论文中文题名: | 渭河流域生态脆弱性时空格局评价 |
姓名: | |
学号: | 20210226053 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085215 |
学科名称: | 工学 - 工程 - 测绘工程 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2023 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 资源环境监测与评价 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2023-06-14 |
论文答辩日期: | 2023-06-03 |
论文外文题名: | Spatial-temporal pattern evaluation of ecological vulnerability in Weihe River Basin |
论文中文关键词: | 生态脆弱性 ; 层次分析法 ; 熵权法 ; CA-Markov模型 ; 渭河流域 |
论文外文关键词: | Ecological vulnerability ; Analytic Hierarchy Process ; Entropy Weight Method ; CA-Markov model ; Weihe River Basin |
论文中文摘要: |
渭河流域是黄河流域的重要组成部分,它的生态环境一直以来都备受关注。随着经济的发展和人口的增加,渭河流域的生态环境面临着越来越大的挑战,生态系统的脆弱性也日益突出。渭河流域生态环境保护工作受到国家和地区的高度重视。2020年生态脆弱性评价被加入自然资源部发布的“双评价”指南中,为生态环境管理与保护提供理论依据,2022年12月《陕西省渭河保护条例》被审议通过。因此开展渭河流域生态脆弱性研究对渭河生态及其周边经济建设均具有一定的理论和现实意义。 本文以2001年、2005年、2010年、2015年和2020年为研究时段,选取年均气温、年降水量、土壤类型、人口密度、土地利用类型、坡度、地形起伏度、河网密度、土壤可侵蚀性、NDVI(Normalized Digital Vegetation Index,NDVI)、NPP(Net Primary Production,NPP)、GDP(Gross Domestic Product,GDP)、普通中学在校生占比和单位面积农林牧渔总产值14个评价指标,从暴露度、敏感性和适应力3个方面构建渭河流域生态脆弱性评价体系,并采用转移矩阵、重心迁移、空间自相关和地理探测器等方法分析了其时空格局特征。同时,使用CA-Markov模型模拟预测了渭河流域2025年的生态脆弱性,并提出了相应的治理对策和建议,为渭河流域生态环境保护工作提供思路。本文取得的主要研究结论如下: (1)运用三次薄盘光滑样条函数、GEE(Google Earth Engine,GEE)云平台和河网密度模型等方法进行了生态脆弱性评价指标的信息提取。研究期间该地区的年均气温由西北向东南升高,年降水量西北少、东南多,土地利用类型以耕地和草地为主,耕地、林地、建设用地面积呈持续增加趋势,草地面积持续减少。地形方面,西高东低,南部秦岭山区和中部六盘山山区坡度较大,地形起伏度大。NDVI总体上呈现逐年增加趋势,土壤可侵蚀性呈南高北低趋势。渭河流域GDP和单位面积农林牧渔总产值高速增长,普通中学在校生人数占比呈现下降趋势。 (2)渭河流域生态脆弱性地区差异性较大,呈现西部和北部高、南部低的空间分布特征。2001年,西部和北部区域生态脆弱性以中度和重度为主,南部以潜在和轻度脆弱性为主;2005-2020年间,北部地区脆弱性加重,极度脆弱性和重度脆弱性等级面积增加。2020年,研究区的生态脆弱性总体上处于较高水平,重度脆弱性的比例最大。 在2001-2020年间,生态脆弱性呈先增后减的趋势,整体增长了0.2964;生态脆弱性等级发生了波动性变化,轻度和中度脆弱性等级向高等级转移的面积占比较高,重度脆弱性等级向低等级转移的面积占比较低。2001-2005年渭河流域受极度脆弱性重心变化影响,整体生态脆弱性重心由西南向东北迁移,生态脆弱性加剧;2005-2020年渭河流域生态脆弱性重心扰动较小,生态环境逐渐恢复。渭河流域生态脆弱性指数表现空间正相关,生态脆弱性高值聚集区主要分布在定西市、天水市、固原市、平凉市、庆阳市、吴忠市、榆林市、延安市和西安市。低值聚集区则主要分布在南部秦岭山区和中部六盘山山区。研究区内商洛市、定西市、天水市、咸阳市和铜川市以潜在脆弱或轻度脆弱为主;平凉市、榆林市、庆阳市、西安市和延安市以中度或重度脆弱为主。 (3)本文基于地理探测器分析表明,土壤类型、NDVI、年降水量以及NPP是最重要的因素,结果表明这些因素的共同作用会加剧渭河流域的生态环境变化。同时,预测2020年渭河流域生态脆弱性,得到Kappa系数值0.84,预测结果表现优异。之后以2010年和2020年生态脆弱性分级结果为基础,预测2025年渭河流域生态脆弱性。结果显示,2025年生态脆弱性将有所改善,但整体仍处于中度脆弱状态,与2020年相比渭河流域南部和北部的重度和极度脆弱性等级面积都将减少,南部轻度脆弱性等级面积将大幅增加。2025年渭河流域的极度脆弱区域主要分布在榆林市、吴忠市等北部和西安市等南部地区;重度脆弱区域主要分布在北部、西部和东南部地区;中度脆弱区域则主要分布在宝鸡市和延安市的中部和东部地区;南部和东部的生态脆弱性等级主要为潜在和轻度。 |
论文外文摘要: |
The Wei River Basin is an important component of the Yellow River Basin, and its ecological environment has always been a focus of attention. With the development of the economy and the increase in population, the ecological environment of the Wei River Basin is facing increasing challenges, and the fragility of the ecosystem is becoming increasingly prominent. In 2020, the evaluation of ecological vulnerability was included in the "double evaluation" guidelines issued by the Ministry of Natural Resources, providing a theoretical basis for ecological environment protection and management. Starting from April 2023, the "Regulations on the Management of the Wei River Basin in Shaanxi Province" will be implemented, and the protection of the ecological environment in the Wei River Basin will receive high attention from the national and regional levels. Therefore, conducting research on the ecological vulnerability of the Wei River Basin has certain theoretical and practical significance for the ecological and economic development of the Wei River and its surrounding areas in particular. This article selects the years 2001, 2005, 2010, 2015, and 2020 as the research periods, and selects 14 evaluation indicators including annual average temperature, annual precipitation, soil type, population density, land use type, slope, terrain relief, river network density, soil erodibility, NDVI, NPP, GDP, the proportion of high school students, and the total output value of agriculture, forestry, animal husbandry, and fishery per unit area. Based on the exposure, sensitivity, and adaptability, a Wei River Basin ecological vulnerability evaluation system is constructed, and the spatiotemporal pattern characteristics are analyzed using methods such as transfer matrix, gravity center migration, spatial autocorrelation, and geographic detector. Meanwhile, the CA-Markov model is used to simulate and predict the ecological vulnerability of the Wei River Basin in 2025, and corresponding governance measures and suggestions are proposed to provide ideas for the protection of the ecological environment in the Wei River Basin. The main research conclusions of this article are as follows: (1) This study used methods such as the third-order thin plate smoothing spline function, the Google Earth Engine (GEE) platform, and the river network density model to extract information on the ecological vulnerability assessment indicators. During the study period, the annual average temperature in the region increased from northwest to southeast, and the annual precipitation was less in the northwest and more in the southeast. The main land use types were cultivated land and grassland, with the area of cultivated land, forest land, and construction land showing a continuous increasing trend, while the area of grassland continued to decrease. In terms of terrain, the west was higher than the east, with the Qinling Mountains in the south and the Liupan Mountains in the central region having steeper slopes and greater relief. The NDVI showed an overall increasing trend year by year, while the soil erodibility trended from high in the south to low in the north. The GDP and the total output value of agriculture, forestry, animal husbandry, and fishery per unit area in the Wei River Basin showed a rapid increase, while the proportion of students in ordinary secondary schools showed a decreasing trend. (2) The ecological vulnerability of the Wei River Basin shows significant regional differences, with a spatial distribution pattern of high in the west and north, and low in the south. In 2001, the western and northern regions were mainly characterized by moderate and severe ecological vulnerability, while the south was mainly characterized by potential and mild vulnerability. From 2005 to 2020, the vulnerability increased in the northern region, and the area of extreme and severe vulnerability levels increased. In 2020, the overall ecological vulnerability in the study area was at a relatively high level, with the proportion of severe vulnerability being the largest. From 2001 to 2020, the ecological vulnerability showed a trend of increase followed by a decrease, with an overall increase of 0.2964. The ecological vulnerability level exhibited fluctuations, with a relatively high proportion of the area transferring from mild and moderate vulnerability levels to higher vulnerability levels, and a relatively low proportion of the area transferring from severe vulnerability levels to lower vulnerability levels. From 2001 to 2005, the ecological vulnerability centroid of the Wei River Basin shifted from southwest to northeast due to the change in the centroid of extreme vulnerability, exacerbating the overall ecological vulnerability. From 2005 to 2020, the disturbance of the ecological vulnerability centroid was relatively small, and the ecological environment gradually recovered. The ecological vulnerability index in the Wei River Basin showed positive spatial correlation, with high-value aggregation areas mainly distributed in Dingxi, Tianshui, Guyuan, Pingliang, Qingyang, Wuzhong, Yulin, Yan'an, and Xi'an. The low-value aggregation areas were mainly distributed in the southern Qinling Mountains and the central Liupan Mountains. In the study area, Shangluo, Dingxi, Tianshui, Xianyang, and Tongchuan were mainly characterized by potential or mild vulnerability, while Pingliang, Yulin, Qingyang, Xi'an, and Yan'an were mainly characterized by moderate or severe vulnerability. (3) Based on the geographical detector analysis, this paper shows that soil type, NDVI, annual precipitation and NPP are the most important factors. The results show that the combined effects of these factors will aggravate the ecological environment changes in the Weihe River Basin. At the same time, the ecological vulnerability of the Weihe River Basin in 2020 is predicted, and the Kappa coefficient is 0.84, and the prediction results are excellent. Based on the results of ecological vulnerability classification in 2010 and 2020, the ecological vulnerability of the Weihe River Basin in 2025 is predicted. The results show that the ecological vulnerability will be improved in 2025, but the whole is still in a state of moderate vulnerability. Compared with 2020, the area of severe and extreme vulnerability in the south and north of the Weihe River Basin will decrease, and the area of mild vulnerability in the south will increase significantly. In 2025, the extremely vulnerable areas of the Weihe River Basin are mainly distributed in the northern areas such as Yulin City and Wuzhong City and the southern areas such as Xi'an City. Severely vulnerable areas are mainly distributed in the northern, western and southeastern regions. The moderately vulnerable areas are mainly distributed in the central and eastern regions of Baoji City and Yan'an City. The ecological vulnerability levels in the south and east are mainly potential and mild. |
参考文献: |
[2] 张攀, 姚文艺, 刘国彬, 等. 土壤复合侵蚀研究进展与展望[J]. 农业工程学报, 2019, 35(24): 154-161. [4] 姬霖, 段克勤. 1960-2017年渭河流域极端气温变化及其对区域增暖的响应[J]. 地理科学, 2020, 40(3): 466-477. [5] 贾磊, 姚顺波, 邓元杰, 等. 渭河流域土壤侵蚀时空特征及其地理探测[J]. 生态与农村环境学报, 2021, 37(3): 305-314. [6] 李作成, 张路, 欧阳志云, 等. 基于Google Earth Engine的青藏高原土地沙化模拟与动态评估[J]. 生态学报, 2023, 43(4): 1526-1536. [7] 李子, 张艳芳. 基于InVEST模型的渭河流域干支流生态系统服务时空演变特征分析[J]. 水土保持学报, 2021, 35(4): 178-185. [8] 葛钰洁, 李杰, 黄珂敏, 等. 联合国政府间气候变化专门委员会第五次评估报告第一工作组报告的学术影响力[J]. 科技管理研究, 2023, 43(2): 197-205. [9] 陈枫, 李泽红, 董锁成, 等. 基于VSD模型的黄土高原丘陵沟壑区县域生态脆弱性评价——以甘肃省临洮县为例[J]. 干旱区资源与环境, 2018, 32(11): 74-80. [12]曹二佳. 基于VSD模型的子午岭区生态脆弱性时空变化[D]. 兰州: 兰州大学, 2020. [13]邵秋芳. 川西北林草交错区生态环境遥感监测与生态脆弱性时空变化驱动机制研究[D]. 成都: 成都理工大学, 2019. [14]王晓峰, 马雪, 冯晓明, 等. 重点脆弱生态区生态系统服务权衡与协同关系时空特征[J]. 生态学报, 2019, 39(20): 7344-7355. [15]刘小波, 王玉宽, 李明. 国土空间开发适宜性评价的理论、方法与技术应用[J]. 地球信息科学学报, 2021, 23(12): 2097-2110. [18]王晓晨. 基于InVEST模型的陕西秦岭(渭河流域)生态系统服务评估[D]. 西安: 西北大学, 2022. [19]刘玒玒, 汪妮, 解建仓, 等. 基于模糊综合评价法的渭河流域生态脆弱性评价[J]. 沈阳农业大学学报, 2014, 45(1): 73-77. [20]王怡菲. 陕西省渭河流域生态修复绩效评价研究[D]. 杨凌: 西北农林科技大学, 2019. [21]程静, 王鹏, 陈红翔, 等. 渭河流域生境质量时空演变及其地形梯度效应与影响因素[J]. 干旱区地理, 2023, 46(3): 481-491. [22]董洁芳, 徐栋, 张仲伍, 等. 基于GWR模型的渭河流域植被覆盖度时空变化及驱动机理[J]. 环境科学与技术, 2023, 46(1): 201-210. [28]江娟丽, 杨庆媛, 何秋兰, 等. 西南山区农业景观脆弱性变化及其驱动力——以重庆市石柱县为例[J]. 经济地理, 2023, 43(1): 177-187. [29]王茜, 赵筱青, 普军伟, 等. 滇东南喀斯特区域生态脆弱性的时空演变及其影响因素[J]. 应用生态学报, 2021, 32(6): 2180-2190. [30]薛联青, 王晶, 魏光辉, 等. 基于PSR模型的塔里木河流域生态脆弱性评价[J]. 河海大学学报, 2019, 47(1): 13-19. [31]安芬, 李旭东, 程东亚. 贵州省乌江流域生态脆弱性评价及其空间变化特征[J]. 水土保持通报, 2019, 39(4): 261-269. [32]黄越, 程静, 王鹏. 中国北方农牧交错区生态脆弱性时空演变格局与驱动因素——以盐池县为例[J]. 干旱区地理, 2021, 44(4): 1175-1185. [33]张学渊, 魏伟, 周亮, 等. 西北干旱区生态脆弱性时空演变分析[J]. 生态学报, 2021, 41(12): 4707-4719. [34]张良侠,樊江文,张海燕, 等. 黄土高原地区生态脆弱性时空变化及其驱动因子分析[J]. 环境科学, 2022, 43(9): 4902-4910. [35]杨艳, 周德成, 宫兆宁, 等. 基于植被生产力的黄土高原地区生态脆弱性及其控制因子分析[J]. 生态环境学报, 2022, 31(10): 1951-1958. [36]苏玉姣, 张鹏, 张晓华, 等. 河北武安国家森林公园生态环境质量评价及驱动因子分析[J].河北大学学报, 2023, 43(2): 197-206. [37]曾珍, 艾婧文, 陈凌艳, 等. 山地城市生境质量时空演变及地形梯度效应研究——以三明市区为例[J]. 南京师大学报, 2023, 46(1): 100-109. [38]杨楠, 王凌雨, 朱琳, 等. 黄河流域近十年NPP变化特征及驱动因子分析[J]. 应用基础与工程科学学报, 2023, 31(2): 280-295. [39]郑晓豪, 陈颖彪, 郑子豪, 等. 湖北省生态系统服务价值动态变化及其影响因素演变[J]. 生态环境学报, 2023, 32(1): 195-206. [40]王圳峰, 王欣珂, 谢香群, 等. 基于GWR模型的福建省绿色空间景观格局演变影响因素及其空间差异[J]. 西北林学院学报, 2022, 37(5): 242-250. [41]彭鹏, 顾丹丹, 周国华. 湖南省乡村人居环境脆弱性格局变化及响应指数的影响机制[J].经济地理, 2022, 42(6): 168-178. [43]李世锋, 洪增林, 薛旭平, 等. 基于Logistic-CA-Markov耦合模型的彬州市LUCC多情景模拟[J]. 水土保持研究, 2022, 29(4): 292-299. [44]林彤, 冯兆华, 吴大放, 等. 基于FLUS模型的喀斯特地区生态用地时空变化及多情景预测——以湖南省宁远县为例[J]. 水土保持通报, 2022, 42(2): 219-227. [45]陈理庭, 蔡海生, 张婷, 等. 基于多准则决策的万年县生态脆弱性研究[J]. 西南农业学报, 2022, 35(1): 226-234. [46]耿鑫, 胡实, 肖玉, 等. 基于生态系统服务价值的东北农牧交错区土地利用格局优化与评价[J]. 自然资源学报, 2022, 37(7): 1799-1814. [47]刘小妮, 鞠琴, 鞠晓晗, 等. 基于CA-Markov模型的渭河中下游干流土地利用变化模拟及预测[J]. 节水灌溉, 2022(11): 1-8. [50]谢凌凌, 许进龙, 臧俊梅, 等. 基于Markov-FLUS模型的广西土地利用变化模拟预测[J]. 水土保持研究, 2022, 29(2): 249-254. [51]杨慧荣, 张玉虎, 崔恒建, 等. ARIMA和ANN模型的干旱预测适用性研究[J]. 干旱区地理, 2018, 41(5): 945-953. [52]赵明松, 徐少杰, 邓良, 等. 基于CLUE-S模型的煤矿城市土地利用变化模拟[J]. 农业机械学报, 2022, 53(5): 158-168. [54]张明心, 吴一平, 李汇文, 等. 渭河流域生态系统生产力和土壤有机碳的时空变化特征[J].矿物岩石地球化学通报, 2022, 41(5): 965-973. [55]刘引鸽, 包江川, 杨雨欣, 等. 渭河流域1850-2005年降水及蒸发量变化时空特征[J]. 水土保持研究, 2022, 29(6): 224-232. [56]徐省超, 赵雪雁, 宋晓谕. 退耕还林(草)工程对渭河流域生态系统服务的影响[J]. 应用生态学报, 2021, 32(11): 3893-3904. [57]张晔, 侯精明, 龚佳辉, 等. 1980—2020年渭河中上游流域土地利用演变及其对径流的影响[J]. 水土保持通报, 2022, 42(5): 231-237. [58]蒲欢欢. 渭河流域水生态评价与区划研究[D]. 郑州: 郑州大学, 2015. [59]白海锋. 渭河流域水生生物群落时空分布特征、驱动机制及水生态系统健康评价[D]. 西安: 西北大学, 2022. [60]李晨瑞, 李发源, 马锦, 等. 黄河中游流域地貌形态特征研究[J]. 地理与地理信息科学, 2017, 33(4): 107-112. [61]邓甜甜, 耿广坡, 杨睿, 等. 1980—2020年渭河流域高温热浪时空变化特征[J]. 干旱区地理, 2023, 46(2): 211-221. [62]黎扬兵, 张洪波, 杨天增, 等. 基于MGWR的渭河流域TRMM降水产品空间降尺度分析[J]. 农业工程学报, 2022, 38(23): 141-151. [63]庞家泰, 段金亮, 张瑞, 等. 2000-2019年渭河流域植被覆盖度时空演变特征及气候响应[J].水土保持研究, 2021, 28(5): 230-237. [64]袁和第, 信忠保, 侯健, 等. 黄土高原丘陵沟壑区典型小流域水土流失治理模式[J]. 生态学报, 2021, 41(16): 6398-6416. [65]张龙齐, 贾国栋, 吕相融, 等. 黄土高原典型地区不同植被覆盖下坡面土壤侵蚀阈值研究[J]. 水土保持学报, 2023, 37(2): 187-198. [66]陶望雄, 马亚鑫, 张杰, 等. 渭河流域降雨侵蚀力时空分布特征[J]. 水土保持通报, 2016, 36(6): 110-114. [70]陆海燕, 孙桂丽, 李路, 等. 基于VSD模型的新疆生态脆弱性评价[J]. 新疆农业科学, 2020, 57(2): 292-302. [73]苗旭, 李九一, 柳玉梅, 等. 鄂尔多斯市生态脆弱性评价及归因分析[J]. 西北林学院学报, 2023, 38(1): 168-173. [74]王兆林, 张露洋, 钟溦懿, 等. 三峡库区生态空间脆弱性时空演变特征[J]. 水土保持研究, 2023, 30(1): 348-355. [75]范语馨, 史志华. 基于模糊层次分析法的生态环境脆弱性评价——以三峡水库生态屏障区湖北段为例[J]. 水土保持学报, 2018, 32(1): 91-96. [76]尚嘉宁. 川西南干热河谷区生态脆弱性时空格局评价与预测[D]. 成都: 成都理工大学, 2021. [77]周玲美. 宁夏沿黄经济区生态脆弱性时空演变及其驱动因子分析[D]. 淮南: 安徽理工大学, 2022. [79]闫文波, 何云玲, 余岚, 等. 气候干旱化背景下云南地区生态系统脆弱性的变化特征[J]. 生态科学, 2023, 42(1): 197-205. [80]林钦贤, 林以恒, 真诗泳, 等. 建设用地扩张规律及其与道路网络的空间自相关分析——以福州市为例[J]. 科学技术与工程, 2023, 23(7): 3001-3010. [81]彭加加, 徐丽萍, 曹翠. 1991—2017年叶尔羌河流域冰川景观格局时空演变[J]. 生态学报, 2022, 42(20): 8265-8275. [82]施智勇, 胡晓婷, 谢慧黎, 等. 基于RSEI的生态环境质量评价及驱动力分析——以闽江流域(福州段)为例[J]. 测绘通报, 2023, 551(2): 28-33. [83]郑敏, 乔占明, 赖锋, 等. 地理国情支撑下的祁连山生态状况精细化评价[J]. 测绘科学, 2022, 47(10): 213-220. [84]毕旭, 王丽, 张雅斌等. 陕西秦岭北麓致灾短时暴雨特征及预警技术[J]. 灾害学, 2019, 34(2): 122-127. [85]王荣, 王亚琴 ,闫浩文. 六盘山山地植被物候地带性分异及其对气候变化的响应[J].地理与地理信息科学, 2021, 37(4): 90-98. [86]张磊, 罗平平, 王小珲等. 1960—2019年关中平原极端降水时空变化及非平稳性分析[J]. 水利水电技术, 2023, 54(3): 35-46. |
中图分类号: | P208.2 |
开放日期: | 2023-06-14 |