- 无标题文档
查看论文信息

论文中文题名:

 半焦结构对固体氧化物燃料电池输出性能影响及过程模拟研究    

姓名:

 宋宗兴    

学号:

 20213226057    

保密级别:

 保密(2年后开放)    

论文语种:

 chi    

学科代码:

 085700    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 化学与化工学院    

专业:

 资源与环境    

研究方向:

 直接碳固体氧化物燃料电池    

第一导师姓名:

 周安宁    

第一导师单位:

 西安科技大学    

第二导师姓名:

 王宁波    

论文提交日期:

 2023-06-27    

论文答辩日期:

 2023-05-31    

论文外文题名:

 Study on the effect of semi-focal structure on the output performance of solid oxide fuel cells and process simulation    

论文中文关键词:

 固体氧化物燃料电池 ; 半焦结构 ; Fe催化剂 ; 电化学模拟    

论文外文关键词:

 Solid oxide fuel cell ; Semi-coke structure ; Fe catalyst ; Reactor simulation    

论文中文摘要:

直接碳固体氧化物燃料电池(DC-SOFC)以固体碳为燃料,具有电池结构全固态化,安全性高可靠性强,能量密度高,碳资源丰富等优点。优化碳原料结构及DC-SOFC过程是提高电池输出性能的关键。为优化DC-SOFC输出过程,以促进DC-SOFC技术发展与应用,本论文采用煤和生物质半焦为碳燃料研究样品,研究碳燃料结构及负载铁催化剂对DC-SOFC输出性能的影响规律,并在此基础上,采用Aspen Plus软件对DC-SOFC进行了过程模拟研究。研究结果对于突破DC-SOFC技术瓶颈有一定实际意义。主要研究工作和结果如下:

采用TGA、SEM、XRD、Raman、FTIR等手段,结合DC-SOFC电池输出性能分析,研究了半焦结构对DC-SOFC输出性能的影响规律。研究结果表明,半焦灰分的碱指数对半焦的CO2反应活性也有一定影响。通过Matable数据拟合建立了半焦CO2反应活性与半焦结构参数芳香度(fa)和半焦的缺陷程度(LCD)之间的数学关系式,半焦的芳香度越低、芳碳缺陷程度越大,半焦的CO2气化反应速率越快,电池的输出性能越好。半焦结构对电池输出性的影响机制表现为:半焦燃料DC-SOFC输出性能主要取决于电池的浓差极化的大小,浓差极化大小则与半焦CO2气化反应速率负相关;半焦的芳香度、芳碳缺陷程度和催化活性元素特征直接影响半焦的CO2气化反应活性。

采用湿法造粒技术将Fe负载在半焦燃料中,研究了负载Fe催化剂对DC-SOFC输出性能影响。研究结果表明,负载Fe催化剂后半焦燃料结构并未发生改变,但气化反应速率均有不同程度的增加,脱灰半焦和未脱灰半焦负载Fe催化剂后作为DC-SOFC碳燃料对后发现性能均有所提升,但提升大小不同,负载Fe后的脱灰半焦的输出性能提升较大约为50%,未脱灰样品输出性能提升约为10%。

采用模块化建模方法,基于PR方程开展了DC-SOFC的过程模拟研究。研究结果表明,结合实验参数进行Aspen Plus模拟建立了DC-SOFC的电化学模型和热电连供系统模型,利用热力学方程-能斯特(Nernst)方程及一些半经验公式等在Aspen Plus中的Design-Spec模块中计算电池电压、功率及效率并对模型进行了验证,验证结果符合模拟和实际的要求,发电效率达到59.6%,热电联合效率可达到89.8%。

以上研究工作的开展,得到了半焦结构和Fe催化剂对DC-SOFC输出性能影响依据,为以后半焦燃料的制备、负载高性能催化剂做作出指导,实验和Aspen Plus模拟相结合相辅相成,提供实验基础和理论依据推动DC-SOFC技术发展与应用。

论文外文摘要:

Direct carbon solid oxide fuel cells (DC-SOFC) use solid carbon as fuel and have the advantages of fully solid state cell structure, high safety and reliability, high energy density, and abundant carbon resources. Optimizing the carbon feedstock structure and DC-SOFC process is the key to improve the cell output performance. In order to optimize the DC-SOFC output process to promote the development and application of DC-SOFC technology, this thesis uses coal and biomass semi-coke as carbon fuel research samples to study the influence law of carbon fuel structure and loaded iron catalyst on DC-SOFC output performance. The research results are of practical significance for breaking the bottleneck of DC-SOFC technology. The main research works and results are as follows:

The influence law of semi-focus structure on the output performance of DC-SOFC was investigated by using TGA, SEM, XRD, Raman, FTIR and other means, combined with the output performance analysis of DC-SOFC cells. The results showed that the alkali index of the semi-coke ash also had an effect on the CO2 reactivity of the semi-coke. The mathematical relationship between the CO2 reactivity of the semi-coke and the structural parameters of the semi-coke, aromaticity (fa) and the degree of defects (LCD) of the semi-coke, was established by Matable data fitting. The lower the aromaticity of the semi-coke and the greater the degree of aromatic carbon defects, the faster the CO2 gasification reaction rate of the semi-coke and the better the output performance of the cell. The mechanism of the influence of the semi-coke structure on the output performance of the cell is as follows: the output performance of DC-SOFC with semi-coke depends mainly on the size of the concentration polarization of the cell, and the size of the concentration polarization is negatively related to the CO2 gasification reaction rate of the semi-coke; the aromaticity, the degree of aromatic carbon defects and the characteristics of catalytically active elements of the semi-coke directly affect the CO2 gasification reaction activity of the semi-coke.

The effect of Fe loaded catalyst on the output performance of DC-SOFC was investigated by using wet pelletizing technique to load Fe into semi-coke fuel. The results showed that the structure of the semi-coke fuel did not change after loading Fe catalyst, but the gasification reaction rate increased to different degrees, and the performance of both deashed and un-deashed semi-coke as DC-SOFC carbon fuel after loading Fe catalyst was found to be improved, but the magnitude of the improvement was different, the output performance of the deashed semi-coke after loading Fe was improved by about 50%, and the output performance of the un-deashed sample was improved by 10% improvement.

A process simulation study of DC-SOFC was carried out based on PR equations using a modular modeling approach. The results show that the electrochemical model of DC-SOFC and the model of the thermoelectric system were established by combining the experimental parameters with Aspen Plus simulations, and the cell voltage, power and efficiency were calculated and validated in the Design-Spec module of Aspen Plus using the thermodynamic equation-Nernst equation and some semi-empirical formulas. The validation results meet the simulated and actual requirements, and the power generation efficiency reaches 59.6%, and the combined efficiency of thermoelectric power can reach 89.8%.

The above research work was carried out to obtain the basis for the influence of semi-coke structure and Fe catalyst on the output performance of DC-SOFC, which will provide guidance for the preparation of semi-coke fuel and the loading of high performance catalyst in the future, and the combination of experiments and Aspen Plus simulations will complement each other to provide experimental basis and theoretical basis to promote the development and application of DC-SOFC technology.

参考文献:

参考文献

[1] 邹才能, 赵群, 张国生, 等. 能源革命:从化石能源到新能源 [J]. 天然气工业, 2016, 36(1): 10.

[2] 张莉, 张建强, 宁树正, 等. 中国与全球煤炭行业形势对比分析 [J]. 中国煤炭地质, 2021, 33(S01): 6.

[3] Al-Shemmeri T T, Yedla R, Wardle D. Thermal characteristics of various biomass fuels in a small-scale biomass combustor[J]. Applied Thermal Engineering, 2015, 85: 243-251.

[4] Chang J, Leung D Y C, Wu C Z, et al. A review on the energy production, consumption, and prospect of renewable energy in China[J]. Renewable and Sustainable Energy Reviews, 2003, 7(5): 453-468.

[5] 郝森然, 陈晓, 曾晓苑, 等. 直接碳燃料电池燃料的研究进展 [J]. 人工晶体学报, 2022, 51(2): 360-369.

[6] 蔡位子, 童鑫, 李玉芝,等. 锶钴掺杂铁酸镧修饰的直接碳固体氧化物燃料电池银基阳极的催化性能[J]. 硅酸盐学报, 2022(005):050.

[7] Wu H , Xiao J , Zeng X ,et al. A high performance direct carbon solid oxide fuel cell –A green pathway for brown coal utilization[J].Applied Energy, 2019, 248(AUG.15):679-687.

[8] Chen T Y, Xie Y M, Lu Z B, et al. La0.75Sr0.25Cr0.5Mn0.5O3δ-Ce0.8Gd0.2O1.9 composite electrodes as anodes in LaGaO3-based direct carbon solid oxide fuel cells [J]. Journal of Central South University, 2022, 29(6): 1788-1798.

[9] Cai W, Liu J, Yu F, et al. A high performance direct carbon solid oxide fuel cell fueled by Ca-loaded activated carbon [J]. International Journal of Hydrogen Energy, 2017, 42(33): 21167-21176.

[10] 蔡位子. 直接碳固体氧化物燃料电池的反应机理及其催化剂应用探讨 [D].华南理工大学,2016.

[11] Joon K . Fuel cells - a 21st century power system[J]. Journal of Power Sources, 1998, 71(1/2):12-18.

[12] 蔡位子, 童鑫, 李玉芝, 等. 锶钴掺杂铁酸镧修饰的直接碳固体氧化物燃料电池银基阳极的催化性能 [J]. 硅酸盐学报, 2022, (005): 050.

[13] Wu H, Xiao J, Zeng X, et al. A high performance direct carbon solid oxide fuel cell – A green pathway for brown coal utilization [J]. Applied Energy , 2019, 248(AUG.15): 679-687.

[14] Cai W, Liu J, Yu F, et al. A high performance direct carbon solid oxide fuel cell fueled by Ca-loaded activated carbon[J]. International Journal of Hydrogen Energy, 2017, 42(33): 21167-21176.

[15] Liu J, Zhou M, Zhang Y, et al. Electrochemical oxidation of carbon at high temperature: principles and applications[J]. Energy & Fuels, 2017, 32(4): 4107-4117.

[16] 乔金硕, 陈海涛, 王振华,等. 生物质碳在直接碳固体氧化物燃料电池中的应用[J]. 北京理工大学学报, 2021, 41(7):10.

[17] Chapters L O. Fuel Cell Systems Explained [M]. Fuel Cell Systems Explained, 2000.

[18] Larminie, James. Fuel cell systems explained /-2nd ed [M]. Fuel cell systems explained /-2nd ed, 2003.

[19] 彭苏萍, 韩敏芳. 煤基/碳基固体氧化物燃料电池技术发展前沿 [J]. 自然杂志, 2009, 31(4): 6.

[20] 刘国阳, 张亚婷, 蔡江涛,等. 直接碳燃料电池燃料的研究进展[J]. 新型炭材料, 2015, 30(001):12-18.

[21] 张英杰, 吴昊, 曾晓苑,等. 直接碳固体氧化物燃料电池阳极材料的研究进展[J]. 材料导报, 2020, 34(3):9.

[22] 衣宝廉. 燃料电池的原理、技术状态与展望[J]. 电池工业, 2003, 8(1):7.

[23] 陈倩阳. 直接使用碳和生物质燃料的全固态固体氧化物燃料电池 [D]; 华南理工大学, 2021.

[24] Singhal S C . Advances in solid oxide fuel cell technology[J]. Solid State Ionics, 2000, 135( 1–4):305-313.

[25] 郝森然, 陈晓, 曾晓苑, 等. 直接碳燃料电池燃料的研究进展 [J]. 人工晶体学报, 2022, 51(02): 360-369.

[26] 刘国阳, 张亚婷, 蔡江涛, 等. 直接碳燃料电池燃料的研究进展 [J]. 新型炭材料, 2015, 30(01): 12-18.

[27] Singh M , Zappa D , Comini E . Solid oxide fuel cell: Decade of progress, future perspectives and challenges[J]. International Journal of Hydrogen Energy, 2021, 46(51).

[28] Giddey S , Badwal S , Kulkarni A , et al. A comprehensive review of direct carbon fuel cell technology[J]. Progress in Energy and Combustion Science, 2012, 38( 3):360-399.

[29] Nakagawa N , Ishida M . Performance of an internal direct-oxidation carbon fuel cell and its evaluation by graphic exergy analysis[J]. Industrial & Engineering Chemistry Research, 1988, 27(7):1181-1185.

[30] Li S , Lee A C , Mitchell R E , et al. Direct carbon conversion in a helium fluidized bed fuel cell[C]. Elsevier B.V. Elsevier B.V. 2008:1549-1552.

[31] Tang Y , Jiang L , Jing S . A Novel Direct Carbon Solid Oxide Fuel Cell[J]. Ecs Transactions, 2009, 25(2).

[32] Liu R , Zhao C , Li J , et al. A novel direct carbon fuel cell by approach of tubular solid oxide fuel cells[J]. Journal of Power Sources, 2010, 195(2):480-482.

[33] Wu Y , Chao S , Zhang C , et al. A new carbon fuel cell with high power output by integrating with in situ catalytic reverse Boudouard reaction[J]. Electrochemistry Communications, 2009, 11(6):1265-1268.

[34] Cai J . An investigation on the kinetics of direct carbon solid oxide fuel cells[J]. Journal of solid state electrochemistry, 2016, 20(8).

[35] Todd B , Young J B . Thermodynamic and transport properties of gases for use in solid oxide fuel cell modelling[J]. Journal of Power Sources, 2002, 110(1):186-200.

[36] Xu H , Chen B , Liu J , et al. Modeling of direct carbon solid oxide fuel cell for CO and electricity cogeneration[J]. Applied Energy, 2016, 178:353-362.

[37] Jiang, Cairong, Jianjun, et al. Challenges in developing direct carbon fuel cells.

[38] Cao, Tianyu, Shi, et al. Recent advances in high-temperature carbon-air fuel cells[J]. Energy & Environmental Science Ees, 2017.

[39] Gu\u0308r, Turgut, M. Direct Electrochemical Conversion of Carbon to Electrical Energy in a High Temperature Fuel Cell[J]. Journal of the Electrochemical Society, 1992.

[40] Zhao X Y , Yao Q , Li S Q , et al. Studies on the carbon reactions in the anode of deposited carbon fuel cells[J]. Journal of Power Sources, 2008, 185(1):104-111.

[41] Hasegawa S , Ihara M . Reaction Mechanism of Solid Carbon Fuel in Rechargeable Direct Carbon SOFCs with Methane for Charging[J]. Journal of the Electrochemical Society, 2008, 155(1):B58.

[42] Ihara M , Hasegawa S . Quickly Rechargeable Direct Carbon Solid Oxide Fuel Cell with Propane for Recharging[J]. Journal of the Electrochemical Society, 2006, 153(8):A1544-A1546.

[43] Yokoyama S C . Solid state fuel storage and utilization through reversible carbon deposition on an SOFC anode[J]. Solid State Ionics, 2004.

[44] Huang T J , Huang M C . A new phenomenon of a fuel-free current during intermittent fuel flow over Ni-YSZ anode in direct methane SOFCs[J]. Journal of Power Sources, 2007, 168(1):229-235.

[45] Huang T J , Wang C H . Methane decomposition and self de-coking over gadolinia-doped ceria-supported Ni catalysts[J]. Chemical Engineering Journal, 2007, 132(1-3):97-103.

[46] Chen L , Shi Y , Cai N . Mechanism for carbon direct electrochemical reactions in a solid oxide electrolyte direct carbon fuel cell[J]. Journal of Power Sources, 2011, 196(2):754–763.

[47] 吴玉玺, 韩婷婷, 解子恒, 等. 直接碳固体氧化物燃料电池研究进展:碳燃料和逆向Boudouard反应催化剂 [J]. 储能科学与技术, 2021, 10(06): 1977-1986.

[48] 韩敏芳, 彭苏萍. 固体氧化物燃料电池发展及展望[J]. 新材料产业, 2005(7):3.

[49] Konsolakis M , Marnellos G E , Al-Musa A , et al. Carbon to electricity in a solid oxide fuel cell combined with an internal catalytic gasification process[J]. Chinese Journal of Catalysis, 2015.

[50] Yu J , Zhao Y , Li Y . Utilization of corn cob biochar in a direct carbon fuel cell[J]. Journal of Power Sources, 2014, 270:312-317.

[51] Ahn S Y , Eom S Y , Rhie Y H , et al. Utilization of wood biomass char in a direct carbon fuel cell (DCFC) system[J]. Applied Energy, 2013, 105(may):207-216.

[52] Nerine, J, Cherepy, et al. Direct Conversion of Carbon Fuels in a Molten Carbonate Fuel Cell[J]. Journal of the Electrochemical Society, 2005, 152(1):A80-A87.

[53] 刘国阳, 张亚婷, 蔡江涛, 等. 直接碳燃料电池阳极反应特性研究 [J]. 电源技术, 2015, 39(9): 3.

[54] Jiao Y, Zhao J, An W, et al. Structurally modified coal char as a fuel for solid oxide-based carbon fuel cells with improved performance [J]. Journal of Power Source, 2015, 288(aug.15): 106-114.

[55] Yong J A, Wt A, Hc A, et al. In situ catalyzed Boudouard reaction of coal char for solid oxide-based carbon fuel cells with improved performance [J]. Applied Energy, 2015, 141: 200-208.

[56] Xie Y M , Jiang-Lin L I , Hou J X , et al. Direct use of coke in a solid oxide fuel cell[J]. Journal of Fuel Chemistry and Technology, 2018, 46(10):1168-1174. Journal of Fuel Chemistry Technology, 2018, 46(10): 1168-74.

[57] 丘倩媛, 陈倩阳, 刘志军, 等. 以椰壳生物质炭为燃料的直接炭固体氧化物燃料电池 [J]. 燃料化学学报, 2019, 47(3): 10.

[58] Cai W, Liu J, Liu P, et al. A direct carbon solid oxide fuel cell fueled with char from wheat straw [J]. International Journal of Energy Research, 2018, 43(7): 2468-2477.

[59] Wu H, Xiao J, Hao S, et al. In-situ catalytic gasification of kelp-derived biochar as a fuel for direct carbon solid oxide fuel cells [J]. Journal of Alloys and Compounds, 2021, 865.

[60] Skrzypkiewicz M, Lubarska-Radziejewska I, Jewulski J. The effect of Fe2O3 catalyst on direct carbon fuel cell performance [J]. International Journal of Hydrogen Energy, 2015.

[61] Sh A , Xiao C A , Hao W A , et al. A novel Chinese parasol leaf biochar fuelled direct carbon solid oxide fuel cell for high performance electricity generation. 2021.

[62] Xie Y, Lu Z, Ma C, et al. High-performance gas–electricity cogeneration using a direct carbon solid oxide fuel cell fueled by biochar derived from camellia oleifera shells [J]. International Journal of Hydrogen Energy, 2020, 45(53).

[63] 刘江, 颜晓敏. 直接碳固体氧化物燃料电池[J]. 电化学, 2020, 26(2):175-189.

[64] Dudek M, Tomczyk P, Socha R, et al. Use of ash-free "Hyper-coal" as a fuel for a direct carbon fuel cell with solid oxide electrolyte [J]. International Journal of Hydrogen Energy, 2014, 39(23): 12386-12394.

[65] Song C . Global Challenges and Strategies for Control, Conversion and Utilization of CO2 for Sustainable Development Involving Energy, Catalysis, Adsorption and Chemical Processing[C]// Elsevier B.V. Elsevier B.V. 2006:2-32.

[66] Rady A C , Giddey S , Kulkarni A , et al. Direct carbon fuel cell operation on brown coal[J]. Applied Energy, 2014, 120(MAY 1):56-64.

[67] Jain S L , Nabae Y , Lakeman B J , et al. Solid state electrochemistry of direct carbon/air fuel cells[C]// Elsevier B.V. Elsevier B.V. 2008:1417-1421.

[68] Xiang L , Zhu Z , Marco R D , et al. Evaluation of raw coals as fuels for direct carbon fuel cells[J]. Journal of Power Sources, 2010, 195(13):4051-4058.

[69] Jain S L , Lakeman J B , Pointon K D , et al. Electrochemical performance of a hybrid direct carbon fuel cell powered by pyrolysed MDF[J]. Energy & Environmental ence, 2009, 2(6):687-693.

[70] Weaver R D , Leach S C , Bayce A E , et al. Direct electrochemical generation of electricity from coal. Report for the period 16 May 1977 to 15 February 1979. 1979.

[71] Weaver R D , Tietz L , Cubicciotti D . Direct use of coal in a fuel cell: feasibility investigation. Final report, 26 Jun 1974-28 Feb 1975[J]. 1975.

[72] Zecevic S , Patton E M , Parhami P . Carbon–air fuel cell without a reforming process[J]. Carbon, 2004, 42(10):1983-1993.

[73] Yen T H , Hong W T , Huang W P , et al. Experimental investigation of 1 kW solid oxide fuel cell system with a natural gas reformer and an exhaust gas burner[J]. Journal of Power Sources, 2010, 195(5):1454-1462.

[74] 徐晗, 党政, 白博峰. 1kW家用SOFC-CHP系统建模及性能分析[J]. 太阳能学报, 2011, 32(4):7.

[75] Powell M , Meinhardt K , Sprenkle V , et al. Demonstration of a highly efficient solid oxide fuel cell power system using adiabatic steam reforming and anode gas recirculation[J]. Journal of Power Sources, 2012, 205:377-384.

[76] Dietrich R U , Oelze J , Lindermeir A , et al. Efficiency gain of solid oxide fuel cell systems by using anode offgas recycle - Results for a small scale propane driven unit[J]. Journal of Power Sources, 2011, 196(17):7152-7160.

[77] 史翊翔, 李晨, 蔡宁生. 管式固体氧化物燃料电池机理模型与性能分析[J]. 化工学报, 2007, 58(3):6.

[78] Tang Y, Liu J. Effect of anode and Boudouard reaction catalysts on the performance of direct carbon solid oxide fuel cells [J]. International Journal of Hydrogen Energy, 2010, 35(20): 11188-11193.

[79] Xie Y, Cai W, Xiao J, et al. Electrochemical gas–electricity cogeneration through direct carbon solid oxide fuel cells [J]. Journal of Power Sources, 2015, 277: 1-8.

[80] Li Z , Ni G , Wang H , et al. Molecular structure characterization of lignite treated with ionic liquid via FTIR and XRD spectroscopy[J]. Fuel, 2020, 272:117705.

[81] Li J, Wei B, Wang C, et al. High-performance and stable La0.8Sr0.2Fe0.9Nb0.1O3-δanode for direct carbon solid oxide fuel cells fueled by activated carbon and corn straw derived carbon [J]. International Journal of Hydrogen Energy, 2018, 43(27): 12358-12367.

[82] Sparkes R, Hovius N, Galy A, et al. Automated analysis of carbon in powdered geological and environmental samples by Raman spectroscopy [J]. Appl Spectrosc, 2013, 67(7): 779-788.

[83] 朱亚明, 赵雪飞, 高丽娟, 等. 煤系针状焦微晶结构的XRD与Raman分峰拟合定量研究 [J]. 光谱学与光谱分析, 2017, 37(06): 1919-1924.

[84] 褚伍波. 无烟煤伴生石墨的石墨含量分析及其复合材料制备 [D]; 中国科学院大学, 2018.

[85] Yong T K , Dong K S , Hwang J . Study of the Effect of Coal Type and Particle Size on Char-CO2 Gasification via Gas Analysis[J]. Energy & Fuels, 2011, 25(Nov.-Dec.):p.5044-5054.

[86] 陈晓,郝森然,曾晓苑等.直接碳固体氧化物燃料电池钙钛矿阳极的研究进展[J].有色设备,2023,37(01):31-35.

[87] 刘国阳, 周安宁, 张亚婷, 等. 固体氧化物直接碳燃料电池阳极反应过程分析 [J]. 燃料化学学报, 2015, 000(009): 1100-1105.

[88] 谷晓凤,颜晓敏,周明扬等.以哈密煤为燃料的直接碳固体氧化物燃料电池[J].洁净煤技术,2023,29(03):18-25.

[89] Yang H , Song H , Zhao C , et al. Catalytic gasification reactivity and mechanism of petroleum coke at high temperature[J]. Fuel, 2021, 293(3):120469.

[90] Rady A C, Gidder S, Badwal S P S, et al. Review of Fuels for Direct Carbon Fuel Cells [J]. Energy & Fuels, 2012, 26(3): 1471-1488.

[91] Xiao-Ming L I, Zhang H, Liu M J, et al. Investigation of coal-biomass interaction during co-pyrolysis by char separation and its effect on coal char structure and gasification reactivity with CO2 [J]. Journal of Fuel Chemistry Technology, 2020, 48(8): 897-907.

[92] Lahijani P, Zainal Z A, Mohamed A R, et al. CO2 gasification reactivity of biomass char: catalytic influence of alkali, alkaline earth and transition metal salts [J]. Bioresource Technology, 2013, 144(Complete): 288-295.

[93] 丘倩媛,周明扬,陈倩阳等.以甘蔗渣为燃料的直接碳固体氧化物燃料电池[J].电源技术,2019,43(09):1492-1495.

[94] Tang Y , Jiang L . Effect of anode and Boudouard reaction catalysts on the performance of direct carbon solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2010, 35(20):11188-11193.

[95] Cai W, Zhou Q, Xie Y, et al. A facile method of preparing Fe-loaded activated carbon fuel for direct carbon solid oxide fuel cells [J]. Fuel, 2015, 159: 887-893.

[96] Campanari S , Iora P . Definition and sensitivity analysis of a finite volume SOFC model for a tubular cell geometry[J]. Journal of Power Sources, 2004, 132(1/2):113-126.

[97] Aloui T , Halouani K . Analytical modeling of polarizations in a solid oxide fuel cell using biomass syngas product as fuel[J]. Applied Thermal Engineering, 2007, 27(4):731-737.

[98] Ni M , Leung M , Leung D . Parametric study of solid oxide fuel cell performance[J]. Energy Conversion and Management, 2007, 48( 5):1525-1535.

[99] Lisbona P , Corradetti A , Bove R , et al. Analysis of a solid oxide fuel cell system for combined heat and power applications under non-nominal conditions[J]. Electrochimica Acta, 2008, 53(4):1920-1930.

中图分类号:

 TM911.4    

开放日期:

 2025-06-27    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式