题名: |
直接硼氢化物燃料电池非贵金属催化剂的制备及其性能研究
|
作者: |
辛泽怡
|
学号: |
22213065002
|
保密级别: |
保密(1年后开放)
|
语种: |
chi
|
学科代码: |
0817
|
学科: |
工学 - 化学工程与技术
|
学生类型: |
硕士
|
学位: |
工学硕士
|
学位年度: |
2025
|
学校: |
西安科技大学
|
院系: |
化学与化工学院
|
专业: |
化学工程与技术
|
研究方向: |
非贵金属催化剂的制备
|
导师姓名: |
李赛
|
导师单位: |
西安科技大学
|
提交日期: |
2025-06-13
|
答辩日期: |
2025-05-24
|
外文题名: |
Research on the synthesis and performance of non-noble metal catalysts for direct borohydride fuel cells
|
关键词: |
低温等离子体处理 ; 直接硼氢化物燃料电池 ; 硼氢化物氧化反应 ; 氧还原反应 ; 阴阳极催化剂
|
外文关键词: |
Low-temperature plasma treatment ; Direct borohydride fuel cell ; Borohydride electrooxidation ; Oxygen reduction reaction ; Cathode and anode catalyst
|
摘要: |
︿
在我国“双碳”战略目标驱动下,开发高效电催化体系与长寿命电化学能源器件已成为缓解化石能源依赖的核心路径。直接硼氢化物燃料电池(DBFC)凭借其高理论能量密度和碱性环境适配性,在能源存储与转换领域展现出独特的发展潜力。然而DBFC常常使用铂族贵金属催化剂,铂族贵金属存在价格高和易中毒的缺点,因此DBFC的大规模应用受到了限制。于是,开发低成本、高效率和持久耐用的非贵金属电催化剂成为推进DBFC商业化进程的关键。本文致力于DBFC非贵金属电催化剂的制备及其性能研究,通过调控材料特性和制备方法,在催化活性与稳定性方面取得了一定进展。本文主要针对以下几种催化剂进行了研究分析:
(1)为解决DBFC阴极氧还原反应(ORR)动力学缓慢和长期稳定性不足的问题,设计了以碳纳米管为基底的CeO2-p/CNTs阴极催化剂。采用沉淀法和低温等离子体技术(Plasma)对CeO2纳米颗粒进行了改性并制备了CeO2-p/CNTs阴极催化剂。CeO2-p/CNTs催化剂对ORR表现出良好的电催化活性和稳定性,具有较高的半波电位(0.868 V vs. Hg/HgO),低内阻(0.125 Ω cm-2)和低Tafel斜率(299 mV dec-1)。以CeO2-p/CNTs为阴极,Pt/C为阳极的DBFC显示出优异的性能,其开路电压(OCP)为1.19 V,峰值功率密度达到199.34 mW cm-2,并且具有良好的稳定性。Plasma处理增加了材料的介孔结构,提升了其比表面积,在表面产生氧空位。除此之外,通过微观形貌分析,证明了CeO2纳米颗粒更多地负载在了CNTs的端点和管壁上,进而增加了活性位点的数量。这项工作为合理设计燃料电池高效非贵金属阴极催化剂提供了一种新方法。
(2)为解决DBFC阳极硼氢根离子氧化反应(BOR)导致的催化活性低的问题,设计了具有氧空位的p-Co(OH)2纳米片催化剂,提高了催化剂的活性。通过物理表征和电化学表征研究了Plasma处理条件对催化剂活性的影响,并且在Plasma辅助化学还原法的制备方法中探究出Plasma最佳处理条件为40 V,8 min,O2:N2=2:5。在BOR反应过程中,p-Co(OH)2/2.96-O2/N2催化剂展现出了最佳的性能,BOR的最高电流密度为58 mA cm-2。该催化剂应用于DBFC的阳极,其OCP为1.17 V,在室温下达到244 mW cm-2的峰值功率密度,且经过210 h的稳定性测试,电池没有明显的衰减,这表明组装的DBFC具有优良的催化活性和良好的工作稳定性。同样表明Plasma对提高催化剂性能有着关键作用,改性后的催化剂在结晶度和表面形貌均有改变,具有氧空位和较窄的能带间隙,其中氧空位可增加高密度的活性位点,窄的能带隙可加速电子跳跃,从而提高电子转移的速度,进一步提高催化活性。
(3)为解决DBFC阳极催化剂在高电流密度下稳定性差的问题,在高活性的p-Co(OH)2催化剂的基础上,设计了Co(OH)2/Co3O4复合催化剂,进一步提高催化剂稳定性。采用Plasma和水热法协同制备,并调控氢氧化钾(KOH)的用量引入Co3O4制备了Co(OH)2/Co3O4催化剂。经过测试,KOH用量为2 M,即2-Co(OH)2/Co3O4催化剂具有最佳的BOR催化活性,BOR电流密度高达77.76 mA cm-2,CV面积最大,Tafel斜率低至193.05 mV dec-1,并且稳定工作100 h后衰减仅2%。2-Co(OH)2/Co3O4催化剂组装的DBFC显示出优异的性能,其OCP为1.10 V,峰值功率密度为279.01 mW cm-2,在40 mA cm-2的恒定电流下稳定工作100 h,并无衰减。其中,Co(OH)2纳米片具有层状结构和充足的比表面积,Co3O4纳米颗粒的加入提供了更多的活性位点数量,同时纳米颗粒的分散提升了表面反应动力学。进而加速催化反应的进程,提高催化活性。
﹀
|
外文摘要: |
︿
Driven by China’s strategic goals, the development of high-efficiency electrocatalytic systems and long-lasting electrochemical energy devices has become a critical pathway to reduce reliance on fossil fuels. Direct borohydride fuel cell (DBFC) demonstrate unique potential in energy storage and conversion due to their high theoretical energy density and alkaline environment adaptability. However, the widespread application of DBFC has been constrained by the prevalent use of platinum-based noble metal catalysts, which suffer from high costs and susceptibility to poisoning. Consequently, developing cost-effective, highly efficient, and durable non-precious metal electrocatalysts has become pivotal for advancing DBFC commercialization. This study focuses on the preparation and performance investigation of non-precious metal electrocatalysts for DBFCs, achieving notable progress in catalytic activity and stability through material property regulation and synthesis method optimization. The following catalysts were systematically investigated:
(1) The CeO2-p/CNTs catalyst was synthesized by loading CeO2 nanoparticles onto carbon nanotubes (CNTs) followed by low-temperature plasma modification to address sluggish oxygen reduction reaction (ORR) kinetics and insufficient long-term stability at DBFC cathodes. The catalyst demonstrated exceptional ORR activity, with a high half-wave potential of 0.868 V vs. Hg/HgO, a low Tafel slope of 299 mV dec-1, and a minimal internal resistance of 0.125 Ω cm-2. DBFC using CeO2-p/CNTs as the cathode catalyst exhibited outstanding performance: an open-circuit potential (OCP) of 1.19 V, a peak power density of 199.34 mW cm-2, and excellent stability. Plasma treatment enhanced the mesoporous structure and specific surface area of the material, improving active site exposure. Microscopic analysis confirmed that CeO2 nanoparticles were preferentially anchored at the tips and sidewalls of CNTs, increasing active site density. This work provides a novel strategy for designing efficient non-precious metal cathode catalysts for fuel cells.
(2) The p-Co(OH)2 nanosheet catalyst with oxygen vacancy-rich was designed to overcome low catalytic activity in borohydride oxidation reaction (BOR) at DBFC anodes. Systematic investigation of plasma treatment parameters (40 V,8 min,O2:N2=2:5) through physicochemical characterization revealed optimal conditions. The optimized p-Co(OH)2/2.96-O2/N2 catalyst achieved maximum BOR current density of 58 mA cm-2. The corresponding DBFC demonstrated an OCP of 1.17 V, peak power density of 244 mW cm-2 at room temperature, and stable operation over 210 h without significant decay. Plasma modification induced crystallographic and morphological changes, creating oxygen vacancies and narrowing bandgap. These structural advantages enhanced active site density and accelerated electron transfer, thereby improving catalytic performance.
(3) The Co(OH)2/Co3O4 composite catalyst was synthesized via plasma and hydrothermal methods with controlled reductant concentrations to address stability challenges under high current densities. The 2-Co(OH)2/Co3O4 catalyst (using 2 M KOH) exhibited optimal BOR performance: a current density of 84 mA cm-2, the largest CV area, a low Tafel slope (192 mV dec⁻1), and minimal decay (2%) over 100 h of operation. DBFCs assembled with this catalyst achieved an OCP of 1.10 V and a peak power density of 279.01 mW cm-2. The layered structure of Co(OH)2 nanosheets provided abundant exposed active sites, while Co3O4 nanoparticles enhanced surface reaction kinetics through dispersed active sites, synergistically accelerating catalytic processes.
﹀
|
参考文献: |
︿
[1] Su Y, Fan Q-m. Renewable energy technology innovation, industrial structure upgrading and green development from the perspective of China's provinces [J]. Technological Forecasting and Social Change, 2022, 180: 121727. [2] Zheng J, Zhou H, Wang C-G, et al. Current research progress and perspectives on liquid hydrogen rich molecules in sustainable hydrogen storage [J]. Energy Storage Materials, 2021, 35: 695-722. [3] Li S, Xin Z, Luo Y, et al. Recent advances in the development of single atom catalysts for oxygen evolution reaction [J]. International Journal of Hydrogen Energy, 2024, 82: 1081-1100. [4] Rosen M A, Koohi-Fayegh S. The prospects for hydrogen as an energy carrier: an overview of hydrogen energy and hydrogen energy systems [J]. Energy, Ecology and Environment, 2016, 1(1): 10-29. [5] Song M Y, Park H R, Kwon S N. Evaluation of the metal-added Mg hydrogen storage material and comparison with the oxide-added Mg [J]. Journal of Industrial and Engineering Chemistry, 2015, 21: 378-386. [6] Moradi R, Groth K M. Hydrogen storage and delivery: Review of the state of the art technologies and risk and reliability analysis [J]. International Journal of Hydrogen Energy, 2019, 44(23): 12254-12269. [7] Santos D M F, Saturnino P G, Lobo R F M, et al. Direct borohydride/peroxide fuel cells using Prussian Blue cathodes [J]. Journal of Power Sources, 2012, 208: 131-137. [8] Zhang Y, Tian X, Ji M, et al. Research Progress of Transition Metal Anode Catalysts for Direct Borohydride Fuel Cells [J]. Journal of Nanoparticle Research, 2023, 25(12): 240. [9] Zhang D, Sun T, Cao D, et al. A review of anodes for direct borohydride fuel cells: Electrode and catalytic environment [J]. Journal of Power Sources, 2023, 587:233684. [10] Chang J, Wang G, Zhang W, et al. Atomically dispersed catalysts for small molecule electrooxidation in direct liquid fuel cells [J]. Journal of Energy Chemistry, 2022, 68: 439-453. [11] Liu L, Zhang J, Zhao Y, et al. Research progress on direct borohydride fuel cells [J]. Chemical Communications, 2024, 60(15): 1965-1978. [12] Feng Z, Gupta G, Mamlouk M. A review of anion exchange membranes prepared via Friedel-Crafts reaction for fuel cell and water electrolysis [J]. International Journal of Hydrogen Energy, 2023, 48(66): 25830-25858. [13] Feng Z, Esteban P O, Gupta G, et al. Highly conductive partially cross-linked poly(2,6-dimethyl-1,4-phenylene oxide) as anion exchange membrane and ionomer for water electrolysis [J]. International Journal of Hydrogen Energy, 2021, 46(75): 37137-37151. [14] Amendola S C, Onnerud P, Kelly M T, et al. A novel high power density borohydride-air cell [J]. Journal of Power Sources, 1999, 84(1): 130-133. [15] Wee J-H. Which type of fuel cell is more competitive for portable application: Direct methanol fuel cells or direct borohydride fuel cells? [J]. Journal of Power Sources, 2006, 161(1): 1-10. [16] Ma J, Choudhury N A, Sahai Y. A comprehensive review of direct borohydride fuel cells [J]. Renewable and Sustainable Energy Reviews, 2010, 14(1): 183-199. [17] Leon de C P, Walsh F C, Pletcher D, et al. Direct borohydride fuel cells [J]. Journal of Power Sources, 2006, 155(2): 172-181. [18] Li S, Liao G, Bildan D, et al. Performance enhancement for direct borohydride fuel cells through ternary Ru–Co–B oxide catalyst [J]. International Journal of Hydrogen Energy, 2024, 67: 448-457. [19] Ko Y, Park J, Zhang X, et al. All Platinum Group Metal-Free and Durable Catalysts for Direct Borohydride Fuel Cells [J]. ACS Applied Energy Materials, 2024, 7(2): 639-648. [20] Li S, Xin Z, Han J, et al. Pt@Co-B catalyzed direct borohydride fuel cell anode: rational design and performance evaluation [J]. Ionics, 2024, 30(11): 7213-7222. [21] Yang Y, Gao Y, Liu D, et al. Oxygen Vacancy Enhanced CoCex Catalysts for Direct Borohydride Fuel Cells [J]. Journal of Electroanalytical Chemistry, 2025, 979: 118917. [22] Zhu L, Wu T, Bi S, et al. Watt-level power density of direct borohydride fuel cells enabled by electrode local-environment and mass transport regulations [J]. Chemical Engineering Journal, 2025, 506: 159931. [23] Yi C, Cai J, Song Q, et al. A high-performance NiPMg ternary anode catalyst for direct borohydride fuel cell [J]. Dalton Transactions, 2025, 54(14), 5668-5674. [24] Xiong H, Jin Y, Liu X, et al. Transition metal-doped Fe2Te2 as efficient hydrogen evolution catalysts: A DFT study [J]. International Journal of Hydrogen Energy, 2025, 106: 493-498. [25] Merino-Jiménez I, Ponce de León C, Shah A A, et al. Developments in direct borohydride fuel cells and remaining challenges [J]. Journal of Power Sources, 2012, 219: 339-357. [26] Oliveira V L, Sibert E, Soldo-Olivier Y, et al. Borohydride electrooxidation reaction on Pt(111) and Pt(111) modified by a pseudomorphic Pd monolayer [J]. Electrochimica Acta, 2016, 190: 790-796. [27] Pasqualeti A M, Olu P-Y, Chatenet M, et al. Borohydride Electrooxidation on Carbon-Supported Noble Metal Nanoparticles: Insights into Hydrogen and Hydroxyborane Formation [J]. ACS Catalysis, 2015, 5(5): 2778-2787. [28] Olu P-Y, Job N, Chatenet M. Evaluation of anode (electro)catalytic materials for the direct borohydride fuel cell: Methods and benchmarks [J]. Journal of Power Sources, 2016, 327: 235-257. [29] Oh T H. Effect of cathode conditions on performance of direct borohydride–hydrogen peroxide fuel cell system for space exploration [J]. Renewable Energy, 2021, 178: 1156-1164. [30] Wang B, Zhang X, Cao Y, et al. Electrooxidative Activation of B−B Bond in B2cat2>: Access to gem-Diborylalkanes via Paired Electrolysis [J]. Angewandte Chemie International Edition, 2023, 62(14): e202218179. [31] Jia Y, Xiong X, Wang D, et al. Atomically Dispersed Fe-N4 Modified with Precisely Located S for Highly Efficient Oxygen Reduction [J]. Nano-Micro Letters, 2020, 12(1): 116. [32] Zhao J, Lian J, Zhao Z, et al. A Review of In-Situ Techniques for Probing Active Sites and Mechanisms of Electrocatalytic Oxygen Reduction Reactions [J]. Nano-Micro Letters, 2022, 15(1): 1-20. [33] 尤秀. 直接硼氢化物燃料电池金基阳极催化剂的制备及性能研究 [D].太原:太原理工大学,2016. [34] Braesch G, Bonnefont A, Martin V, et al. Borohydride oxidation reaction mechanisms and poisoning effects on Au, Pt and Pd bulk electrodes: From model (low) to direct borohydride fuel cell operating (high) concentrations [J]. Electrochimica Acta, 2018, 273: 483-494. [35] Ji M, Tian X, Liu X, et al. Synthesis of La–Mg–Ni@Ag composite catalyst and its catalytic performance for borohydride [J]. International Journal of Hydrogen Energy, 2024, 51: 624-637. [36] 于晶晶. 直接硼氢化钠燃料电池镍基二元阳极催化剂 [D].重庆:重庆大学, 2021. [37] 李亚. 钴基DBFC阳极材料的制备及其电化学行为研究 [D].太原:中北大学,2023. [38] He Y, Chu W, Qin H, et al. Polyvinyl Alcohol Anion Exchange Resin Composite Membrane with Co@Cu Core–Shell Particles for Direct Borohydride Fuel Cell Applications [J]. ACS Applied Energy Materials, 2023, 6(2): 892-897. [39] Ji M, Tian X, Liu X, et al. The catalytic oxidation properties for BH4− and electrochemical properties of the Ag-decorated AB5-type hydrogen storage alloy [J]. Journal of Physics and Chemistry of Solids, 2022, 166: 110709. [40] Rostamikia G, Patel R J, Merino-Jimenez I, et al. Electrocatalyst Design for Direct Borohydride Oxidation Guided by First Principles [J]. The Journal of Physical Chemistry C, 2017, 121(5): 2872-2881. [41] He W, Wang L, Yin D, et al. Nanoflower-like Pd/v-Ni3S2/Ni foam self-supporting electrode as bifunctional electrocatalyst for direct borohydride-hydrogen peroxide fuel cells [J]. International Journal of Hydrogen Energy, 2024, 71: 298-308. [42] Saha S, Gayen P, Wang Z, et al. Development of Bimetallic PdNi Electrocatalysts toward Mitigation of Catalyst Poisoning in Direct Borohydride Fuel Cells [J]. ACS Catalysis, 2021, 11(14): 8417-30. [43] Santos D M F, Sequeira C A C. Sodium borohydride as a fuel for the future [J]. Renewable and Sustainable Energy Reviews, 2011, 15(8): 3980-4001. [44] Ye K, Ma X, Huang X, et al. The optimal design of Co catalyst morphology on a three-dimensional carbon sponge with low cost, inducing better sodium borohydride electrooxidation activity [J]. RSC Advances, 2016, 6(47): 41608-41617. [45] Celik C, San F G B, Sarac H I. Influences of sodium borohydride concentration on direct borohydride fuel cell performance [J]. Journal of Power Sources, 2010, 195(9): 2599-2603. [46] Li S, Yang X, Zhu H, et al. Investigation of amorphous CoB alloy as the anode catalyst for a direct borohydride fuel cell [J]. Journal of Power Sources, 2011, 196(14): 5858-5862. [47] Li S, Yang X, Zhu H, et al. Ultrafine amorphous Co–W–B alloy as the anode catalyst for a direct borohydride fuel cell [J]. International Journal of Hydrogen Energy, 2013, 38(6): 2884-2888. [48] Yang Z, Wang L, Gao Y, et al. LaNi4.5Al0.5 alloy doped with Au used as anodic materials in a borohydride fuel cell [J]. Journal of Power Sources, 2008, 184(1): 260-264. [49] Lota G, Sierczynska A, Acznik I, et al. AB5-type Hydrogen Storage Alloy Modified with Carbon Used as Anodic Materials in Borohydride Fuel Cells [J]. International Journal of Electrochemical Science, 2014, 9(2): 659-669. [50] Kinoshita K. Particle Size Effects for Oxygen Reduction on Highly Dispersed Platinum in Acid Electrolytes [J]. Journal of The Electrochemical Society, 2019, 137(3): 845-848. [51] Kianfar S, Golikand A N, ZareNezhad B. Bimetallic-metal oxide nanoparticles of Pt-M (M: W, Mo, and V) supported on reduced graphene oxide (rGO): radiolytic synthesis and methanol oxidation electrocatalysis [J]. Journal of Nanostructure in Chemistry, 2021, 11(2): 287-299. [52] Liu L, Liu H, Sun X, et al. Efficient electrocatalyst of Pt–Fe/CNFs for oxygen reduction reaction in alkaline media [J]. International Journal of Hydrogen Energy, 2020, 45(30): 15112-15120. [53] Lin L, Qin H, Jia J, et al. FeS as a promising cathode catalyst for direct borohydride fuel cells [J]. Journal of Alloys and Compounds, 2018, 769: 136-140. [54] Osmieri L, Escudero-Cid R, Monteverde Videla A H A, et al. Performance of a Fe-N-C catalyst for the oxygen reduction reaction in direct methanol fuel cell: Cathode formulation optimization and short-term durability [J]. Applied Catalysis B: Environmental, 2017, 201: 253-265. [55] Jia J, Li X, Qin H, et al. CoO nanorods/C as a high performance cathode catalyst in direct borohydride fuel cell [J]. Journal of Alloys and Compounds, 2020, 820: 153065. [56] 杨东霖. 高稳定性碳基材料催化剂的制备及其氧化性能的研究 [D].青岛:青岛科技大学,2024. [57] Ma J, Tong X, Wang J, et al. Rare-earth metal oxide hybridized PtFe nanocrystals synthesized via microfluidic process for enhanced electrochemical catalytic performance [J]. Electrochimica Acta, 2019, 299: 80-88. [58] Dou S, Tao L, Wang R, et al. Plasma-Assisted Synthesis and Surface Modification of Electrode Materials for Renewable Energy [J]. Advanced Materials, 2018, 30(21): 1705850. [59] 赵毅毅. 等离子体改性碳纳米管及碳纳米管气凝胶吸附染料分子的性能及机理研究 [D].西安:西北大学,2022. [60] Adamovich I, Baalrud S D, Bogaerts A, et al. The 2017 Plasma Roadmap: Low temperature plasma science and technology [J]. Journal of Physics D: Applied Physics, 2017, 50(32): 1-46. [61] Di L, Zhang J, Zhang X. A review on the recent progress, challenges, and perspectives of atmospheric-pressure cold plasma for preparation of supported metal catalysts [J]. Plasma Processes and Polymers, 2018, 15(5): 1700234. [62] Joshi N, Loganathan S. Cold Plasma Techniques for Sustainable Material Synthesis and Climate Change Mitigation: A Review [J]. Catalysts, 2024, 14(11): 802. [63] 李微, 杨光, 姜瑞婷, 等. 低温等离子体改性材料的研究进展[J]. 化学与粘合, 2025, 47(1): 85-87, 95. [64] 左安友, 袁作彬, 翁祝林等. 等离子体对材料表面作用机理分析 [J]. 湖北民族学院学报(自然科学版), 2008, (02): 173-178. [65] Peng S, Li L, Li W, et al. Surface Modification of Polyimide Film by Dielectric Barrier Discharge at Atmospheric Pressure [J]. Plasma Science and Technology, 2016, 18(4): 337. [66] 谷笑雨, 戚涵姝, 李昊原等. 低温等离子体处理对高分子材料表面改性的研究进展 [J]. 化学工程与装备, 2016, (12): 4-6. [67] Liu H, Zhang Y, Luan Y, et al. Research Progress in Preparation and Purification of Rare Earth Metals [J]. Metals, 2020, 10(10): 1376. [68] 钟荣. 稀土金属的制备工艺及应用[J]. 山西冶金, 2022, 45(9): 66-67, 70. [69] Munawar T, Mukhtar F, Nadeem M S, et al. Facile synthesis of rare earth metal dual-doped Pr2O3 nanostructures: Enhanced electrochemical water-splitting and antimicrobial properties [J]. Ceramics International, 2022, 48(13): 19150-19165. [70] 袁美玲, 陈必清, 景欣欣, 等. Ni、Mo和稀土金属共电沉积制备复合Cu电极析氢材料及催化析氢性能 [J]. 精细化工, 2024: 1-13. [71] Xu Y, Zhang Z, Xia D. Study on the Influence of Cerium Addition to the Catalytic Performance of Copper–Manganese Catalysts [J]. ChemistrySelect, 2025, 10(7): e202405024. [72] Le V-A, Nguyen H T, Vo T-D-H, et al. Development of strategies for persulfate activation with cerium-based catalysts for environmental applications: A review [J]. Journal of Environmental Chemical Engineering, 2025, 13(2): 115699. [73] 丁阳. 稀土金属价态转变研究获进展 [J]. 稀土, 2022, 43(04): 28. [74] 董晓娜, 夏俊, 游胜勇, 等. 碳纳米管及其改性复合材料的研究进展与展望 [J]. 生物化工, 2023, 9(3): 178-180, 185. [75] 徐晨曦. 改性碳纳米管基锂硫电池正极载体的制备及其性能研究 [D].长沙:湖南大学,2018. [76] Zhang X, Lu W, Zhou G, et al. Understanding the Mechanical and Conductive Properties of Carbon Nanotube Fibers for Smart Electronics [J]. Advanced Materials, 2020, 32(5): 1902028. [77] 赵振全, 商春航, 张乐, 等. 高性能碳纳米管复合纤维的研究进展 [J]. 东华大学学报(自然科学版), 2024, 50(04): 163-182. [78] 吕前远. 碳纳米管负载铂镍的制备及电化学性能研究 [D]大连:大连理工大学,2020. [79] 李芳芳. 非金属掺杂改性的碳纳米管载体材料电化学性能研究 [D].哈尔滨:哈尔滨师范大学,2023. [80] Deepa R, Vijayalakhmi K A. Enhancing the Electrochemical Efficiency of ZnO/NiO Nano Composite Through Air Plasma Treatment [J]. ChemistrySelect, 2025, 10(5): e202405232. [81] Jørgensen M, Grönbeck H. The Site-Assembly Determines Catalytic Activity of Nanoparticles [J]. Angewandte Chemie International Edition, 2018, 57(18): 5086-5089. [82] Ding X, Yu J, Huang W, et al. Modulation of the interfacial charge density on Fe2P–CoP by coupling CeO2 for accelerating alkaline electrocatalytic hydrogen evolution reaction and overall water splitting [J]. Chemical Engineering Journal, 2023, 451: 138550. [83] Xiao Y, Tan S, Wang D, et al. CeO2/BiOIO3 heterojunction with oxygen vacancies and Ce4+/Ce3+ redox centers synergistically enhanced photocatalytic removal heavy metal [J]. Applied Surface Science, 2020, 530: 147116. [84] Guo X, Xue S, Zhang X, et al. Mn atomic clusters and Fe nanoparticles in-situ confined nitrogen carbon nanotubes for efficient and durable ORR electrocatalysts in both alkaline and acidic media [J]. Journal of Alloys and Compounds, 2023, 953: 169992. [85] Huang W, Zhang J, Deng G, et al. MXene-Supported Co–S–N–C Catalysts with Enhanced Oxygen Reduction Reaction Activity for Anion Exchange Membrane Fuel Cells [J]. ACS Applied Energy Materials, 2025, 8(4): 2612-2619. [86] Li J, Wang L, Fu Y, et al. Engineering the Catalyst Layer of a Pyrolysis-Free Nonprecious Metal Catalyst for Enhancing Anion-Exchange Membrane Fuel Cells [J]. ACS Applied Energy Materials, 2025, 8(1): 552-558. [87] Zou K, Li N, Dai X, et al. Lightweight Freestanding CeF3 Nanorod/Carbon Nanotube Composite Interlayer for Lithium–Sulfur Batteries [J]. ACS Applied Nano Materials, 2020, 3(6): 5732-5742. [88] Liu J, Wan X, Liu S, et al. Hydrogen Passivation of M–N–C (M = Fe, Co) Catalysts for Storage Stability and ORR Activity Improvements [J]. Advanced Materials, 2021, 33(38): 2103600. [89] 鲍琳. 石墨烯基氧化(氢氧化)钴复合材料的制备及性能研究 [D].长沙:湖南大学,2016. [90] Zhu Y, Li H, Koltypin Y, et al. Preparation of nanosized cobalt hydroxides and oxyhydroxide assisted by sonication [J]. Journal of Materials Chemistry, 2002, 12(3): 729-733. [91] Winter M, Brodd R J. What Are Batteries, Fuel Cells, and Supercapacitors? [J]. Chemical Reviews, 2004, 104(10): 4245-4270. [92] Wang Z, Zhang Y, Neyts E C, et al. Catalyst Preparation with Plasmas: How Does It Work? [J]. ACS Catalysis, 2018, 8(3): 2093-2110. [93] Luo Z, Tian S, Wang Z. Enhanced Activity of Cu/ZnO/C Catalysts Prepared by Cold Plasma for CO2 Hydrogenation to Methanol [J]. Industrial & Engineering Chemistry Research, 2020, 59(13): 5657-5663. [94] Fan Z, Sun K, Rui N, et al. Improved activity of Ni/MgAl2O4 for CO2 methanation by the plasma decomposition [J]. Journal of Energy Chemistry, 2015, 24(5): 655-659. [95] Wang Z, Zhang H, Ye Z, et al. H2 production from ammonia decomposition with Mo2N catalyst driven by dielectric barrier discharge plasma [J]. International Journal of Hydrogen Energy, 2024, 49: 1375-1385. [96] Chen L, Zhang H, Chen L, et al. Facile synthesis of Cu doped cobalt hydroxide (Cu–Co(OH)2) nano-sheets for efficient electrocatalytic oxygen evolution [J]. Journal of Materials Chemistry A, 2017, 5(43): 22568-22575. [97] Cheng H, Wang Y, Jin Y, et al. Oxygen vacancy engineering through equivalent and aliovalent doping on LaCoO3 [J]. Separation and Purification Technology, 2024, 351: 128078. [98] Mishra P, Parihar R, Singh Y, et al. Finely tuning cobalt valence in Co3O4 lattice through chromium substitution: Regulating the charge transfer and oxygen vacancies for oxygen evolution and methanol oxidation reaction [J]. Materials Today Sustainability, 2024, 27: 100826. [99] Pan Y-X, Liu C-J, Shi P. Preparation and characterization of coke resistant Ni/SiO2 catalyst for carbon dioxide reforming of methane [J]. Journal of Power Sources, 2008, 176(1): 46-53. [100] Jose V, Jose V, Kuruvilla E, et al. Phytotoxic and electrochemical properties of mixed Cu-Ni cobaltite nanoflowers: Environmental and energy storage applications [J]. Journal of Alloys and Compounds, 2024, 978: 173383. [101] Shinde V, Uthayakumar M, Karthick R. Self-assembled cobalt hydroxide micro flowers from nanopetals: Structural, fractal analysis and molecular docking study [J]. Surfaces and Interfaces, 2022, 32: 102163. [102] Jing M, Yang Y, Zhu Y, et al. An Asymmetric Ultracapacitors Utilizing α-Co(OH)2/Co3O4 Flakes Assisted by Electrochemically Alternating Voltage [J]. Electrochimica Acta, 2014, 141: 234-240. [103] Duan Y-e, Li S, Tan Q, et al. Cobalt nickel boride nanocomposite as high-performance anode catalyst for direct borohydride fuel cell [J]. International Journal of Hydrogen Energy, 2021, 46(29): 15471-15481. [104] Tyczkowski J, Kierzkowska-Pawlak H. Towards Catalysts Prepared by Cold Plasma [J]. Catalysts, 2022, 12(1): 75. [105] Liao G, Li S, Luo Y, et al. Plasma-synthesized Ru-B double oxides catalysts for enhanced fuel cell performance [J]. Journal of Alloys and Compounds, 2025, 1013. [106] Behmenyar G, Akın A N. Investigation of carbon supported Pd–Cu nanoparticles as anode catalysts for direct borohydride fuel cell [J]. Journal of Power Sources, 2014, 249: 239-246. [107] Li S, Shu C, Chen Y, et al. A new application of nickel-boron amorphous alloy nanoparticles: anode-catalyzed direct borohydride fuel cell [J]. Ionics, 2018, 24(1): 201-209. [108] Uzundurukan A, Akça E S, Budak Y, et al. Carbon nanotube-graphene supported bimetallic electrocatalyst for direct borohydride hydrogen peroxide fuel cells [J]. Renewable Energy, 2021, 172: 1351-1364. [109] Kang L, Zhang Y, Liu C, et al. Iridium Improves BOR Selectivity of Ru-Based Catalysts for Direct Borohydride Fuel Cells [J]. ACS Applied Engineering Materials, 2025, 3(2): 444-453. [110] Hu B, Yu J, Meng J, et al. Porous Ni–Cu Alloy Dendrite Anode Catalysts with High Activity and Selectivity for Direct Borohydride Fuel Cells [J]. ACS Applied Materials & Interfaces, 2022, 14(3): 3910-3918. [111] He B, Zhuang S, Tai X, et al. Carbon Coated and Nitrogen Doped Hierarchical NiMo-Based Electrocatalysts with High Activity and Durability for Efficient Borohydride Oxidation [J]. ACS Applied Materials & Interfaces, 2022, 14(15): 17631-17641. [112] Yu J, Hu B, Xu C, et al. An efficient Ni–P amorphous alloy electrocatalyst with a hierarchical structure toward borohydride oxidation [J]. Dalton Transactions, 2021, 50(29): 10168-10179. [113] Yin X, Zhu K, Ye K, et al. High efficiency N/C foam supported Pd electrode for direct sodium borohydride-hydrogen peroxide fuel cell [J]. Journal of Power Sources, 2022.541: 231704. [114] 于诗画. 四氧化三钴复合电极材料的电催化性能研究 [D].沈阳:沈阳工业大学,2023. [115] Sun T, Li Y, Tian L, et al. Two birds with one stone: valence and substrate microenvironment engineering of Co-based catalysts for high-performance borohydride oxidation reaction [J]. Chemical Engineering Journal, 2024, 489: 151327. [116] 薛伟. 四氧化三钴改性修饰电极的制备及电化学性能研究 [D].郑州:华北水利水电大学,2023. [117] Li Z, Zhang X, Kang Y, et al. Interface Engineering of Co-LDH@MOF Heterojunction in Highly Stable and Efficient Oxygen Evolution Reaction [J]. Advanced Science, 2021, 8(2): 2002631. [118] Leng P, Luo F, Li M, et al. Construction of abundant Co3O4/Co(OH)2 heterointerfaces as air electrocatalyst for flexible all-solid-state zinc-air batteries [J]. Electrochimica Acta, 2022, 413:140158.
﹀
|
中图分类号: |
TQ152
|
开放日期: |
2026-06-30
|