- 无标题文档
查看论文信息

论文中文题名:

 基于CeO2添加与热处理的Ni60激光熔覆层组织及性能调控研究    

姓名:

 任海波    

学号:

 19205016002    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080201    

学科名称:

 工学 - 机械工程 - 机械制造及其自动化    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 机械工程学院    

专业:

 机械工程    

研究方向:

 增材制造    

第一导师姓名:

 高中堂    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-27    

论文答辩日期:

 2022-05-31    

论文外文题名:

 Study on microstructure and properties of Ni60 laser cladding layer based on CeO2 addition and heat treatment    

论文中文关键词:

 激光熔覆 ; 35CrMoV钢 ; Ni60合金 ; CeO2 ; 热处理    

论文外文关键词:

 Laser Cladding ; 35CrMoV steel ; Ni60 alloy ; CeO2 ; Heat treatment    

论文中文摘要:

本文以解决矿山装备因耐磨失效问题为切入点,以提高矿山装备零部件的使用寿命和综合使用性能为目的,采用激光熔覆技术在35CrMoV钢表面制备不同含量CeO2(0、2.0、4.0、6.0 wt.%)的耐磨Ni60涂层,研究不同CeO2含量对Ni60合金中的宏观形貌和微观组织以及耐磨性的影响,以期获得裂纹较少甚至无裂纹且性能优异的熔覆层。为了进一步改善熔覆层缺陷提升熔覆层性能,通过后期不同温度的热处理(25℃、500℃、600℃、700℃)来改善CeO2/Ni60激光熔覆复合涂层组织和物相形态及分布。最终研究CeO2和热处理对Ni60激光熔覆层组织和性能的协同影响机理,以期获得高硬度和耐磨性能较好的熔覆层,最后确定最优热处理温度。研究内容和主要结论如下:

基于CeO2添加的Ni60激光熔覆层形貌和组织调控分析。借助扫描电镜(SEM)和光学显微镜(OM)分析测试手段,以Ni60激光熔覆层为研究对象,从宏观形貌和微观组织对激光熔覆过程中熔覆层的开裂及扩展行为进行了研究,揭示Ni60激光熔覆层裂纹形成机理。借助X射线衍射仪(XRD)和能谱(EDS)分析测试手段,结合熔覆层组织成分和物相变化,探究不同CeO2含量对熔覆层物相结构变化的影响机理。借助透射电子显微镜(TEM)分析不同CeO2含量的Ni60熔覆层共晶结构变化及层错位错分布。结果表明,添加4.0 wt.%CeO2有效抑制了涂层开裂并改善涂层成型质量,同时促进晶粒细化,使合金元素富集程度降低,有效的提高了熔覆层的组织均匀性。

基于CeO2添加的Ni60激光熔覆层性能调控分析。借助摩擦磨损试验研究不同CeO2含量的Ni60熔覆层在相同载荷下的摩擦系数、磨损量及三维磨损形貌的变化规律,揭示增强相数量和分布对摩擦系数、磨损量和三维形貌的影响机理。借助X射线光电子能谱技术(XPS)分析摩擦层耐磨机理以及电子结合能、元素化合价变化。研究发现,随着CeO2含量从2.0 wt.%增加到4.0 wt.%时,Ni60熔覆层的硬度值从635.47 HV1下降到516.55 HV1,磨损量从38312 μm3降至22736 μm3。当CeO2含量为6.0wt.%时,熔覆层的硬度又上升到533.89 HV1,磨损量增至28645 μm3。由此看出,虽然添加4.0 wt.%CeO2的涂层硬度值较低,但耐磨性最好。此时,摩擦层的钝化膜主要由Ni(OH)2、Fe3O4、Cr2O3、O-B组成,并且Ce4+的相对浓度和Ce3+的相对浓度几乎一致,使涂层具有优异的耐磨性。

基于热处理工艺的Ni60/CeO2熔覆层组织和性能调控分析。借助马弗炉对Ni60+4.0 wt.%CeO2合金熔覆层进行热处理,通过X射线衍射仪(XRD)、扫描电镜(SEM)和能谱分析(EDS)等分析测试手段,详细讨论稀土氧化物CeO2和热处理温度对35CrMoV钢表面Ni60激光熔覆层组织和力学性能的耦合作用。研究发现,添加4.0 wt.%CeO2的Ni60熔覆层在600℃热处理温度下的组织均匀程度、细化效果以及耐磨性最佳。

论文外文摘要:

In this study, the wear-resistant Ni60 coating with different content of CeO2(0,2.0, 4.0, 6.0 wt.%) was prepared on the surface of 35CrMoV steel by laser cladding technology to solve the problem of wear-resistant failure of mining equipment and improve the service life and comprehensive usability of mining equipment parts. The effects of CeO2 on the macroscopic morphology, microstructure and wear resistance of Ni60 alloy were studied. Eventually, the coating was obtained with fewer cracks or even no cracks and excellent performance. In order to further improve the performance of cladding layer, the microstructure, phase distribution of CeO2/Ni60 composite coating were ameliorated by different heat treatment temperatures (25℃, 500℃, 600℃, 700℃). The synergistic effect mechanism of CeO2 and heat treatment on the microstructure and properties of Ni60 laser cladding layer was studied to obtaining the coating with high hardness and wear resistance, and finally the optimal heat treatment temperature was determined. The research contents and main conclusions are as follows:

Study on morphology and microstructure of Ni60 laser cladding layer based on CeO2 addition. The cracking and propagation behavior of Ni60 laser cladding layer during laser cladding process was studied from macro morphology and microstructure by scanning electron microscope (SEM) and optical microscope (OM), and the crack formation mechanism of Ni60 laser cladding layer was revealed. The influence mechanism of different CeO2 content on the phase structure of the cladding layer was investigated by X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS) and combined with the microstructure composition and phase change of cladding layer. The eutectic structure and dislocation distribution of Ni60 cladding layer with different CeO2 content were analyzed by transmission electron microscopy (TEM). The results show that the addition of 4.0 wt.%CeO2 can effectively inhibit the cracking of the coating. At the same time, grain refinement is promoted and the enrichment degree of alloying elements is reduced, which improves the microstructure uniformity of cladding layer.

Study on properties of Ni60 laser cladding layer based on CeO2 addition. The variation of friction coefficient, wear quantity and three-dimensional wear morphology of Ni60 cladding with different CeO2 contents under the same load was studied by friction and wear tests. The influence mechanism of the number and distribution of reinforcing phase on the friction coefficient, wear quantity and three-dimensional wear morphology was revealed. X-ray photoelectron spectroscopy (XPS) was used to analyze the wear mechanism of friction layer, the change of electron binding energy and elemental valence. It is found that with the increase of CeO2 content from 2.0 wt.% to 4.0 wt.%, the hardness of Ni60 cladding decreases from 635.47 HV1 to 516.55 HV1, and the wear decreases from 38312 μm3 to 22736 μm3. When CeO2 content is 6.0wt.%, the hardness of the cladding layer increases to 533.89 HV1, and the wear amount increases to 28645 μm3. The coating with 4.0 wt.%CeO2 has a lower hardness but the best wear resistance. At this time, the passivation film of the friction layer is mainly composed of Ni(OH)2, Fe3O4, Cr2O3 and O-B, and the relative concentration of Ce4+ is almost the same as that of Ce3+, which makes the wear resistance of the coating more excellent.

Study on microstructure and properties of Ni60/CeO2 laser cladding layer based on heat treatment. The cladding layer of Ni60+4.0 wt.%CeO2 alloy was heat treated by muffle furnace. The coupling effect of CeO2 and heat treatment on the microstructure and mechanical properties of Ni60 laser cladding layer on 35CrMoV steel was discussed in detail by X-ray diffractometer (XRD), scanning electron microscopy (SEM) and energy spectrum analysis (EDS).The results show that the Ni60 cladding layer with 4.0 wt.%CeO2 and heat treatment at 600℃ has the best microstructure uniformity, refinement effect and wear resistance.

参考文献:

[1]吴立杰. 采煤机导向滑靴失效分析与优化设计[J]. 机械管理开发, 2021, 36(07): 59-60.

[2]尹文杰. 浅谈采煤机导向滑靴失效分析与改善措施[J]. 中国石油和化工标准与质量, 2019, 39(17): 195-196.

[3]王晓兰. 煤矿液压支架油缸故障的诊断及解决措施研究[J]. 自动化应用, 2019(06): 155-156.

[4]秦宏玮. 简析煤矿井下液压支架油缸泄露故障及维修[J]. 河北农机, 2018(08): 31.

[5]孙琳. 再制造环境下的产品创新策略研究[D]. 电子科技大学, 2021.

[6]2018中国报废汽车回收行业及再制造产业发展趋势[J]. 表面工程与再制造, 2018, 18(02): 15-17.

[7]郑丽娟, 刘会莹. 16Mn钢表面激光熔覆Ni60合金关键参数优化[J]. 塑性工程学报, 2012, 6(28): 87-92.

[8]李晓军, 唐立, 张涛, 白宏达. 绿色工程内涵及指标体系对比综述[J]. 施工技术(中英文), 2021, 50(18): 7-14.

[9]辛忠. 践行绿色发展理念, 深化绿色工程教育内涵[J]. 化工高等教育, 2021, 38(03): 1.

[10]Yuan W Y, Li R F, Chen Z H, et al. A comparative study on microstructure and properties of traditional laser cladding and high-speed laser cladding of Ni45 alloy coatings [J]. Surf Coat Technol, 2021, 405:1-12.

[11]Li B C, Zhu H M, Qiu C J, et al. Development of high strength and ductile martensitic stainless steel coatings with Nb addition fabricated by laser cladding [J]. Journal of Alloys and Compounds, 2020, 832.

[12]Ye F X, Shao W X, Ye X C, et al. Microstructure and Corrosion Behavior of Laser-Cladding CeO2-Doped Ni-Based Composite Coatings on TC4 [J]. Journal of Chemistry, 2020, 2020:8690428.

[13]Cai Y C, Luo Z, Chen Y. Effect of CeO2 on TiC Morphology in Ni-Based Composite Coating [J]. High Temperature Materials and Processes, 2018, 37(3): 209-217.

[14]Quazi M M, Fazal M A, Haseeb A S M A, et al. Effect of rare earth elements and their oxides on tribo-mechanical performance of laser claddings: A review [J]. Journal of Rare Earths, 2016, 34(6): 549-564.

[15]王昕阳, 刘谦, 黄燕滨, 黄俊雄, 等. 激光熔覆防腐涂层现状及发展趋势[C]. 第十届全国腐蚀大会摘要集. 2019: 221.

[16]Techel A, Berger L M, Nowontny S. Microstructure of advanced TiC-based coatings prepared by laser cladding [J]. Journal of Thermal Spray Technology, 2007, 16(3):374-380.

[17]袁庆龙, 冯旭东, 曹晶晶, 等. 激光熔覆技术研究进展[J]. 材料导报, 2010, 24(2): 112-116.

[18]王东生, 田宗军, 沈理达, 等. 激光熔覆技术研究现状及其发展[J]. 应用激光, 2012, 32(6): 538-544.

[19]张艺, 马志凯, 孙铂, 等. 激光熔覆材料的研究现状及发展[J]. 热加工工艺, 2015, 44(14): 40-44.

[20]Gao Z N, Wang L L, Wang Y N, et al. Crack defects and formation mechanism of FeCoCrNi high entropy alloy coating on TC4 titanium alloy prepared by laser cladding [J]. Journal of Alloys and Compounds, 2022, 903.

[21]Li J F, Zhu Z C, Peng Y, et al. A comparative study on microstructure evolution and wear resistance of different-sized tungsten carbide modified Fe-based laser cladding coatings [J]. Opt Laser Technol, 2022, 147.

[22]Liu C, Liu Z, Gao Y X, et al. Investigation on the corrosion behavior of Ni-Cr-Mo-W-xSi laser cladding coating in H2S corrosion environment [J]. Applied Surface Science, 2022, 578.

[23]Shi Y M, Li J B, Zhang J, et al. Effect of La2O3 addition on wear properties of Ni60a/SiC coating using laser-cladding [J]. Opt Laser Technol, 2022, 148.

[24]Xiao Y, Xiao H Q, Feng J Y, et al. Core-shell ZrC/Ti2AlC reinforced composite coatings prepared by laser cladding on Zr-alloy substrates [J]. Ceramics International, 2022, 48(6): 8136-8142.

[25]何志远, 贺文雄, 杨海峰, 周利, 赵洪运, 宋晓国. 铝合金表面激光熔覆研究进展[J].中国表面工程, 2021, 34(06): 33-44.

[26]Hong T, Pham N. Effects of Process Parameters on Geometrical Characteristics and Microstructure of TiC Particle-Reinforced Co50 Alloy by Laser Cladding [J]. Advances in Materials Science and Engineering, 2021.

[27]Ju J, Zhou Y, Kang M D, et al. Optimization of Process Parameters, Microstructure, and Properties of Laser Cladding Fe-Based Alloy on 42CrMo Steel Roller [J]. Materials, 2018, 11(10).

[28]Verdi D, Munez C J, Garrido M A, et al. Process parameter selection for Inconel 625-Cr3C2 laser cladded coatings [J]. International Journal of Advanced Manufacturing Technology, 2017, 92(5-8): 3033-3042.

[29]Mohammed S, Zhang Z, Kovacevic R. Optimization of processing parameters in fiber laser cladding [J]. International Journal of Advanced Manufacturing Technology, 2020, 111(9-10): 2553-68.

[30]葛玉杰. 煤矿开采技术与施工安全管理的应用实践[J]. 能源与节能, 2022(02). 201-202.

[31]张义兴. 煤矿开采安全管理的重要性分析[J]. 城市建设理论研究, 2017(24). 85-86.

[32]苑成东, 王金龙, 张夏琦, 陈辉, 采煤机滑靴的多工况拓扑优化[J]. 煤矿机械, 2021, 42(04): 124-125.

[33]Zachura A, Zuczek R. Innovative Design of a Longwall Shearer’s Haulage System with Highly Loaded Components of a Tribological Pair Manufactured According to the Precise Casting Technology, Solid State Phenomena, 2015 (223):171-180.

[34]王路平. 采煤机滑靴失效分析[J]. 机械管理开发, 2018, 33(12): 72-74.

[35]Ma D, Zhang X, Wan L R, et al. Dynamic Analysis of Shearer Traction Unit Considering the Longitudinal Swing [J]. Energies, 2020, 13(20).

[36]周开平. 煤矿井下悬臂式掘进机回转机构优化设计[J]. 煤炭技术, 2021, 40(09): 177-180.

[37]许佳庆. 关于采煤机自适应滚筒液压调高系统的分析研究[J]. 矿业装备, 2020(05): 134-135.

[38]丁超群, 王亮. 煤矿井下液压支架油缸泄漏故障及维修措施[J]. 内蒙古煤炭经济, 2013(11): 104-105.

[39]秦宏玮. 简析煤矿井下液压支架油缸泄露故障及维修[J]. 河北农机, 2018(08): 31.

[40]李国华. 新型自移轨道式液压支架设计及动态特性研究[D]. 太原科技大学, 2021.

[41]史学琦. 煤矿井下液压支架油缸泄漏故障及维修探析[J]. 现代工业经济和信息化, 2017, 7(18): 57-58+68.

[42]王晓兰. 煤矿液压支架油缸故障的诊断及解决措施研究[J]. 自动化应用, 2019(06): 155-156.

[43]邓勇. 煤矿井下液压油缸激光熔覆强化技术探究[J]. 能源与节能, 2018(09): 139 -140+156.

[44]Prakash J, Gupta S K, Kankar P K. An analytical approach to evaluate the maximum load carrying capacity for pin-mounted telescopic hydraulic cylinder [J]. Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science, 2020, 234(19): 3919-3934.

[45]Radionova L V, Samodurova M N, Bykov V A, et al. Improving the Surface Performance Properties of Hydraulic Cylinder Rod by Applying Additive Technologies [J]. Vestnik of Nosov Magnitogorsk State Technical University ГИ Носова, 2020, 18(3): 34-41.

[46]王勇胜, 孙盛宇, 刘景欣. 稀土元素在工模具钢生产中的应用[J]. 模具制造, 2020, 20(12): 78-81.

[47]Wang C L, Gao Y, Zeng Z C, et al. Effect of rare-earth on friction and wear properties of laser cladding Ni-based coatings on 6063Al [J]. Journal of Alloys and Compounds, 2017, 727: 278-285.

[48]Ye F X, Shao W X, Zhang W, et al. Microstructure and Properties of CeO2 Doped Ni-Based Coatings Prepared by Laser Cladding [J]. Science of Advanced Materials, 2020, 12(11): 1718-1725.

[49]Sun S, Fu H G, Pin X Y, et al. Effect of CeO2 addition on microstructure and mechanical properties of in situ (Ti, Nb)C/Ni coating [J]. Surf Coat Technol, 2019, 359: 300-313.

[50]Zhang M, Wang X H, Qu K L, et al. Effect of rare earth oxide on microstructure and high temperature oxidation properties of laser cladding coatings on 5CrNiMo die steel substrate [J]. Opt Laser Technol, 2019, 119.

[51]Farahmand P, Frosell T, McGregor M, et al. Comparative study of the slurry erosion behavior of laser cladded Ni-WC coating modified by nanocrystalline WC and La2O3 [J]. INT J ADV MANUF TECH, 2015, 79(9-12): 1607 -1621.

[52]Adesina O S, Farotade G A, Popoola A P I, et al. Influence of CeO2 addition and scanning speed on microstructure and tribological behavior of laser-clad Ti-Co reinforced coatings on Ti-6Al-4V alloy [J]. Surface Review and Letters, 2020, 27(4).

[53]Chang Y L, Hung F Y, Lui T S. A New Infrared Heat Treatment on Hot Forging 7075 Aluminum Alloy: Microstructure and Mechanical Properties [J]. Materials, 2020, 13(5).

[54]Kilinc E, Birol Y. Optimising the T6 heat treatment for gravity cast AlSi7MgCu0.5 alloy V8 cylinder heads [J]. International Journal of Cast Metals Research, 2017, 30(4): 244-250.

[55]Hu Y, Zhao L, Liu D, et al. Investigation of semi-solid microstructures of an A356 alloy containing rare-earth Gd during isothermal heat treatment [J]. International Journal of Materials Research, 2019, 110(5): 422-427.

[56]Xu D, Zhao K N, Yang C L, et al. Effect of Heat Treatment on Microstructure and Mechanical Properties of the AZ31/WE43 Bimetal Composites [J]. Metals, 2018, 8(11).

[57]Skvortsova S V, Grushin I A, Speranskiy K A, et al. Effect of Heat Treatment on the Structure and Properties of Sheet Semifinished Products Made of a Heat-Resistant Alloy Based on Titanium and Alloyed with Rare-Earth Metal [J]. Russian Journal of Non-Ferrous Metals, 2018, 59(2): 157-162.

[58]Roy T, Lai Q, Abrahams R, et al. Effect of deposition material and heat treatment on wear and rolling contact fatigue of laser cladded rails [J]. Wear, 2018, 412: 69-81.

[59]Jiang X, Zhou Y, Shi C, Mao D. Effects of Ultrasonic-Aided Quenching on the Corrosion Resistance of GB 35CrMoV Steel in Seawater Environment [J]. Metals, 2018.8:104.

[60]崔博帅. 选区激光熔化成形AZ91D镁合金耐蚀性能及显微硬度研究 [D]. 河北科技大学, 2021.

[61]Gao Z T, Ren H B, Yu Y, et al. Effect of CeO2 on the microstructure and microhardensss of laser-cladded Ni60 on 35CrMoV alloys [J]. Micron, 2021, 150.

[62]Qi K, Yang Y, Sun R, et al. Effect of magnetic field on crack control of Co-based alloy laser cladding [J]. Opt Laser Technol, 2021, 141.

[63]Li Q, Li T, Shi B, Wu Z P, Zhang, H.C., 2020. Study on crack mechanism of laser cladding layer of Ni based alloy. J Dalian Univ Techno 60, 159-164.

[64]Xu J L, Zhou J Z, Tan W S, Huang S, et al. Ultrasonic vibration on wear property of laser cladding Fe-based coating. Surf Eng, 2020 36:1261-1269.

[65]Hemmati I, Ocelı´k V, Hosson J T M D. Microstructural characterization of AISI 431 martensitic stainless steel laser-deposited coatings. J. Mater. Sci. 2011 46:3405-3414.

[66]Yin B L, Wu Z X, Curtin W J A M. Comprehensive first-principles study of stable stacking faults in hcp metals [J]. 2017, 123: 223-34.

[67]Wei X, Peng X, Wang X, et al. Development of growth and thermal stresses in NiO scale on nanocrystalline Ni without and with dispersion of CeO2 nanoparticles [J]. Corrosion Science, 2017, 118: 60-68.

[68]Liu L F, Ding Q Q, Zhong Y, et al. Dislocation network in additive manufactured steel breaks strength-ductility trade-off [J]. Materials Today, 2018, 21(4): 354-361.

[69]Guo Y F, Wang C Y, Wang Y S, et al. The effect of stacking faults or twin formation on crack propagation in bcc iron [J]. 2004, 84(12): 763-70.

[70]崔权维, 孙文磊, 孙耀宁, 李治恒. 激光熔覆工艺参数对镍基高温合金成形形貌的影响[J]. 有色金属工程, 2021, 11(12): 29-37.

[71]江心, 周亚军, 毛大恒, 刘家卓. 淬火介质对35CrMoV钢显微组织及耐磨性能的影响[J]. 热加工工艺, 2019, 48(08): 173-176.

[72]张坚, 黄道思, 赵龙志, 焦海涛, 唐延川, 刘德佳, 赵明娟, 李劲. 稀土Ce对激光熔覆高硼贝氏体涂层性能的影响[J]. 金属热处理, 2021, 46(01): 133-137.

[73]杨行, 王华, 林相, 张雷. 激光熔覆铁基WC-Cr覆层的摩擦磨损性能研究[J]. 热加工工艺, 2021, 50(24): 106-109.

[74]Yu T, Chen J, Wen Y M, et al. High temperature phase stability and wear behavior of laser clad Ta reinforced NiCrBSi coating [J]. Applied Surface Science, 2021, 547: 149171.

[75]Domashevskaya E P, Builov N S, Ivkov S A, et al. XPS and XAS investigations of multilayer nanostructures based on the amorphous CoFeB alloy [J]. Journal of Electron Spectroscopy and Related Phenomena, 2020, 243: 146979.

[76]Zhou W, Zhou K, Li Y, et al. High temperature wear performance of HVOF-sprayed Cr3C2-WC-NiCoCrMo and Cr3C2-NiCr hardmetal coatings [J]. Applied Surface Science, 2017, 416: 33-44.

[77]Anjum M A R, Lee M H, Lee J S. Boron- and Nitrogen-Codoped Molybdenum Carbide Nanoparticles Imbedded in a BCN Network as a Bifunctional Electrocatalyst for Hydrogen and Oxygen Evolution Reactions [J]. Acs Catalysis, 2018, 8(9): 8296-8305.

[78]Bhang W Y, Wang C M, Ji J X, et al. Synthetic Effect of Cr and Mo Elements on Microstructure and Properties of Laser Cladding NiCrxMoy Alloy Coatings [J].Acta Metallurgica Sinica-English Letters, 2020 33(10):1331-1345.

[79]Anandan C, Bera P. XPS studies on the interaction of CeO2 with silicon in magnetron sputtered CeO2 thin films on Si and Si3N4 substrates [J]. Applied Surface Science, 2013, 283: 297-303.

[80]Dudric R, Souca G, Kuepper K, et al. XPS on Gd1-xCexCo2 Intermetallic Compounds [J]. Physica Status Solidi B-Basic Solid State Physics, 2019, 256(2).

[81]Dawkins K, Rudyk B W, Xu Z, et al. The pH-dependant attachment of ceria nanoparticles to silica using surface analytical techniques [J]. Applied Surface Science, 2015, 345: 249-55.

[82]毛裕, 陈文静, 唐思成. 热处理对激光熔覆Fe314合金涂层组织和力学性能的影响[J/OL]. 热加工工艺, 2022(08): 119-124+128.

[83]李亚敏, 韩锦玮, 范福杰. La2O3对激光熔覆Inconel718合金熔覆层的影响[J]. 热加工工艺, 2019, 48(10): 167-171+176.

[84]刘文斌, 梁宝珠, 黄峰. 消除应力热处理对移动式容器WH590E钢组织和性能的影响[J]. 材料热处理学报, 2021, 42(03): 142-150.

[85]上官芸娟, 吴巧荣, 宋瑞宏, 朱晓清, 王烨. 激光功率对Ni60A合金熔覆层组织、显微硬度及耐磨性的影响[J]. 工业技术创新, 2021, 08(05): 24-29.

[86]Guo W, Zhang L, Xu C, et al. Study on the wear resistance of laser cladding iron-base alloy by heat treatment [J]. Materials Research Express, 2019, 6(2).

[87]Li N, Yan H. The Effects of Rare Earth Pr and Heat Treatment on the Wear Properties of AZ91 Alloy [J]. Crystals, 2018, 8(6).

[88]吕林, 王亚敏, 张兴华, 金云学. TiCP/Ni60耐磨耐蚀激光熔覆层的制备及干滑动摩擦磨损性能研究[J]. 广州航海学院学报, 2021, 29(03): 62-68.

中图分类号:

 TG115    

开放日期:

 2022-06-27    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式