020.

[23]Shimao Wang, Yunxiong Cai, Hai Guo, et al. Effect of fuel concentration, inert gas dilutions, inert gas–water mist twin fluid medium dilutions, and end boundary condition on overpressure transients of premixed fuel vapor explosion[J]. Fuel, 2022, 309122083.

[24]Robin-John Varghese, Kolekar Harshal, Kishore V-Ratna, et al. Measurement of laminar burning velocities of methane-air mixtures simultaneously at elevated pressures and elevated temperatures[J]. Fuel, 2019, 257116120.

[25]Qianqian Li, Yan Zhiyu, Wenjun Lin, et al. Explosion characteristics of cyclic hydrocarbon-air mixtures at elevated temperature and pressures[J]. Fuel, 2019, 2531048-1055.

[26]Kai Huang, Z-Y Sun, Yu-Chi Tian , et al. Turbulent combustion evolution of stoichiometric H2/CH4/air mixtures within a spherical space[J]. International Journal of Hydrogen Energy, 2019.

[27]Yuying Chen, Qian Xinming, Qi Zhang, et al. Study on the effects of initial pressure and temperature on the explosion characteristics of DME-blended LPG mixtures in an obstructed confined pipeline[J]. Fuel, 2019, 257116047.

[28] 霍雨江,谭迎新,谢溢月. 湍流状态下氢气爆炸极限的试验研究[J]. 消防科学与技术, 2017, 36(08): 1040-1043.

[29]L Huang, Wang Y, Pei S, et al. Effect of elevated pressure on the explosion and flammability limits of methane-air mixtures[J]. Energy, 2019, 186(Nov.1): 115840-115841.

[30] Xueling Liu, Zhang Qi. Influence of initial pressure and temperature on flammability limits of hydrogen–air[J]. International Journal of Hydrogen Energy, 2014, 39(12): 6774-6782.

[31]Zhou Cheng, Wenkai Liang, Xueliang Yang, et al. Explosion limits of hydrogen/oxygen mixtures with nitric oxide sensitization[J]. Fuel, 2020, 277118158.

[32] Huahua Xiao, Jinhua Sun, Peng Chen. Experimental and numerical study of premixed hydrogen/air flame propagating in a combustion chamber[J]. Journal of Hazardous Materials, 2014, 268132-139.

[33] Yong Cao, Yongxu Wang, Xianzhao Song, et al. External overpressure of vented hydrogen-air explosion in the tube[J]. International Journal of Hydrogen Energy, 2019, 44(60): 32343-32350.

[34]Guo Jin, Xuxu Sun, Shengchao Rui, et al. Effect of ignition position on vented hydrogen–air explosions[J]. International Journal of Hydrogen Energy, 2015, 40(45): 15780-15788.

[35] Y. Cao, J. Guo, K. Hu, et al. The effect of ignition location on explosion venting of hydrogen–air mixtures[J]. Shock Waves, 2017, 27(4): 691-697.

[36]马秋菊,邵俊程,王众山,等. 氢气比例和点火能量对CH4-H2混合气体爆炸强度影响的实验研究[J]. 高压物理学报, 2020, 34(01): 131-136.

[37]Yanchao Li, Mingshu Bi, Bei Li, et al. Explosion hazard evaluation of renewable hydrogen/ammonia/air fuels[J]. Energy, 2018, 159252-263.

[38]Yi Liu, Zhang Yaoguang, Zhao Dongfeng, et al. Experimental study on explosion characteristics of hydrogen–propane mixtures[J]. International Journal of Hydrogen Energy, 2019, 44(40): 22712-22718.

[39]Xiaozhe Yu, Jianliang Yu, Chenyang Wang, et al. Experimental study on the overpressure and flame propagation of hybrid hydrogen/aluminum dust explosions in a square closed vessel[J]. Fuel, 2021, 285119222.

[40]Schiavetti M., M. N-Carcassi. Experimental tests of inhomogeneous hydrogen deflagrations in the presence of obstacles[J]. International Journal of Hydrogen Energy, 2020.

[41]Xuxu Sun, Quan Li, Shouxiang Lu. Effect of bundle geometries on the detonation velocity behaviors in stoichiometric hydrogen-air mixture[J]. International Journal of Hydrogen Energy, 2019, 44(40): 22519-22526.

[42]路长,李毅,潘荣锟. 管道截面对氢气/空气预混爆炸影响的实验研究[J]. 火灾科学, 2015, 24(02): 68-74.

[43]Yanchao Li, Mingshu Bi, Yonghao Zhou, et al. Experimental and theoretical evaluation of hydrogen cloud explosion with built-in obstacles[J]. International Journal of Hydrogen Energy, 2020, 45(51): 28007-28018.

[44]司荣军,王磊,贾泉升. 瓦斯煤尘爆炸抑隔爆技术研究进展[J]. 煤矿安全, 2020, 51(10): 98-107.

[45]罗振敏,苏彬,王涛,等. 矿井瓦斯控爆技术及材料研究进展[J]. 中国安全生产科学技术, 2019, 15(02): 17-24.

[46]Rujia Fan, Jiang Yong, Li Wei, et al. Investigation of the physical and chemical effects of fire suppression powder NaHCO3 addition on methane-air flames[J]. Fuel, 2019, 257116048.

[47]王燕,林晨迪,郑立刚,等. 草酸盐粉体抑制甲烷爆炸的试验研究[J]. 安全与环境学报, 2020, 20(04): 1327-1333.

[48]Zhenmin Luo, Yang Su, Xiaokun Chen, et al. Effect of BC powder on hydrogen/methane/air premixed gas deflagration[J]. Fuel, 2019, 257116095.

[49]Minggao Yu, Xueyan Wang, Kai Zheng, et al. Investigation of methane/air explosion suppression by modified montmorillonite inhibitor[J]. Process Safety and Environmental Protection, 2020, 144.

[50]Sun Yaru, Bihe Yuan, Xianfeng Chen, et al. Suppression of methane/air explosion by kaolinite-based multi-component inhibitor[J]. Powder Technology, 2019, 343279-286.

[51]Yifan Song, Qi Zhang. Quantitative research on gas explosion inhibition by water mist[J]. Journal of Hazardous Materials, 2019, 36316-25.

[52]王发辉,陈卫,温小萍,等. 超声细水雾抑制管内瓦斯爆炸的试验[J]. 安全与环境学报, 2019, 19(06): 1971-1977.

[53]Zhenqi Liu, Zhong Xiaoxing, Zhang Qi, et al. Experimental study on using water mist containing potassium compounds to suppress methane/air explosions[J]. Journal of Hazardous Materials, 2020, 394(prepublish): 122561.

[54]Xingyan Cao, Ren Jingjie, Zhou Yihui, et al. Suppression of methane/air explosion by ultrafine water mist containing sodium chloride additive.[J]. Journal of hazardous materials, 2015, 285311-318.

[55]余明高,阳旭峰,郑凯,等. 我国煤矿瓦斯爆炸抑爆减灾技术的研究进展及发展趋势[J]. 煤炭学报, 2020, 45(01): 168-188.

[56]Manhou Li, Xu Jingchao, Wang Changjian, et al. Thermal and kinetics mechanism of explosion mitigation of methane-air mixture by N2/CO2 in a closed compartment[J]. Fuel, 2019, 255115747.

[57]Bo Zhang , Guangli Xiu, Chunhua Bai. Explosion characteristics of argon/nitrogen diluted natural gas–air mixtures[J]. Fuel, 2014, 124125-132.

[58]Z-R Wang, Ni L, Liu X, et al. Effects of N2/CO2 on explosion characteristics of methane and air mixture[J]. Journal of Loss Prevention in the Process Industries, 2014, 3110-15.

[59]Carmen-Helena Osorio, Vissotski Andrew-John, Petersen Eric-L, et al. Effect of CF3Br on C1–C3 ignition and laminar flame speed: Numerical and experimental evaluation[J]. Combustion and Flame, 2013, 160(6): 1044-1059.

[60]Ling Liu, Du Zhiming, Zhang Tianwei, et al. The inhibition/promotion effect of C6F12O added to a lithium-ion cell syngas premixed flame[J]. International Journal of Hydrogen Energy, 2019, 44(39): 22282-22300.

[61] Mengdi Gao, Mingshu Bi, Lili Ye, et al. Suppression of hydrogen-air explosions by hydrofluorocarbons[J]. Process Safety and Environmental Protection, 2021, 145.

[62]薛少谦. 七氟丙烷抑制甲烷空气预混气体爆炸的实验研究[J]. 矿业安全与环保, 2017, 44(01): 5-8.

[63]魏树旺,蒋新生,何标,等. 七氟丙烷对狭长受限空间油气爆炸抑制实验研究[J]. 中国安全生产科学技术, 2016, 12(07): 128-133.

[64]Guochun Li, Xishi Wang, Hongli Xu, et al. Experimental study on explosion characteristics of ethanol gasoline–air mixture and its mitigation using heptafluoropropane[J]. Journal of Hazardous Materials, 2019, 378120711.

[65]蔡闯,陈先锋,员亚龙,等. 强点火作用下C3HF7对甲烷-空气爆炸的抑制[J]. 高压物理学报, 2020, 34(02): 110-117.

[66]Lei Wang, Yong Jiang, Rong Qiu. Experimental study of combustion inhibition by trimethyl phosphate in turbulent premixed methane/air flames using OH-PLIF [J]. Fuel, 2021, 294(120324).8

[67]寇联岗,杨志强,唐晓博,等. 新型灭火剂2-溴-3,3,3-三氟丙烯饱和蒸气压的测定与关联[J]. 化学工程, 2019, 47(01): 52-56.

[68]Valeri-I Babushok, Linteris Gregory-T, Burgess Jr. Donald-R, et al. Hydrocarbon flame inhibition by C3H2F3Br (2-BTP)[J]. Combustion and Flame, 2015, 162(4): 1104-1112.

[69]Xu Wu, Jiang Yong, Rong Qiu, et al. Influence of halon replacements on laminar flame speeds and extinction limits of hydrocarbon flames[J]. Combustion and Flame, 2017, 1821-13.

[70]L-Pagliaro John, Gregory T-Linteris, Peter B-Sunderland, et al. Combustion inhibition and enhancement of premixed methane–air flames by halon replacements[J]. Combustion and Flame, 2015, 162(1): 41-49.

[71]Kaiqiang Jin, Qingsong Wang, Qiangling Duan, et al. Effect of ignition position on premixed hydrogen-air flame quenching behaviors under action of metal wire mesh[J]. Fuel, 2020, 119750.

[72]苏洋. 氢气/甲烷/空气预混气体爆燃特性及抑制规律研究[D]. 焦作: 河南理工大学, 2018.

[73]姜程山. 氢气的爆炸极限抑制研究[D]. 济南: 山东建筑大学, 2017.

[74]Caicai Yan, Mingshu Bi, Yanchao Li, et al. Effects of nitrogen and carbon dioxide on hydrogen explosion behaviors near suppression limit[J]. Journal of Loss Prevention in the Process Industries, 2020, 67104228.

[75]Lu-Qing Wang, Hong-Hao Ma, Zhao-Wu Shen. Explosion characteristics of hydrogen-air mixtures diluted with inert gases at sub-atmospheric pressures[J]. International Journal of Hydrogen Energy, 2019, 44(40): 22527-22536.

[76]Yanchao Li, Mingshu Bi, Caicai Yan, et al. Inerting effect of carbon dioxide on confined hydrogen explosion[J]. International Journal of Hydrogen Energy, 2019, 44(40): 22620-22631.

[77]Yanchao Li, Mingshu Bi, Lei Huang, et al. Hydrogen cloud explosion evaluation under inert gas atmosphere[J]. Fuel Processing Technology, 2018, 18096-104.

[78]Zhongkun Yang, Zhao Kun, Song Xianzhao, et al. Effects of mesh aluminium alloys and propane addition on the explosion-suppression characteristics of hydrogen-air mixture[J]. International Journal of Hydrogen Energy, 2021, 46(70): 34998-35013.

[79]Zhongkun Yang, Zhao Kun, Song Xianzhao, et al. Effects of mesh aluminium alloys and propane addition on the explosion-suppression characteristics of hydrogen-air mixture[J]. International Journal of Hydrogen Energy, 2021, 46(70): 34998-35013.

[80]Xianzhao Song, Xuechao Zuo, Zhongkun Yang, et al. The explosion-suppression performance of mesh aluminum alloys and spherical nonmetallic materials on hydrogen-air mixtures[J]. International Journal of Hydrogen Energy, 2020.

[81]Xiaoping Wen, Wang Mengming, Su Tengfei, et al. Suppression effects of ultrafine water mist on hydrogen/methane mixture explosion in an obstructed chamber[J]. International Journal of Hydrogen Energy, 2019, 44(60): 32332-32342.

[82]M-Ingram J., A. F-Averill, P. Battersby, et al. Suppression of hydrogen/oxygen/nitrogen explosions by fine water mist containing sodium hydroxide additive[J]. International Journal of Hydrogen Energy, 2013, 38(19): 8002-8010.

[83]G-Holborn Paul, Paul N-Battersby, James M-Ingram, et al. Modelling the mitigation of a hydrogen deflagration in a nuclear waste silo ullage with water fog[J]. Process Safety and Environmental Protection, 2013, 91(6): 476-482.

[84]J-M Ingram, Averill A-F, Battersby P, et al. Suppression of hydrogen/oxygen/nitrogen explosions by fine water mist containing sodium hydroxide additive[J]. International Journal of Hydrogen Energy, 2013, 38(19): 8002-8010.

[85]J-M Ingram, Averill A-F, Battersby P-N, et al. Suppression of hydrogen–oxygen–nitrogen explosions by fine water mist: Part 1. Burning velocity[J]. International Journal of Hydrogen Energy, 2012, 37(24): 19250-19257.

[86]P-N Battersby, Averill A-F, Ingram J-M, et al. Suppression of hydrogen–oxygen–nitrogen explosions by fine water mist: Part 2. Mitigation of vented deflagrations[J]. International Journal of Hydrogen Energy, 2012, 37(24): 19258-19267.

[87]Travis Sikes, Mathieu Olivier, Kulatilaka Waruna-D, et al. Laminar flame speeds of DEMP, DMMP, and TEP added to H2 and CH4-air mixtures[J]. 2019, 37(3): 3775-3781.

中图分类号:

 X932    

开放日期:

 2023-06-20    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式