题名: | 基于功能性充填的CO2矿化封存机制与性能研究 |
作者: | |
学号: | 21103077013 |
保密级别: | 保密(2年后开放) |
语种: | chi |
学科代码: | 0819 |
学科: | 工学 - 矿业工程 |
学生类型: | 博士 |
学位: | 工学博士 |
学位年度: | 2024 |
学校: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 固废处置与CO2封存 |
导师姓名: | |
导师单位: | |
第二导师姓名: | |
提交日期: | 2025-01-08 |
答辩日期: | 2024-12-05 |
外文题名: | Research on the mechanism and performance of CO2 mineralization and storage based on functional backfill |
关键词: | |
外文关键词: | Functional backfill ; Modified magnesium slag ; CO2 storage ; Reaction mechanism ; Carbon sequestration performance |
摘要: |
在国家“双碳”目标背景下,减少煤炭行业的碳排放、实现碳封存已成为亟待解决的难题。煤炭行业作为高碳化石能源生产者和主体碳排放源提供者,在生产和消费过程中引发的大宗固废堆存、大型采空区形成和大量CO2排放是制约煤炭可持续开发利用与绿色健康发展的瓶颈所在。为协同解决二氧化碳封存与固废消纳问题,基于功能性充填技术在煤矿采空区中构筑CO2封存空间,利用碱性固废矿化封存CO2,既可以实现CO2安全封存,又可以有效处理采空区与规模化处置固废,对煤炭行业高质量发展具有重要意义。 本研究以改性镁渣为研究对象,提出了两级矿化方法(即先搅拌矿化后矿化养护),围绕改性镁渣矿化反应过程与矿物相转化特性,分析了改性镁渣两级矿化反应机制与反应动力学。为进一步提高固碳效率,以添加外加剂的方法提高固碳效率,探明了外加剂对改性镁渣的固碳增效机制。深入分析了改性镁渣矿化材料的性能演化规律,基于以上理论研究结果开展了采空区改性镁渣矿化封存CO2的工业示范试验,进一步验证了改性镁渣矿化材料的固碳性能。主要研究工作及重新成果如下: (1)提出了碱性固废两级矿化方法,设计了搅拌固碳反应装置,探明了反应参数(液固比、搅拌速率、通气速率、通气时间)对固碳特性的影响机制,确定了最佳矿化反应参数。对比分析了一级搅拌固碳、矿化养护与两级矿化改性镁渣的矿化反应特性,改性镁渣中的主要矿物成分β-C2S的矿化产物主要为方解石与硅胶。两级矿化的固碳量相较于一级搅拌固碳,提高了205.02%;相较于矿化养护,两级矿化的固碳量提高了92.68%。明确了改性镁渣的两级矿化机制,主要为CO2在基体孔隙内的扩散与溶解、Ca2+从内部基质扩散到表面、碳酸盐沉淀三个过程。 (2)设计研发了矿化热测量设备,基于反应热力学计算与矿化反应热,分析了改性镁渣矿化反应过程,并通过分子动力学模拟了改性镁渣中的主要矿物β-C2S的矿化反应过程;基于改性镁渣矿化材料中钙镁离子浸出浓度与pH变化规律,探明了钙镁离子浸出-CO2溶解-碳酸盐生成的传质过程。明确了改性镁渣矿物颗粒由表面向内分别为碳酸钙产物层,中间位无定形硅胶层,与内部的未反应的矿物颗粒,基于缩核模型建立了改性镁渣矿化反应动力学模型。 (3)改性镁渣颗粒表面的碳酸钙与硅胶层阻碍了碱性钙镁离子的浸出以及CO2的溶解扩散,是限制矿化反应程度的主要原因之一。系统探究了NH4Cl、NaCl与EDTA-2Na对改性镁渣矿化材料的固碳量、强度以及矿化产物等影响规律,揭示了不同外加剂对改性镁渣矿化反应的增效机制。NH4Cl主要通过对改性镁渣颗粒表面产生侵蚀溶解作用与调节pH的作用,加快了碱性离子的浸出。改性镁渣中NH4Cl掺量为1%时,固碳量提升18.79%。EDTA-2Na主要通过螯合作用,促进Ca2+的溶解。0.1%的EDTA-2Na的加入可将固碳量提升18.82%,强度提高59.52%。氯化钠主要通过氯离子侵蚀破坏产物层与增强反应体系离子强度来提高矿化反应程度。添加1%的氯化钠可将固碳量提高15.82%,强度提高19.05%。 (4)通过对矿化材料的性能研究,得到了矿化材料的孔结构分布、渗透特性以及矿化深度演化规律,明确了矿化材料由于矿化程度不同导致的非协调破坏模式,探明了矿化材料的强度强化机制。掌握了两级矿化后的改性镁渣中重金属元素:Cd、Cu、Cr、Zn、Pb与Ni浸出浓度随龄期不断降低的浸出规律,揭示了矿化材料矿化固化重金属的主要机理为物理包裹、吸附共沉淀与化学沉淀。 (5)建立了CO2充注方法与工艺技术、CO2矿化材料制备与输送工艺、CO2封存与监测方案,构筑了CO2封存储库,开展了采空区CO2矿化封存工程示范试验研究,形成了采空碱性固废矿化封存CO2的新方法。示范试验7d时的固碳量为22.51%,矿化效率为39.80%,矿化7d时的单轴抗压强度最高为3.92MPa。根据自主研发的温度-湿度-pH-电导率实时监测系统,可间接获知矿化材料的反应程度。对采空区碱性固废矿化封存CO2进行了碳减排核算,得到了采空区1t碱性固废矿化封存CO2可减少碳排放195.55 kg。 |
外文摘要: |
Under the background of the national " double carbon " target, reducing carbon emissions and achieving carbon sequestration in the coal industry has become an urgent problem to be solved. As a producer of high-carbon fossil energy and a provider of main carbon emission sources, the coal industry's large-scale solid waste storage, large-scale goaf formation and large-scale CO2 emissions caused in the process of production and consumption are the bottlenecks restricting the sustainable development and utilization of coal and green and healthy development. To collaboratively solve the problems of carbon dioxide storage and solid waste disposal, a CO2 storage space is constructed in the goaf of coal mines based on functional filling technology. Alkaline solid waste mineralization is used to store CO2, which can not only achieve safe CO2 storage, but also effectively treat goaf and dispose of solid waste on a large scale. This is of great significance for the high-quality development of the coal industry. In this study, the modified magnesium slag was taken as the research object, and a two-stage mineralization method was proposed. Based on the mineralization reaction process and mineral phase transformation characteristics of modified magnesium slag, the two-stage mineralization reaction mechanism and reaction kinetics of modified magnesium slag were analyzed. To further improve the carbon sequestration efficiency, the method of adding additives was used to enhance the carbon sequestration efficiency, and the mechanism of enhancing the carbon sequestration efficiency of modified magnesium slag by additives was explored. The performance evolution law of modified magnesium slag mineralized materials was deeply analyzed, and based on the above theoretical research results, carried out an industrial demonstration test of CO2 sequestration by modified magnesium slag mineralization in goaf, further verifying the carbon fixation performance of modified magnesium slag mineralization materials. The main research conclusions are as follows: (1) A two-stage mineralization method for alkaline solid waste was proposed, and a stirring carbon fixation reaction device was designed. The influence mechanism of reaction parameters (liquid-solid ratio, stirring rate, aeration rate, aeration time) on carbon fixation characteristics was explored, and the optimal mineralization reaction parameters were determined. The mineralization reaction characteristics of one-stage stirring carbon fixation, static mineralization and two-stage mineralization modified magnesium slag were compared and analyzed. The mineralization products of the main mineral component β-C2S in the modified magnesium slag were mainly calcite and silica gel. The carbon sequestration capacity of two-stage mineralization increased by 205.02% compared to one-stage stirring carbon sequestration; Compared to static mineralization, the carbon sequestration of two-stage mineralization increased by 92.68%. The two-stage mineralization mechanism of modified magnesium slag has been clarified, mainly consisting of three processes: diffusion and dissolution of CO2 in the matrix pores, diffusion of Ca2+from the internal matrix to the surface, and carbonate precipitation. (2) The mineralization reaction process of modified magnesium slag was analyzed based on thermodynamic calculations and mineralization reaction heat using a modified mineralization heat measurement device. The mineralization reaction process of the main mineral β-C2S in the modified magnesium slag was simulated by molecular dynamics; Based on the variation of calcium and magnesium ion leaching concentration and pH in modified magnesium slag mineralized materials, the mass transfer process of calcium and magnesium ion leaching CO2 dissolution carbonate generation was investigated. A kinetic model for the mineralization reaction of modified magnesium slag was established based on the shrinking core model, which clarified that the modified magnesium slag mineral particles consist of a calcium carbonate product layer from the surface to the interior, an amorphous silica layer in the middle, and unreacted mineral particles inside. (3) The calcium carbonate and silica gel layer on the surface of modified magnesium slag particles hinder the leaching of alkaline calcium and magnesium ions and the dissolution and diffusion of CO2, which is one of the main reasons limiting the degree of mineralization reaction. The system investigated the effects of NH4Cl, NaCl, and EDTA-2Na on the carbon fixation, strength, and mineralization products of modified magnesium slag mineralization materials, revealing the synergistic mechanism of different additives on the mineralization reaction of modified magnesium slag. NH4Cl mainly accelerates the leaching of alkaline ions by causing erosion and dissolution on the surface of modified magnesium slag particles and adjusting pH. When the NH4Cl content in modified magnesium slag is 1%, the carbon fixation capacity increases by 18.79%. EDTA-2Na mainly promotes the dissolution of Ca ions through chelation. The addition of 0.1% EDTA-2Na can increase carbon sequestration by 18.82% and strength by 59.52%. Sodium chloride mainly improves the degree of mineralization reaction by corroding and damaging the product layer with chloride ions and enhancing the ion strength of the reaction system. Adding 1% sodium chloride can increase carbon sequestration by 15.82% and strength by 19.05%. (4) Through the study of the properties of mineralized materials, the pore structure distribution, permeability characteristics and the evolution law of mineralization depth of mineralized materials are obtained. The non-coordinated failure mode of mineralized materials due to different degrees of mineralization is clarified, and the strength strengthening mechanism of mineralized materials is proved. The leaching law of heavy metal elements such as Cd, Cu, Cr, Zn, Pb, and Ni in modified magnesium slag after two-stage mineralization was clarified, and the leaching concentration continuously decreased with age. The main mechanism of mineralization solidification of heavy metals in mineralized materials was identified as physical encapsulation, adsorption co precipitation, and chemical precipitation. (5) The CO2 injection methods and process technologies, CO2 mineralization material preparation and transportation processes, CO2 storage and monitoring plans were established, constructed CO2 storage warehouses, and conducted demonstration experiments on CO2 mineralization and storage projects in goaf areas. The carbon fixation amount at 7 days of demonstration experiment was 22.51%, the mineralization efficiency was 39.80%, and the highest uniaxial compressive strength at 7 days of mineralization was 3.92 MPa. Based on the self-developed real-time monitoring parameters of temperature humidity pH conductivity, the reaction degree of mineralized materials can be indirectly obtained. Carbon emission reduction accounting was conducted on the mineralized CO2 storage of alkaline solid waste in goaf, and it was found that 1 ton of mineralized CO2 storage of alkaline solid waste in goaf can reduce carbon emissions by 195.55 kg. |
参考文献: |
[1] 葛世荣, 樊静丽, 刘淑琴, 等. 低碳化现代煤基能源技术体系及开发战略[J]. 煤炭学报, 2024, 49(1): 203-223. [2] 桑树勋, 刘世奇, 朱前林, 等. CO2地质封存潜力与能源资源协同的技术基础研究进展[J]. 煤炭学报, 2023, 48(7): 2700-2716. [3] 谢和平, 刘涛, 吴一凡, 等. CO2的能源化利用技术进展与展望[J]. 工程科学与技术, 2022, 54(1): 145-156. [4] 蔡美峰, 吴允权, 李鹏, 等. 宁夏地区煤炭资源绿色开发现状与思路[J]. 工程科学学报, 2022, 44(1): 1-10. [5] 姚炜珊, 侯雅磊, 魏国强, 等. 二氧化碳资源化利用研究进展[J]. 新能源进展, 2024, 12(2): 182-192. [6] 王双明, 申艳军, 宋世杰, 等. “双碳”目标下煤炭能源地位变化与绿色低碳开发[J]. 煤炭学报, 2023, 48(7): 2599-2612. [7] 郝宪杰, 宋思桐, 唐宽旭, 等. 我国关闭/废弃矿山土地资源的新能源再开发现状及展望[J]. 金属矿山, 2024(5): 68-75. [8] 李百宜, 张吉雄, 刘恒凤, 等. 煤矿采空区储能式充填技术及储能增效机制[J]. 采矿与安全工程学报, 2022, 39(6): 1161-1168, 1176. [9] 刘浪, 阮仕山, 方治余, 等. 镁渣的改性及其在矿山充填领域的应用探索[J]. 煤炭学报, 2021, 46(12): 3833-3845. [13] 王秋华, 吴嘉帅, 张卫风. 碱性工业固废矿化封存二氧化碳研究进展[J]. 化工进展, 2023, 42(3): 1572-1582. [15] 高影, 涂亚楠, 王卫东, 等. 含钙镁煤基固废CO2矿化封存及其产物性能研究进展[J]. 煤炭科学技术, 2024, 52(5): 301-315. [16] 刘浪, 王双明, 朱梦博, 等. 基于功能性充填的CO2储库构筑与封存方法探索[J]. 煤炭学报, 2022, 47(3): 1072-1086. [17] 王双明, 刘浪, 朱梦博, 等. “双碳”目标下煤炭绿色低碳发展新思路[J]. 煤炭学报, 2024, 49(1): 152-171. [19] 张贤, 李阳, 马乔, 等. 我国碳捕集利用与封存技术发展研究[J]. 中国工程科学, 2021, 23(6): 70-80. [20] 瞿剑. 我国首个海上二氧化碳封存示范工程启动[N]. 科技日报, 2021-08-31(2). [23] 章真, 刘晓军, 陈夏, 等. 微藻生物技术在碳中和的应用与展望[J]. 中国生物工程杂志, 2022, 42(Z1): 160-173. [26] 黄定国, 杨小林, 余永强, 等. CO2地质封存技术进展与废弃矿井采空区封存CO2[J]. 洁净煤技术, 2011, 17(5): 93-96. [27] 王双明, 申艳军, 孙强, 等. “双碳”目标下煤炭开采扰动空间CO2地下封存途径与技术难题探索[J]. 煤炭学报, 2022, 47(1): 45-60. [33] 王剑锋, 常磊, 王艳, 等. 钢渣胶凝活性与体积稳定性优化研究现状[J]. 材料导报, 2023, 37(11): 119-127. [35] 王瑞, 颜峰, 郭荣鑫, 等. 钢渣矿物碳酸化及生命周期评估研究进展[J]. 材料导报, 2023, 37(S2): 290-297. [36] 叶家元, 张文生, 史迪, 等. 钢渣碳化砖的碱激发-碳化协同效应影响因素[J]. 硅酸盐学报, 2019, 47(11): 1582-1592. [37] 曹伟达, 杨全兵. 碳化养护对钢渣-熟石灰固碳砖耐久性的影响[J]. 建筑材料学报, 2023, 26(3): 324-331. [38] 王雪. 钢渣碳化潜能评估及脱硫石膏激发钢渣碳化建材的制备[D]. 北京: 北京科技大学, 2022. [39] 房延凤. 钢渣中碱性矿物碳酸化及产物衍变规律研究[D]. 大连: 大连理工大学, 2018. [42] 魏超. 钢渣—冷轧废水捕集CO2动力学及碳酸化渣资源利用研究[D]. 赣州: 江西理工大学, 2022. [44] 谢元涛, 封孝信. 钢渣矿化固化二氧化碳研究现状及展望[J]. 金属矿山, 2023(11): 45-54. [45] 孙伟吉, 刘浪, 方治余, 等. 改性镁渣的湿法碳酸化工艺[J]. 化工进展, 2024, 43(4): 2161-2173. [46] 郝园园, 莫立武, 恽进进. 碳化对镁渣砂浆强度和微观结构的影响[J]. 硅酸盐通报, 2016, 35(9): 3047-3052. [50] 黄帅, 张文芹, 刘志超, 等. 基于CO2驱动固结的镁渣基3D打印材料的制备与性能研究[J]. 材料导报, 2023, 37(19): 121-127. [53] 张鹏, 陈星月, 李素芹, 等. 粉煤灰制备沸石的技术及应用现状[J]. 材料导报, 2024, 38(7): 110-123. [58] 浅析煤基固废制备二氧化碳矿化负碳建材制品生产线[J]. 中国盐业, 2023(24): 18-20. [59] 秦波涛, 冯乐乐, 邵旭. 粉煤灰矿化电厂烟气CO2技术及关键科学问题[J]. 煤炭学报, 2024, 49(2): 1161-1173. [60] 姜龙, 何川, 李金晶. 粉煤灰用于碳捕集、利用及封存的研究进展[J]. 环境科学, 2023, 44(2): 1139-1148. [61] 杨刚. 粉煤灰矿化封存CO2协同重金属固化[D]. 北京: 华北电力大学(北京), 2022. [63] 李文秀. 基于固废电石渣CO2间接矿化制备轻质碳酸钙机制研究[D]. 杭州: 浙江大学, 2024. [64] 李昱蓓, 刘松辉, 朱建平, 等. 电石渣制备球霰石碳酸钙的工艺及机理[J]. 建筑材料学报, 2023, 26(8): 939-948. [66] 杨宇航. 基于高效助剂的电石渣-二氧化碳联产纳米碳酸钙技术研究[D]. 杭州: 浙江大学, 2024. [67] 张雄雄. 氨基酸协同的电石渣间接矿化CO2过程和机理研究[D]. 银川: 宁夏大学, 2024. [69] 姬永生, 侯志辉, 刘翔宇, 等. 利用泡沫地聚合物充填矿井采空区封存固化CO2的方法[P], 中国: 发明专利, CN107285677A, 2017-10-24. [70] 苏现波, 赵伟仲, 王乾, 等. 煤矿采动影响体微生物采残煤与CO2-粉煤灰协同充填关键技术[J]. 煤炭学报, 2024, 49(1): 400-414. [71] 钱静, 易高峰, 周琦忠, 等. 三河尖关闭煤矿煤层CO2封存潜力研究[J]. 煤炭科学技术, 2024, 52(3): 258-268. [72] 李树刚, 张静非, 林海飞, 等. 采空区碳封存条件下CO2-水界面特性及溶解传质规律[J]. 煤炭学报, 2024, 49(1): 513-527. [73] 钟秀平, 陈晨, 郭威, 等. “以废治废”的CO2封存新思路——碱性固废固化于地下废弃空间[J]. 钻探工程, 2023, 50(S1): 492-497. [74] 冯国瑞, 白锦文, 曹光明, 等. 残采区关键域充填储碳空间重构的科学内涵[J]. 中国矿业大学学报, 2023, 52(3): 432-445. [75] 奚弦, 桑树勋, 刘世奇. 煤矿区固废矿化固定封存CO2与减污降碳协同处置利用的研究进展[J]. 煤炭学报, 2024, 49(8): 3619-3634. [76] 朱磊, 刘成勇, 古文哲, 等. 双碳目标下“煤基固废-CO2”协同充填封存技术构想[J]. 矿业安全与环保, 2023, 50(6): 16-21, 28. [77] 朱磊, 古文哲, 宋天奇, 等. 煤基固废矿化封存CO2技术研究进展[J]. 煤炭科学技术, 2024, 52(2): 309-328. [78] 刘浪, 方治余, 王双明, 等. 煤矿充填固碳理论基础与技术构想[J]. 煤炭科学技术, 2024, 52(2): 292-308. [79] 马立强, 翟江涛, Ichhuy N. CO2矿化煤基固废制备保水开采负碳充填材料试验研究[J]. 煤炭学报, 2022, 47(12): 4228-4236. [80] 魏天祥. 杭来湾煤矿CO2矿化固废充填材料研制及保水开采应用研究[D]. 徐州: 中国矿业大学, 2024. [81] 谢和平, 张吉雄, 高峰, 等. 煤矿负碳高效充填开采理论与技术构想[J]. 煤炭学报, 2024, 49(1): 36-46. [86] 王丹. 钢渣碳酸化过程中碳酸钙生长与性能关系[D]. 大连理工大学, 2022. [87] 郭若楠. 基于多组分硅酸钙的CO2矿化微观机制和水泥与固废的固碳性能分析[D]. 杭州: 浙江大学, 2024. [89] 孙彬. 微生物作用下镁离子影响矿化产物机制研究[D]. 青岛: 山东科技大学, 2021. [90] 施翰林, 李明慧, 刘迎新, 等. Mg2+调控低温环境下单水方解石的合成[J]. 岩石矿物学杂志, 2019, 38(6): 761-769. [92] 刘梅. 钢渣及其矿物碳酸化机理的研究[D]. 济南: 济南大学, 2012. [97] 穆元冬. 硅酸钙矿物碳酸化固化机理及其材料性能提升机制研究[D]. 武汉: 武汉理工大学, 2022. [119] 王新频, 宋教利, 李光鑫. 我国水泥工业碳达峰与碳中和前景展望[J]. 水泥, 2021, (8): 1-9. |
中图分类号: | TD823.7 |
开放日期: | 2027-01-08 |