- 无标题文档
查看论文信息

题名:

 液态二氧化碳相变应力波-高压气体协同致裂增透机理研究    

作者:

 王康    

学号:

 19120089004    

保密级别:

 保密(3年后开放)    

语种:

 chi    

学科代码:

 083700    

学科:

 工学 - 安全科学与工程    

学生类型:

 博士    

学位:

 工学博士    

学位年度:

 2024    

学校:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 矿井瓦斯灾害防治    

导师姓名:

 潘红宇    

导师单位:

 西安科技大学    

提交日期:

 2024-06-03    

答辩日期:

 2023-12-01    

外文题名:

 Study on the mechanism of permeability enhancement under liquid CO2 phase change stress waves and high-pressure gas    

关键词:

 液态二氧化碳 ; 协同致裂 ; 作用阶段 ; 煤体损伤 ; 煤层增透    

外文关键词:

 Liquid carbon dioxide ; Synergistic fracturing ; Stage of action ; Coal body damage ; Coal seam permeability enhancement    

摘要:

液态二氧化碳相变致裂近年来在我国高瓦斯、低渗透矿井增透中应用广泛。液态二氧化碳相变致裂煤层增透过程存在应力波作用阶段和高压气体劈裂作用阶段,然而对致裂作用阶段的划分缺乏有效验证,且尚未完全掌握不同作用阶段的特征参数变化规律,对应力波与高压气体的协同作用机理研究不甚明晰。本文针对液态二氧化碳相变致裂的作用阶段、应力波与高压二氧化碳气体的协同作用机制等关键问题,通过液态二氧化碳相变致裂过程煤岩体速度场、应变场实验特征,确定不同作用阶段划分方法,构建液态二氧化碳相变应力波-高压气体耦合致裂理论模型,分析了不同作用阶段协同作用机理,利用数值模拟、物理模拟和现场试验相结合的研究方法,对协同作用机理进行验证,该研究对矿井瓦斯灾害防治具有重要的理论与现实意义。本文主要成果如下:

(1)构建了判别函数,划分了液态二氧化碳相变致裂作用阶段,揭示了不同作用阶段下的应变场、速度场特征参数变化规律。研究发现,液态二氧化碳相变致裂过程存在两个作用阶段:0~1.551ms时,加速度波形仅存在单一波峰,符合应力波衰减特征,在爆破孔附近产生应力集中,为应力波作用阶段。其峰值加速度为25.46g,峰值能量为9.48×1010(μm/s)2,第一主应变峰值为0.0049,判别函数峰值为0.678。1.551~12.606ms时,加速度波形存在相对较长时间作用的多个连续衰减波峰,符合气体劈裂特征,产生应力局部化带后裂纹尖端逐渐扩展,为二氧化碳气体劈裂作用阶段。其峰值加速度为6.527g,峰值能量为1.47×107(μm/s)2,第一主应变峰值为0.043,判别函数峰值为2.406。

(2)构建了液态二氧化碳相变致裂应力波-高压气体耦合致裂理论模型。通过建立液态二氧化碳相变致裂物理模型,理论分析了应力波和高压二氧化碳气体劈裂作用两个阶段的力学特性,研究了两阶段过程中煤岩体位移、振动速度等参数变化特征,确定了应力波作用形成三区及高压二氧化碳气体劈裂作用新增三区的范围,理论分析了相变致裂过程流体压力分布,煤岩体位移场、速度场特征及损伤度特性。

(3)采用颗粒流方法建立了离散元数值计算模型,对相变致裂理论模型进行了验证。阐明了液态二氧化碳相变致裂过程的应力场、速度场、裂隙场特征变化规律及煤岩体损

伤特性,确定了液态二氧化碳相变致裂的有效致裂范围,研究了应力波和高压二氧化碳气体劈裂的协同作用机制。80MPa,120MPa,160MPa和200MPa初始致裂压力下,不同初始致裂压力下液态二氧化碳相变致裂的有效致抽采范围,分别为2.92m,3.12m,3.34m和3.44m,煤岩体损伤度均在0.660~0.845之间。

(4)开展了液态二氧化碳相变致裂物理模拟实验,研究了耦合破坏分区特征,验证了理论模型的有效致裂范围。物理模拟实验条件下等效致裂范围为3.15m,物理模型最大主应变为0.0125,煤岩体振动速度主要分布在0~100Hz的低频带。粉碎区煤岩体所受压力为-0.0121MPa,最大振动能量为140(μm/s)2;裂隙区煤岩体所受压力为-0.00078MPa,振动峰值速度能量为25.2(μm/s)2

(5)开展液态二氧化碳相变致裂煤层增透现场工业实验,分析并检验了相变有效致裂范围,验证了液态二氧化碳相变致裂增透机理。确定了实验工作面的有效抽采布孔间距为3.2m,对瓦斯抽采浓度及流量进行了现场检测,并对致裂增透效果进行了考察。

外文摘要:

In recent years, the liquid carbon dioxide phase change enhancement technology for coal bed methane has gained significant prominence, extensively applied in high methane content and low permeability mines throughout China. Presently, this action process involves two distinct stage: the stress wave stage and the high-pressure gas splitting stage, both aimed at improving coal seam permeability. Nevertheless, the division of the blasting action stage lacks effective verification, and a comprehensive understanding of the laws governing characteristic parameters during different action stages remains incomplete. As a result, the research into the synergistic mechanism between stress waves and high-pressure gas remains less than fully clear. This article squarely addresses vital issues, including the action stages of liquid carbon dioxide phase change blasting and the synergistic mechanisms between stress waves and high-pressure gas. Furthermore, it conducts experimental tests to unveil the change characteristics of velocity and strain fields within coal and rock formations during the process of liquid carbon dioxide phase change blasting. Determine the method of dividing different stages of action. Establishes a theoretical model that couples liquid carbon dioxide phase change blasting stress waves with high-pressure gas. Analyzed the synergistic mechanism of different stages of action. Utilizing numerical simulations, physical experiments, and on-site testing, this research offers an essential validation of the synergistic mechanism, bearing crucial theoretical and practical significance in the realm of mine gas disaster prevention and control. The key achievements are as follows:

(1) By using the constructed discriminant function, we delineated the stages of liquid carbon dioxide phase blasting. And conducted a comprehensive investigation into the characteristics of strain field and velocity field parameters across various phases. The study found that the process of liquid carbon dioxide phase blasting can be segmented into two

stages: occurring from 0 to 1.551 ms, The acceleration waveform only has a single peak, which conforms to the attenuation characteristics of stress waves and generates stress concentration near the blasting hole, which is the stage of stress wave action. The characterized by a peak acceleration of 25.46 g and peak energy of 9.48 × 1010 (μm/s)2. The highest value for the maximum principal strain is 0.0049, and the peak value of the discriminant function is 0.678. Subsequently, from 1.551 to 12.606 ms, the acceleration waveform has multiple continuous attenuation peaks that act for a relatively long time, which conforms to the characteristics of gas splitting. After the formation of stress localization bands, the crack tip gradually expands, marking the stage of carbon dioxide gas splitting. The peak acceleration of 6.527 g and peak energy of 1.47 × 107 (μm/s)2. The peak value of the maximum principal strain during this stage is 0.043, and the peak value of the discriminant function is 2.406.

(2) A theoretical model has been developed to understand the synergistic enhancement of fracturing through the interaction of stress waves and high-pressure gas during liquid carbon dioxide phase blasting. This model comprises the physical and theoretical aspects of liquid carbon dioxide phase change blasting. It analysis the mechanical characteristics within the two stages of stress wave and high-pressure carbon dioxide gas splitting, as well as a comprehensive examination of the evolving patterns of coal rock mass displacement and vibration speed during these distinct stages. Moreover, it defining the range of three zones influenced by stress wave action and an additional three zones introduced by the influence of high-pressure carbon dioxide gas. Theoretical analyses have been performed to comprehend the extent of damage and the effective cracking range.

(3) To validate the theoretical model of phase change blasting, a discrete element numerical calculation model was established, using the particle flow method. This model allowed for the elucidation of the principles evolving patterns stress fields, velocity fields, crack formations, and damage characteristics during the process of liquid carbon dioxide phase blasting. Additionally, it determination of the effective range of liquid carbon dioxide phase blasting. The synergistic mechanisms involving stress waves and high-pressure gas fracturing were thoroughly investigated. Under various initiation pressures (80 MPa, 120 MPa, 160 MPa, and 200 MPa), the effective extraction ranges for liquid carbon dioxide phase blasting were determined to be 2.92 m, 3.12 m, 3.34 m, and 3.44 m, respectively. The degree of damage sustained by coal and rock masses under different blasting pressures ranged from 0.660 to

0.845.

(4) Physical simulation experiments were undertaken to validate the theoretical model's effective cracking range and investigate the characteristics of coupling failure zones in the context of liquid carbon dioxide phase blasting. It was determined that the effective extraction range is 3.15m, the maximum principal strain of the physical model is 0.0125, and the vibration velocity of coal and rock masses primarily falls within the low-frequency range of 0~100 Hz. Within the crushing area, the pressure on the coal and rock mass at -0.0121 MPa, with a maximum vibration energy of 140 (μm/s)². In contrast, the pressure on the coal and rock mass within the fracture zone is -0.00078 MPa, while the peak vibration velocity energy reaches 25.2 (μm/s)².

(5) On-site industrial experiments were carried out to analysis and testing the methane extraction range. These experiments served to validate the underlying mechanism of liquid carbon dioxide phase change blasting. The optimal spacing between the methane extraction holes on the experimental working face was established at 3.2 m. Furthermore, methane extraction concentration and flow rates were directly assessed on-site to investigate the impact of fracturing and permeability enhancement.

参考文献:

[1] 张超林,蒲静轩,宋世豪,等.煤与瓦斯突出两相流研究现状及展望[J].煤炭科学技术.2023:1-11.

[2] 张遂安,刘欣佳,温庆志,等.煤层气增产改造技术发展现状与趋势[J].石油学报,2021,42(1):105-118.

[3] 袁亮.我国深部煤与瓦斯共采战略思考[J].煤炭学报,2016,41(1):1-6.

[4] 卢义玉,黄杉,葛兆龙,等.我国煤矿水射流卸压增透技术进展与战略思考[J].煤炭学报,2022,47(9):3189-3211.

[5] 谢和平,张茹,张泽天,等.深地科学与深地工程技术探索与思考[J/OL].煤炭学报:1-21.

[6] 高明忠,王明耀,谢晶,等.深部煤岩原位扰动力学行为研究[J].煤炭学报,2020, 45(8):2691-2703.

[7] 王恩元,张国锐,张超林,等.我国煤与瓦斯突出防治理论技术研究进展与展望[J].煤炭学报,2022,47(1):297-322.

[8] 谢和平,周宏伟,薛东杰,等.我国煤与瓦斯共采:理论、技术与工程[J].煤炭学报,2014,39(8):1391-1397.

[9] 张群,降文萍,姜在炳,等.我国煤矿区煤层气地面开发现状及技术研究进展[J].煤田地质与勘探,2023,51(1):139-158.

[10] Zhong J, Ge Z, Lu Y, et al. Prediction of fracture initiation pressure in multiple failure hydraulic fracturing modes: three-dimensional stress model considering borehole deformation[J]. Journal of Petroleum Science and Engineering, 2021, 199: 108264.

[11] Huang Q, Liu S, Cheng W, et al. Fracture permeability damage and recovery behaviors with fracturing fluid treatment of coal: an experimental study[J]. Fuel, 2020, 282: 118809.

[12] Adam A, Appiah-Adjei E, Adjei K, et al. Managed aquifer recharge assessment in the Nabogo Basin of Ghana using a combined electrical resistivity tomography infiltration method[J]. Modeling Earth Systems and Environment, 2023: 1-13.

[13] 杨娟,许思雨,戴俊,等.活化过硫酸铵溶液对煤样氧化增透的实验研究[J].煤炭学报,2020,45(4):1488-1498.

[14] 严敏,张一真,林海飞,等.液氮浸融对不同预制温度煤体损伤特性试验研究[J].煤炭学报,2020, 45(8):2813-2823.

[15] 张磊,陈帅,薛俊华,等.液氮致裂烟煤渗透率及其应力敏感性研究[J].采矿与安全工程学报,2020,37(2): 401-408.

[16] 林柏泉,王一涵,闫发志,等. NaCl溶液对电脉冲致裂煤体孔隙结构影响的实验研究[J].煤炭学报, 2018, 43(5):1328-1334.

[17] 鲍先凯,杨东伟,段东明,等.高压电脉冲水力压裂法煤层气增透的试验与数值模拟[J].岩石力学与工程学报,2017,36(10):2415-2423.

[18] Han R, Wu J, Zhou H, et al. Experiments on the characteristics of underwater electrical wire explosions for reservoir stimulation[J]. Matter and Radiation at Extremes 2020; 5(4): 047201.

[19] Liming Z, Manping Y. Simulation on the dynamic variation of downhole gas pressure during deflagration fracturing in screen completed well[J]. Arabian Journal of Geosciences, 2021, 14(4): 1-12.

[20] Afagwu C, Alafnan S, Weijermars R, et al. Multiscale and multiphysics production forecasts of shale gas reservoirs: new simulation scheme based on Gaussian pressure transients[J]. Fuel, 2023, 336: 127142.

[21] Zhao X, Huang B, Xu J. Experimental investigation on the characteristics of fractures initiation and propagation for gas fracturing by using air as fracturing fluid under true triaxial stresses[J]. Fuel, 2019, 236: 1496-1504.

[22] Li Z, Xu H, Zhang C. Liquid nitrogen gasification fracturing technology for shale gas development[J]. Journal of Petroleum Science and Engineering, 2016, 138: 253-256.

[23] Zhang X, Lu Y, Tang J, et al. Experimental study on fracture initiation and propagation in shale using supercritical carbon dioxide fracturing[J]. Fuel, 2017, 190: 370-378.

[24] Pan Y, Zheng M, Xing Z. Experimental study on the effect of charge structure of blasting on damage to dirt band in thin coal seam[C]. IOP Conference Series: Earth and Environmental Science, 2019, 300(2): 1-9.

[25] 李根生,王海柱,沈忠厚,等.超临界CO2射流在石油工程中应用研究与前景展望[J].中国石油大学学报(自然科学版),2013,37(5):76-80.

[26] Mukherjee M, Misra, S. A review of experimental research on Enhanced Coal Bed Methane (ECBM) recovery via CO2 sequestration[J]. Earth-Science Reviews 2018; 179:392-410.

[27] Middleton R, Carey J, Currier R, et al. Shale gas and non-aqueous fracturing fluids: Opportunities and challenges for supercritical CO2[J]. Applied Energy, 2015; 147: 500- 509.

[28] Zhang Z, Pan S, Li H, et al. Recent advances in carbon dioxide utilization[J]. Renewable & Sustainable Energy Reviews, 2020, 125: 109799.

[29] Jia B, Tsau J, Barati R. A review of the current progress of CO2 injection EOR and carbon storage in shale oil reservoirs[J]. Fuel, 2019; 236:404-427.

[30] Middleton R, Gupta R, Hyman J, et al. The shale gas revolution: barriers, sustainability, and emerging opportunities[J]. Applied Energy, 2017;199:88-95.

[31] Perera M. A comprehensive overview of CO2 flow behaviour in deep coal seams[J]. Energies, 2018, 11(4): 906.

[32] Long D, Ye F, Zhao G. Optimization and characterization of wheat bran modified by in situ enhanced CO2 blasting extrusion[J]. LWT-Food Science and Technology, 2014, 59(2): 605-611.

[33] 周西华,门金龙,宋东平,等.液态二氧化碳爆破煤层增透最优钻孔参数研究[J].岩石力学与工程学报,2016, 35(3):524-529.

[34] Donze F, Bouchez J, Magnier S. Modeling fractures in rock blasting[J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(8): 1153-1163.

[35] Rabczuk T, Eibl J. Modelling dynamic failure of concrete with meshfree methods[J]. International Journal of Impact Engineering, 2006, 32(11): 1878-1897.

[36] Kutter H, Fairhurst C. On the fracture process in blasting[C]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. Pergamon, 1971, 8(3): 181-202.

[37] Nilson R, Proffer W, Duff R. Modelling of gas-driven fractures induced by propellant combustion within a borehole[C]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. Pergamon, 1985, 22(1): 3-19.

[38] 谢晓锋,李夕兵,李启月,等.液态二氧化碳相变破岩桩井开挖技术[J].中南大学学报(自然科学版),2018,49(8): 2031-2038.

[39] Wang Y. Analysis of dynamic characteristics of through-wall cracks between 2 boreholes in the directed fracture controlled blasting[J]. Fatigue & Fracture of Engineering Materials & Structures, 2018, 41(2): 273-286.

[40] Yan H, Zhang J, Zhou N, et al. Staged numerical simulations of supercritical CO2 fracturing of coal seams based on the extended finite element method[J]. Journal of Natural Gas Science and Engineering, 2019, 65: 275-283.

[41] Zhang W, Xu K, Lei Y, et al. Evolutionary features in damage and destruction of gas-rich coal seam by CO2 phase-transition blasting[J]. Ekoloji, 2018, 27(106): 1605-1613.

[42] 徐颖,程玉生.国外高压气体爆破[J].煤炭科学技术,1997,25(5):52-53.

[43] Gupta D, Bobier D. The history and success of liquid CO2 and CO2/N2 fracturing system[J]. SPE 40016,1998.

[44] Reznik A, Aingh P, Foley W. An analysis of the effect of CO2 injection on the recovery of in-situ methane from Bituminous coal: an experimental simulation[J]. SPE Journal. 1984,24(5):521-528.

[45] 张亚蒲,杨正明,鲜保安.煤层气增产技术[J].特种油气藏,2006,13(1):95-98.

[46] Gan Q, Elsworth D, Alpern J, et al. Breakdown pressures due to infiltration and exclusion in finite length boreholes[J]. Journal of Petroleum Science & Engineering, 2015, 127:329-337.

[47] Stevens S, Schoeling L, Pekot L. CO2 injection for enhanced coalbed methane recovery:pro ject screening and design[C]. Proceedings of the 1993 International Coalbed Methane Symposium,1999.

[48] 郭志兴.液态二氧化碳爆破筒及现场试爆[J].爆破,1994,6(3):72-74.

[49] 王会斌,王辉跃,吝玉晓.山西襄矿集团上良煤业32206工作面二氧化碳预裂爆破增透消突试验研究[J].华北科技学院学报,2015,12(2):33-36.

[50] 张春华,王继仁,张子明,等.液态二氧化碳防灭火装备及其工程应用[J].科技导报,2013,31(18):44-48.

[51] 王惠明.二氧化碳预裂增透瓦斯抽采技术的应用—以宏远煤业150103运输顺槽掘进工作面为例[J].技术与市场,2014,21(12):53-55.

[52] Yang X, Wen G, Sun H, et al. Environmentally friendly techniques for high gas content thick coal seam stimulation-multi-discharge CO2 fracturing system[J]. Journal of Natural Gas Science and Engineering, 2019, 61: 71-82.

[53] 文虎,李珍宝,王振平,等.煤层注液态二氧化碳压裂增透过程及裂隙扩展特征试验[J].煤炭学报,2016,41(11):2793-2799.

[54] 樊世星,文虎,金永飞,等.穿层钻孔液态二氧化碳压裂煤层起裂压力模型探究和工程验证[J].岩石力学与工程学报,2021,40(4):703-712.

[55] 张良,齐庆新,Ren T,等.基于显微CT扫描和统计强度的煤岩损伤破裂特性研究[J].煤炭科学技术.2023.1-16.

[56] 王世斌,侯恩科,王双明,等.煤炭安全智能开采地质保障系统软件开发与应用[J].煤炭科学技术,2022,50(7):13-24.

[57] 齐庆杰,刘文岗,王安虎,等.地震诱发煤矿次生灾害隐患排查体系构建[J].煤炭科学技术,2022,50(1):134-141.

[58] Falcon-Suarez I, Papageorgiou G, Jin Z, et al. CO2‐brine substitution effects on ultrasonic wave propagation through sandstone with oblique fractures[J]. Geophysical Research Letters, 2020, 47(16): e2020GL088439.

[59] Hu S, Pang S, Yan Z. A new dynamic fracturing method: deflagration fracturing technology with carbon dioxide[J]. International Journal of Fracture, 2019, 220(1): 99-111.

[60] Zhang G, Ranjith P, Fu X, et al. Pore-fracture alteration of different rank coals: Implications for CO2 sequestration in coal[J]. Fuel, 2020, 289:119801.

[61] Liu C, Sang S, Fan X, et al. Influences of pressures and temperatures on pore structures of different rank coals during CO2 geological storage process[J]. Fuel, 2020,259:116273.

[62] Meng M, Qiu Z. Experiment study of mechanical properties and microstructures of bituminous coals influenced by supercritical carbon dioxide[J]. Fuel, 2018,219:223-238.

[63] 林海飞,蔚文斌,李树刚,等.煤体吸附CH4及CO2热力学特性试验研究[J].中国安全科学学报,2018, 28(6):129-134.

[64] Yu W, Lashgari H, Wu K, et al. CO2 injection for enhanced oil recovery in Bakken tight oil reservoirs[J]. Fuel, 2015, 159: 354-363.

[65] 丛日超,王海柱,李根生,等.超临界CO2聚能压裂开发煤层气可行性研究[J].煤炭学报:1-10.

[66] Cong Z, Li Y, Pan Y, et al. Study on CO2 foam fracturing model and fracture propagation simulation[J]. Energy, 2022,238:121778.

[67] 郑永,王海柱,李根生,等.超临界CO2压裂迂曲裂缝内支撑剂运移特征[J].天然气工业,2022,42(3):71-80.

[68] Yan H, Zhang J, Li B, et al. Crack propagation patterns and factors controlling complex crack network formation in coal bodies during tri-axial supercritical carbon dioxide fracturing[J]. Fuel, 2021;286(1):119381.

[69] 雷云.低渗透高瓦斯煤层二氧化碳相变致裂增透理论及实验研究[D].西南石油大学,2018.

[70] Zhang Y, Deng J, Deng H, et al. Peridynamics simulation of rock fracturing under liquid carbon dioxide blasting[J]. International Journal of Damage Mechanics,2019,28(7): 1038-1052.

[71] Guo S, Cao Y, Zhang J, et al. Pore-microfracture structure alteration of coal induced by high-pressure CO2 gasfracturing[J]. Energy & Fuels, 2023, 37(6): 4341-4348.

[72] Chen H, Hu Y, Kang Y, et al. Advantages of supercritical CO2 compound fracturing in shale on fracture geometry, complexity and width[J]. Journal of Natural Gas Science and Engineering, 2021,93:104033.

[73] Zhao H, Wu K, Huang Z, et al. Numerical model of CO2 fracturing in naturally fractured reservoirs[J]. Engineering Fracture Mechanics, 2021, 244: 107548.

[74] Mollaali M, Ziaei-Rad V, Shen Y. Numerical modeling of CO2 fracturing by the phase field approach[J]. Journal of Natural Gas Science and Engineering, 2019, 70: 102905.

[75] 杨仁树,左进京,杨国梁.切缝药包定向控制爆破的试验研究[J].振动与冲击,2018,37(24):24-29.

[76] Sampath K, Perera M, Ranjith P, et al. Qualitative and quantitative evaluation of the alteration of micro-fracture characteristics of supercritical CO2-interacted coal[J]. The Journal of Supercritical Fluids, 2019, 147: 90-101.

[77] Xing H, Wu G, Dehkhoda S, et al. Fracture and mechanical characteristics of CO2-saturated sandstone at extreme loading conditions[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 117: 132-141.

[78] Shang Z, Wang H, Li B, et al. Fracture processes in coal measures strata under liquid CO2 phase transition blasting[J]. Engineering Fracture Mechanics, 2021, 254: 107902.

[79] Cai C, Kang Y, Yang Y, et al. The effect of shale bedding on supercritical CO2 jet fracturing: a experimental study[J]. Journal of Petroleum Science and Engineering, 2020, 195: 107798.

[80] Zhang W, Wang C, Guo T, et al. Study on the cracking mechanism of hydraulic and supercritical CO2 fracturing in hot dry rock under thermal stress[J]. Energy, 2021,221: 119886.

[81] Fan S, Zhang D, Wen H, et al. Enhancing coalbed methane recovery with liquid CO2 fracturing in underground coal mine: from experiment to field application[J]. Fuel, 2021; 290:119793.

[82] Hou B, Cui Z. Vertical fracture propagation behavior upon supercritical carbon dioxide fracturing of multiple layers[J]. Engineering Fracture Mechanics, 2023, 277: 108913.

[83] Skurtveit E, Aker E, Soldal M, et al. Experimental investigation of CO2 breakthrough and flow mechanisms in shale[J]. 2012,18(1):3-15.

[84] Zou Y, Li N, Ma X, et al. Experimental study on the growth behavior of supercritical CO2-induced fractures in a layered tight sandstone formation[J]. Journal of Natural Gas Science and Engineering, 2018, 49: 145-156.

[85] 张科,张凯.裂隙砂岩变形破裂过程中应变场灰度及纹理特征分析[J].煤炭学报,2021,46(4):1253-1262.

[86] 白鑫,张东明,王艳,等.液态二氧化碳相变射流压力变化及其煤岩致裂规律[J].中国矿业大学学报,2020,49(4): 661-670.

[87] Li M, Liu Z, Zhou Y, et al. A small-scale experimental study on the initial burst and the heterogeneous evolution process before CO2 BLEVE[J]. Journal of hazardous materials, 2018, 342: 634-642.

[88] Zhang Y, Deng J, Ke B, et al. Experimental study on explosion pressure and rock breaking characteristics under liquid carbon dioxide blasting[J]. Advances in Civil Engineering, 2018, 2018:1-9.

[89] Ke B, Zhou K, Ren G, et al. Positive phase pressure function and pressure attenuation characteristic of a liquid carbon dioxide blasting system[J]. Energies, 2019, 12(21): 4134.

[90] 李芝绒,王胜强,蒋海燕,等.圆筒装置内爆炸压力载荷特性实验研究[J].爆炸与冲击,2019,39(10):14-21.

[91] 吴兆伟,施浙杭,赵辉,等.表面张力变化对含气泡液体射流破裂的影响[J].化工学报,2021,72(3):1283- 1294.

[92] 杜青,杨子明,白富强,等.高环境压力下幂律流体射流液滴粒度特性试验[J].天津大学学报(自然科学与工程技术版),2017,50(7):689-695.

[93] 粟登峰,康勇,王晓川,等.高压水射流螺旋式切槽辅助松动爆破模型[J].东北大学学报(自然科学版),2016, 37(12):1778-1783.

[94] 仇滔,万波,雷艳,等.高压甲烷圆形喷嘴的射流特性仿真[J].内燃机学报,2020,38(4): 320-325.

[95] 张孝石,许昊,王聪,等.水流冲击超声速气体射流实验研究[J].物理学报,2017,66(5): 197-207.

[96] 张玉磊,李芝绒,蒋海燕,等.温压炸药内爆炸压力特性及威力试验研究[J].兵工学报,2018,39(7):1333-1338.

[97] Shang Z, Wang H, Li B, et al. Experimental investigation of BLEVE in liquid CO2 phase-transition blasting for enhanced coalbed methane recovery[J]. Fuel, 2021, 292: 120283.

[98] Fan Y, Qin B, Zhou Q, et al. Liquid CO2 phase transition fracturing technology and its application in enhancing gas drainage of coal mines[J]. Adsorption Science & Technology, 2020, 38(9-10): 393-412.

[99] Wang L, Yao B, Xie H, et al. CO2 injection-induced fracturing in naturally fractured shale rocks[J]. Energy, 2017, 139: 1094-1110.

[100] Ruiz J, Pedros M, Tallon J, et al. Micro and nano cellular amorphous polymers (PMMA, PS) in supercritical CO2 assisted by nanostructured CO2-philic block copolymers-one step foaming process[J]. The Journal of Supercritical Fluids, 2011, 58(1): 168-176.

[101] 孙琦,董奇,杨沙,等.内爆炸准静态压力对球形容器弹性动态响应的影响[J].含能材料,2019,27(8): 698- 707.

[102] 贺振国,李根生,王海柱,等.超临界二氧化碳射流中的颗粒跟随及影响因素[J].石油学报,2017,38(4): 475-484.

[103] 贺振国,李根生,石李保,等.围压对超临界二氧化碳射流冲击力与冲蚀射孔的影响[J].振动与冲击,2017, 36(2):65-71.

[104] 王海柱,沈忠厚,李根生.超临界二氧化碳钻井井筒压力温度耦合计算[J].石油勘探与开发,2011,38(1):97-102.

[105] 程宇雄,李根生,王海柱,等.超临界二氧化碳喷射压裂孔内流场特性[J].中国石油大学学报(自然科学版),2014,38(4):81-86.

[106] 刘勇,何岸,魏建平,等.高压气体射流破煤应力波效应分析[J].煤炭学报,2016,41(7): 1694-1700.

[107] 奚小波,张瑞宏,单翔,等.基于土体裂隙迹线方程和土体扰动模型的气爆松土参数优化[J].农业工程学报,2018,34(6):15-24.

[108] 冯春,李世海,周东,等.爆炸载荷作用下岩石损伤破裂过程的数值分析[J].岩土工程学报,2014,36(7):1262-1270.

[109] 张焕好,郭则庆,王瑞琦,等.水下超声速气体射流的初始流动特性研究[J].振动与冲击,2019,38(6):88-93.

[110] 王超,施红辉,汪剑锋.液体中可压缩气体射流的瞬态特性[J].化工学报,2016,67(6):2291-2299.

[111] 孙龙泉,张忠宇,丁建军,等.可压缩流体射流冲击平板的压力特性研究[J].振动与冲击,2013, 32(3):178-181.

[112] 孙松,高康华,邱艳宇,等.气体泄爆压力分步计算模型及其湍流修正[J].爆炸与冲击,2019,39(5):92-100.

[113] 刘天奇,李雨成,罗红波.不同变质程度煤尘爆炸压力特性变化规律实验研究[J].爆炸与冲击,2019,39(9):158-165.

[114] Schoenberg M. Sayers C. Seismic anisotropy of fractured rock[J] Geophysics, 1995, 60(1): 204-211.

[115] 王赟,石瑛,杨德义.弱度比在裂隙含流体检测中的应用[J].地球物理学报,2008,51(4):1152-1155.

[116] 杨德义,王觉,张美根.裂隙弱度参数的波场特征[J].地球物理学报,2011,54(3):862-866.

[117] 杨钢,高隆隆,李宝仁,等.新型高压电-气伺服阀阀口气体射流数值研究[J].机械工程学报,2013,49(2): 165-173.

[118] 王仲琦,张奇,白春华.孔深影响爆炸应力波特性的数值分析[J].岩石力学与工程学报,2002(4):550-553.

[119] 徐文龙,王成,徐斌.超聚能射流形成过程机理研究[J].兵工学报,2018,39(2):261-268.

[120] 刘伟,李火坤,刘成梅,等.基于FLUENT的动态高压微射流内部孔道流场的数值模拟[J].高压物理学报, 2012,26(1):113-120.

[121] Fan C, Yang L, Sun H, et al. Recent advances and perspectives of CO2-enhanced coalbed methane: experimental, modeling, and technological development[J]. Energy & Fuels, 2023, 37(5): 3371-3412.

[122] 孙可明,辛利伟,吴迪,等.初应力条件下超临界二氧化碳气爆致裂规律模拟研究[J].振动与冲击,2018,37(12): 232-238.

[123] 孙可明,辛利伟,吴迪.超临界二氧化碳气爆煤体致裂机理实验研究[J].爆炸与冲击[J],2018,38(2):302-308.

[124] 徐永强,李紫晶,郭冀隆,等.页岩储层-超临界CO2-模拟压裂液相互作用实验研究及其环境意义[J].地学前缘,2018,25(4):245-254.

[125] 陈鹏,孙可明,张宇.超临界CO2气爆非均质煤体破裂规律模拟研究[J].计算力学学报, 2021,38(6):770-778.

[126] Zhang Y, Deng J, Deng H, et al. Peridynamics simulation of rock fracturing under liquid carbon dioxide blasting[J]. International Journal of Damage Mechanics, 2019, 28(7): 1038-1052.

[127] Peng P, Ju Y, Wang Y, et al. Numerical analysis of the effect of natural microcracks on the supercritical CO2 fracturing crack network of shale rock based on bonded particle models[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2017, 41(18): 1992-2013.

[128] He W, Lian H, Liang W, et al. Experimental study of supercritical CO2 fracturing across coal-rock interfaces[J]. Rock Mechanics and Rock Engineering, 2023, 56(1): 57-68.

[129] Wang J, Sun B, Li H, et al. Phase state control model of supercritical CO2 fracturing by temperature control[J]. International Journal of Heat and Mass Transfer, 2018, 118: 1012 -1021.

[130] Yan H, Zhang J, Zhou N, et al. Staged numerical simulations of supercritical CO2 fracturing of coal seams based on the extended finite element method[J]. Journal of Natural Gas Science and Engineering, 2019, 65: 275-283

[131] 梁洪达,郭鹏飞,孙鼎杰,等.不同聚能爆破模式应力波传播及裂纹扩展规律研究[J].振动与冲击,2020,39(4):157-164.

[132] 张社荣,孔源,王高辉.水下和空中爆炸冲击波传播特性对比分析[J].振动与冲击,2014,33(13):148-153.

[133] 郭德勇,赵杰超,朱同功,等.双孔聚能爆破煤层裂隙扩展贯通机理[J].工程科学学报,2020,42(12): 1613-1623.

[134] 徐颖,袁璞.爆炸荷载下深部围岩分区破裂模型试验研究[J].岩石力学与工程学报,2015,34(S2):3844-3851.

[135] 袁璞.爆炸荷载作用下深部岩体分区破裂模型试验研究[D].安徽理工大学,2016.

[136] 王启睿,孔福利,范俊奇,等.高强砂浆材料爆炸作用下破坏分区试验研究[J].地下空间与工程学报,2018,14(6):1505-1511.

[137] 潘红宇,王康,张天军,等.二氧化碳气爆含控制孔煤层裂隙演化颗粒流模拟[J].西安科技大学学报,2021,41(2):230-236.

[138] 陈昊祥,王明洋,李杰.深部岩体变形破坏的特征能量因子与应用[J].爆炸与冲击,2019,39(8):41-51.

[139] 周大伟,张广清.超临界二氧化碳压裂诱导裂缝机理研究综述[J].石油科学通报,2020. 5(2):239-253.

[140] Zhou D, Zhang G, Zhang X, et al. Effects of super-critical CO2 phase change on dynamic multi-fracturing process in reservoir stimulation[C]//51st US Rock Mechanics/ Geomechanics Symposium. OnePetro, 2017.

[141] 李杰,程怡豪,徐天涵,等.岩石类介质侵彻效应的理论研究进展[J].爆炸与冲击,2019, 39(8):4-29.

[142] 沈俊,张向阳,陈安敏,等.爆炸应力波在洞室围岩中的分布及洞库稳定性研究[J].现代隧道技术,2014, 51(5):55-60.

[143] 何翔,徐翔云,孙桂娟,等.弹体高速侵彻混凝土的效应实验[J].爆炸与冲击,2010,30(1): 1-6.

[144] 钱七虎.岩石爆炸动力学的若干进展[J].岩石力学与工程学报,2009, 28(10):1945- 1968.

[145] Xu J, Zhai C, Ranjith P, et al. Petrological and ultrasonic velocity changes of coals caused by thermal cycling of liquid carbon dioxide in coalbed methane recovery[J]. Fuel, 2019, 249: 15-26.

[146] Vorobiev O. On various mechanisms of shear wave generation from underground chemical explosions in hard rocks[J]. Geophysical Journal International, 2023, 232(3): 2133-2159.

[147] Chen E. Transient stress analysis of high energy gas fracture experiments[J]. Theoretical and applied fracture mechanics, 1984, 2(3): 217-221.

[148] McHugh S. Crack extension caused by internal gas pressure compared with extension caused by tensile stress[J]. International Journal of Fracture, 1983, 21(3): 163-176.

[149] Pyra J, Kłaczyński M. Issues of data acquisition and interpretation of paraseismic measuring signals triggered by the detonation of explosive charges[J]. Sensors, 2021, 21(4): 1290.

[150] Jiang Y, Qin C, Kang Z, et al. Experimental study of supercritical CO2 fracturing on initiation pressure and fracture propagation in shale under different triaxial stress conditions[J]. Journal of Natural Gas Science and Engineering, 2018, 55: 382-394.

[151] Zhang X, Wang J, Gao F, et al. Impact of water, nitrogen and CO2 fracturing fluids on fracturing initiation pressure and flow pattern in anisotropic shale reservoirs[J]. Journal of Natural Gas Science and Engineering, 2017, 45: 291-306.

[152] Du D, Liu P, Teng J, et al. Numerical Simulation of Multicrack Propagation Dynamics in Supercritical CO2 Fracturing of Tight Reservoirs[J]. Energy & Fuels, 2022, 36(22): 13526-13539.

[153] Ha S, Kim Y, Yun T. Development of microcracks in granitic rock by liquid CO2 fracturing[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 146: 104876.

[154] 来兴平,崔峰,曹建涛,等.特厚煤体爆破致裂机制及分区破坏的数值模拟[J].煤炭学报,2014,39(8): 1642-1649.

[155] 何敏,李宁,高焕焕,等.带相变瞬态温度场问题的扩展有限元解析[J].冰川冻土,2016, 38(4):1044-1051.

[156] 陈莉静,冯纪米,吴小超.高能气体瞬态破岩特性试验研究[J].岩石力学与工程学报,2020,39(S2):3271-3277.

[157] Zeng Y, Li H, Xiang X, et al. Research on time-frequency characteristics for blasting vibration signal of CO2 blasting by frequency slice wavelet transform[J]. Engineering Letters, 2020, 28(4): 1047-1057.

[158] 李宁,陈莉静,张平.爆生气体驱动岩石裂缝动态扩展分析[J].岩土工程学报,2006,28(4):460-463.

[159] 陈莉静,李宁,王俊奇.油井爆生气体对岩石劈裂作用机制探索[J].岩石力学与工程学报,2006,25(11): 2369-2372.

[160] 杨立云,杨仁树,许鹏,等.初始压应力场对爆生裂纹行为演化效应的实验研究[J].煤炭学报,2013,38(3):404-410.

[161] Yang J, Lian H, Li L. Fracturing in coals with different fluids: an experimental comparison between water, liquid CO2, and supercritical CO2[J]. Scientific Reports, 2020, 10(1): 18681.

[162] Zhou D, Zhang G, Wang Y, et al. Experimental investigation on fracture propagation modes in supercritical carbon dioxide fracturing using acoustic emission monitoring[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 110: 111-119.

[163] Jiang Z, Quan X, Tian S, et al. Permeability-enhancing technology through liquid CO2 fracturing and its application[J]. Sustainability, 2022, 14(16): 10438.

[164] 林俊德.封闭空间的化爆荷载与沙墙消波[J].解放军理工大学学报(自然科学版), 2007(6):559-566.

[165] 潘强,张继春,石洪超,等.单孔不耦合装药爆破的岩体损伤分布特征研究[J].振动与冲击,2019, 38(18): 264-269.

[166] 陈俊桦,张家生,李新平.基于岩石爆破损伤理论的预裂爆破参数研究及应用[J].岩土力学,2016,37(5):1441-1450.

[167] Li J, Pan H, Gong W, et al. Study on rock breaking characteristics of stress wave and blast-induced gas during CO2 gas blasting[J]. Journal of Petroleum Science and Engineering, 2022, 219: 111142.

[168] Zhang X, Zhu W, Xu Z, et al. A review of experimental apparatus for supercritical CO2 fracturing of shale[J]. Journal of Petroleum Science and Engineering 2022,208(C): 109515.

[169] Zhou S, Luo X, Jiang N, et al. Ground vibration characteristics of carbon dioxide phase transition fracturing: an in situ test[J]. Bulletin of Engineering Geology and the Environment, 2021: 1-19.

[170] Ruan R, Pan Z, Wang X, et al. Study on ground vibration characteristics induced by liquid CO2 blasting technique in bench excavation[J]. Journal of Vibroengineering, 2022, 24(5): 904-920.

[171] Wang B, Li H, Xing H, et al. Modelling of gas-driven fracturing and fragmentation in liquid CO2 blasting using finite-discrete element method[J]. Engineering Analysis with Boundary Elements, 2022, 144: 409-421.

[172] Chang J, Sun L, Dai B, et al. Research on the Fracture Properties and Mechanism of Carbon Dioxide Blasting Based on Rock-like Materials[J]. Minerals, 2023, 13(1): 3.

[173] Ruan R, Pan Z, Wang X, et al. Study on ground vibration characteristics induced by liquid CO2 blasting technique in bench excavation[J]. Journal of Vibroengineering, 2022, 24(5): 904-920.

[174] Li Q, Chen G, Luo D, et al. An experimental study of a novel liquid carbon dioxide rock-breaking technology[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 128: 104244.

[175] Li B, Wang E, Hu S, et al. A Study of vibration velocity attenuation induced by pneumatic rock breaking with carbon dioxide ice powder for safety assessment[J]. Rock Mechanics and Rock Engineering, 2021, 54: 6481-6493.

[176] Torres V, Silveira L, Lopes P, et al. Assessing and controlling of bench blasting-induced vibrations to minimize impacts to a neighboring community[J]. Journal of Cleaner Production, 2018, 187: 514-524.

[177] Zhou D, Zhang G. A review of mechanisms of induced fractures in SC-CO2 fracturing[J]. Petroleum Science Bulletin 2020;5(2):239-253.

[178] Khandelwal M, Singh T. Prediction of blast induced ground vibrations and frequency in opencast mine: a neural network approach[J]. Journal of sound and vibration, 2006, 289(4-5): 711-725.

[179] 文虎,李珍宝,王振平,等.煤层注液态CO2压裂增透过程及裂隙扩展特征试验[J].煤炭学报,2016,41(11):2793-2799.

[180] Pan H, Li J, Zhang T, et al. Study on crack propagation of the CO2 presplitting blasting empty hole effect in coal seam[J]. Energy Science & Engineering, 2020, 8(11): 3898- 3908.

[181] Ahamed M, Perera M, Matthai S, et al. Coal composition and structural variation with rank and its influence on the coal-moisture interactions under coal seam temperature conditions – a review article[J]. Journal of Petroleum Science and Engineering, 2019, 180: 901-917.

[182] Skoczylas N, Dutka B, Sobczyk J. Mechanical and gaseous properties of coal briquettes in terms of outburst risk[J]. Fuel, 2014, 134: 45-52.

[183] Zhai C, Xu J, Liu S, et al. Fracturing mechanism of coal-like rock specimens under the effect of non-explosive expansion[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 103: 145-154.

[184] Wang G, Wu M, Wang R, et al. Height of the mining-induced fractured zone above a coal face[J]. Engineering Geology, 2017, 216: 140-152.

[185] Pu Y, Apel D, Hall R. Using machine learning approach for microseismic events recognition in underground excavations: Comparison of ten frequently-used models[J]. Engineering Geology, 2020, 268: 105519.

[186] Wang D, Zhao Y, Yi C, et al. Sparsity guided empirical wavelet transform for fault diagnosis of rolling element bearings[J]. Mechanical systems and signal processing, 2018, 101: 292-308.

[187] Zhou S, Luo X, Jiang N, et al. Ground vibration characteristics of carbon dioxide phase transition fracturing: an in situ test[J]. Bulletin of Engineering Geology and the Environment, 2021, 80: 9029-9047.

[188] Zhou S, Yao Y, Luo X, et al. Dynamic response evaluation for single-hole bench carbon dioxide blasting based on the novel SSA–VMD–PCC method[J]. International Journal of Geomechanics, 2023, 23(1): 04022248.

[189] Tian X, Song Z, Wang J. Study on the propagation law of tunnel blasting vibration in stratum and blasting vibration reduction technology[J]. Soil Dynamics and Earthquake Engineering, 2019, 126: 105813.

[190] Wang K, Pan H, Zhang T, et al. Experimental study on the radial vibration characteristics of a coal briquette in each stage of its life cycle under the action of CO2 gas explosion[J]. Fuel, 2022, 320: 123922.

[191] BSI B S. 5228-2 Code of practice for noise and vibration control on construction and open sites[J]. Vibration. BSI, London, 2009.

[192] Yan Y, Cui Y, Guo J, et al. Landslide reconstruction using seismic signal characteristics and numerical simulations: case study of the 2017 "6.24" Xinmo landslide[J]. Engineering Geology, 2020,270(5):105582.

[193] Orlhac F, Soussan M, Maisonobe J, et al. Tumor texture analysis in 18F-FDG PET: relationships between texture parameters, histogram indices, standardized uptake values, metabolic volumes, and total lesion glycolysis[J]. Journal of Nuclear Medicine, 2014, 55(3): 414-422.

[194] Hodgdon T, McInnes M, Schieda N, et al. Can quantitative CT texture analysis be used to differentiate fat-poor renal angiomyolipoma from renal cell carcinoma on unenhanced CT images?[J]. Radiology, 2015, 276(3): 787-796.

[195] Liu L, Chen J, Fieguth P, et al. From BoW to CNN: Two decades of texture representation for texture classification[J]. International Journal of Computer Vision, 2019, 127(1): 74-109.

[196] 方致远.裂隙岩体破裂过程多元监测信息响应规律及其前兆试验研究[D].安徽理工大学,2022.

[197] Xu J, Liu F, Chen Z, et al. Digital features of main constituents in granite during crack initiation and propagation[J]. Engineering Geology, 2017, 225: 96-102.

[198] Sun C, Cao S, Li Y. Mesomechanics coal experiment and an elastic-brittle damage model based on texture features[J]. International Journal of Mining Science and Technology, 2018, 28(4): 639-647.

[199] Huang Y, Yang S, Hall M. Fracture and strain field evolution in faulted brine-saturated sandstone[J]. Journal of Testing and Evaluation, 2018, 48(2): 1206-1225.

[200] Liu P, Guo J, Chamnongthai K, et al. Fusion of color histogram and LBP-based features for texture image retrieval and classification[J]. Information Sciences, 2017, 390: 95-111.

[201] Gonzalez R. Digital image processing[M]. Pearson education india, 2009.

[202] Singh K, Kapoor R. Image enhancement via median-mean based sub-image-clipped histogram equalization[J]. Optik, 2014, 125(17): 4646-4651.

[203] Haralick R, Shanmugam K, Dinstein I. Textural features for image classification[J]. IEEE Transactions on systems, man, and cybernetics, 1973 (6): 610-621.

[204] Hashemi S, Karimi A, Tavana M. An integrated green supplier selection approach with analytic network process and improved Grey relational analysis[J]. International Journal of Production Economics, 2015, 159: 178-191.

[205] Li X, Wang Z, Zhang L, et al. State-of-health estimation for Li-ion batteries by combing the incremental capacity analysis method with grey relational analysis[J]. Journal of Power Sources, 2019, 410: 106-114.

[206] 朱红光,谢和平,易成,等.岩石材料微裂隙演化的CT识别[J].岩石力学与工程学报,2011,30(6):1230-1238.

[207] Giorgio S. Equilibrium constants from a modified Redlich-Kwong equation of state[J]. Chemical Engineering Science, 1972,27(6):1197-1203.

[208] Huang W. Transverse jet in supersonic crossflows[J]. Aerospace Science and Technology, 2016,50:183-195.

[209] Arscott F. Periodic differential equations: an introduction to Mathieu, Lamé, and allied functions[M]. Elsevier, 2014.

[210] Xu Q, Li Y, Lu J, et al. The use of surrounding rock loosening circle theory combined with elastic-plastic mechanics calculation method and depth learning in roadway support[J]. PLoS One, 2020, 15(7): e0234071.

[211] Swenson D, Taylor L. Analysis of gas fracture experiments including dynamic crack formation[R]. Sandia National Labs., Albuquerque, NM (USA), 1982.

[212] Kopera M, Gahounzo Y, Enderlin E, et al. Non-hydrostatic unified model of the ocean with application to ice/ocean interaction modeling[J]. GEM-International Journal on Geomathematics, 2023, 14(1): 2.

[213] Tashiro T, Fukunaga R, Utsunomiya D, et al. Flow features of underexpanded microjets emerging from a round convergent nozzle[J]. Experiments in Fluids, 2023, 64(3): 55.

[214] Paine A, Please C. Asymptotic analysis of a star crack with a central hole[J]. International journal of engineering science, 1993, 31(6): 893-898.

[215] Haeri H, Shahriar K, Marji M, et al. Simulating the bluntness of TBM Disc cutters in rocks using displacement discontinuity method[C]. 13th International Conference on Fracture(ICF13), 2013.

[216] Haeri, H. Experimental crack analyses of concrete-like CSCBD specimens using a higher order DDM[J]. Computers and Concrete. 2015, 16, 881-896.

[217] 谢和平.分形-岩石力学导论[M].北京:科学出版社,1997.

[218] 杨仁树,许鹏.爆炸作用下介质损伤破坏的分形研究[J].煤炭学报,2017,42(12): 3065-3071.

[219] Taylor L, Chen E, Kuszmaul J. Microcrack-induced damage accumulation in brittle rock under dynamic loading[J]. Computer methods in applied mechanics and engineering, 1986, 55(3): 301-320.

[220] 余寿文,冯西桥.损伤力学[M].北京:清华大学出版社,1997.

[221] 陈闻潇,石崇,单治钢,等.基于OpenFOAM与PFC耦合方法的水下滑坡数值模拟研究[J].工程地质学报,2021,29(6):1823-1830.

[222] 石崇,张强,王盛年,等.颗粒流(PFC5.0)数值模拟技术及应用[M].北京:中国建筑工业出版社,2018.

[223] Yin P F, Yang S Q, Gao F, et al. Experiment and DEM simulation study on mechanical behaviors of shale under triaxial cyclic loading and unloading conditions[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2023, 9(1): 10.

[224] Li H, Li S, Xiao W. Star power factor correction architecture[J]. IEEE Transactions on Power Electronics, 2022, 38(3): 3531-3545.

[225] 白鑫.液态二氧化碳相变射孔致裂煤岩体增透机理及应用研究[D].重庆大学,2019.

[226] 李翼祺,马素贞,爆炸力学[M].北京:科学出版社,1992.

[227] Chai J, Liu Y, OuYang Y, et al. Application of digital image correlation technique for the damage characteristic of rock-like specimens under uniaxial compression[J]. Advances in Civil Engineering, 2020, 1-11.

[228] Wang L, Yao B, Xie H, et al. CO2 injection-induced fracturing in naturally fractured shale rocks[J]. Energy, 2017, 139: 1094-1110.

[229] Gao H, Xie Y, Cheng Z, et al. A minireview of the influence of CO2 injection on the pore structure of reservoir rocks: advances and outlook[J]. Energy & Fuels, 2022, 37(1): 118-135.

[230] Li D, Luo P, Peng X, et al. Investigation on coalbed methane fracturing using supercritical CO2 graphene cement slurry system[J]. Energies, 2022, 15(20): 7624.

[231] Shugang L, Xuanhong D, Pengxiang Z, et al. Experimental study on crack evolution characteristics of rock-like materials under different strain rates[J]. Journal of Geophysics and Engineering, 2018, 15(5): 2071-2078.

[232] Zhao P, Zhuo R, Li S, et al. Experimental research on the properties of “solid–gas” coupling physical simulation similar materials and testing by computer of gas in coal rock[J]. Wireless Personal Communications, 2018, 102: 1539-1556.

[233] 刘春,许强,施斌,等.岩石颗粒与孔隙系统数字图像识别方法及应用[J].岩土工程学报,2018,40(5):925-931.

[234] 付晓强,俞缙,刘纪峰,等.隧道爆破振动信号畸变校正与混沌多重分形特征研究[J].振动与冲击,2022,41(6):76-85.

[235] 李博,许久俊,钟杰,等.基于小波分析的岩石节理剪切特性研究[J].工程地质学报,2022,30(3):975-986.

[236] 中煤科工集团沈阳研究院.2019年贵州省煤矿瓦斯等级鉴(测)定结果汇总表[R]. 2019.

[237] 永贵能源开发有限责任公司.永贵能源开发有限责任公司黔西县某煤矿9号煤层煤与瓦斯突出危险性鉴定报告[R].2013.

中图分类号:

 TD712.6    

开放日期:

 2027-06-03    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式