- 无标题文档
查看论文信息

论文中文题名:

 宁南盆地新生代古环境变迁特征及其对青藏高原隆升的响应    

姓名:

 毛争争    

学号:

 20209226098    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0857    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 地质与环境学院    

专业:

 地质工程    

研究方向:

 地球化学与古环境    

第一导师姓名:

 赵晓辰    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-16    

论文答辩日期:

 2023-06-02    

论文外文题名:

 Cenozoic paleoenvironmental changes in Ningnan Basin and their response to the uplift of Qinghai-Tibet Plateau    

论文中文关键词:

 宁南盆地 ; 新生代地层 ; 元素地球化学 ; 古环境 ; 古气候    

论文外文关键词:

 Ningnan Basin ; Cenozoic stratigraphy ; element geochemistry ; paleoenvironment ; paleoclimat    

论文中文摘要:

印度板块与欧亚板块的碰撞形成了号称“世界屋脊”的青藏高原,高原的形成和生长对欧亚大陆的构造格局、地表形貌、气候演化等均产生了深远的影响。目前,关于青藏高原的生长过程和地貌演变等方面已有较多的研究,但关于高原隆升在其周邻地区的气候响应还存在不同认识且研究较弱。青藏高原东北缘是现今青藏高原向北东挤压、扩展的最前缘地区,新生代以来发育了大量沉积盆地,虽然在新生代晚期遭受了强烈的改造,但该区残留的层序完整、厚度巨大的新生代地层为我们认识该区域新生代的古环境、古气候演变提供了重要的载体。在此背景下,本次研究聚焦青藏高原东北缘的宁南盆地,以该盆地古近纪-新近纪碎屑岩为研究对象,通过对宁南盆地碎屑岩地球化学分析,可以揭示该地区的气候条件、古盐度、古水深以及氧化还原环境等重要信息,从而恢复这一区域新生代主要演化时期的古环境变迁特征。同时,结合区域地质资料,进一步探讨青藏高原东北缘气候变迁对高原隆升的响应关系。

本次研究对宁南盆地自寺口子组至干河沟组采集了44件碎屑岩样品,进行了系统的元素地球化学特征分析,同时结合前人在该地区的其他研究成果,如古生物化石、磁性地层学年龄、地层划分等,对宁南盆地新生代古环境、古气候进行重建,取得研究成果与认识如下:

(1)宁南盆地新生界的物源区经历了较弱的风化作用,物源区岩石主要为长英质成分;

(2)从寺口子期到干河沟期均以氧化环境为主,但其间也存在较为短暂的还原环境,整体上四个时期均具有中等-强水动力环境;

(3)寺口子组和干河沟组为淡水沉积环境,彰恩堡组和清水营组以咸水沉积环境为主;

(4)寺口子组以湿润气候为主,清水营组早期为湿润气候,随后逐渐变干旱,彰恩堡组和干河沟组则以干旱气候为主;

(5)从更大尺度上来看,约23Ma的喜马拉雅运动之后,青藏高原东北缘盆地如柴达木、兰州、西宁以及本次研究的宁南盆地等均记录了气候开始由湿润转为干旱的地质响应,而约8Ma出现在青藏高原东北缘区域的再次强烈构造运动使得该地区干旱化程度进一步加剧,并导致宁南盆地遭受了强烈的改造,这些变化均与青藏高原的隆升密切相关。

论文外文摘要:

The collision between the India plate and the Eurasian plate formed the Qinghai-Tibet Plateau, known as the "Roof of the World." The formation and growth of the plateau have had a profound impact on the tectonic pattern, surface morphology, and climate evolution of the Eurasian continent. Currently, there have been many studies on the growth process and geomorphic evolution of the Qinghai-Tibet Plateau, but there are still different views and weak research on the climatic response in its surrounding areas. The northeastern margin of the Qinghai-Tibet Plateau is the most advanced area where the plateau is expanding towards the northeast. Since the Cenozoic, a large number of sedimentary basins have developed in this area. Although it has undergone strong transformations in the late Cenozoic, the residual stratigraphy with complete sequence and huge thickness in this area provides an important carrier for understanding the ancient environment and climate evolution of this region. In this context, this study focuses on the Ningnan Basin in the northeastern margin of the Qinghai-Tibet Plateau. By analyzing the geochemical characteristics of the detrital rocks in the basin from the Paleogene to Neogene, the study can reveal important information on the climate conditions, paleosalinity, paleowater depth, and redox environment of this region, thus restoring the characteristics of paleoenvironmental changes during the major evolutionary period in this region. At the same time, combined with regional geological data, the study further explores the relationship between climate change and the uplift of the Qinghai-Tibet Plateau in the northeastern margin.

In this study, 44 detrital rock samples were collected from the Sikouzi Formation to the Ganhegou Formation in the Ningnan Basin, and systematic elemental geochemical characteristic analysis was conducted. Combined with other research results in the area, such as paleobiological fossils, magnetic stratigraphy age, and stratigraphic division, the paleoenvironment and paleoclimate of the Cenozoic in the Ningnan Basin were reconstructed, and the following research results and understandings were obtained:

(1) The provenance area of the Cenozoic in the Ningnan Basin experienced weak weathering, and the rock in the provenance area was mainly composed of felsic rocks.

(2) From the Sikouzi Period to the Ganhegou Period, the main environment was oxidizing, but there were also short-lived reducing environments. Overall, all four periods had moderate to strong hydrodynamic environments.

(3) The Sikouzi Formation and Ganhegou Formation were deposited in a freshwater sedimentary environment, while the Zhangenbu Formation and Qingshuiying Formation were mainly deposited in a saltwater sedimentary environment.

(4) The Sikouzi Formation is dominated by a humid climate, the early Qingshuiying Formation was humid and gradually became arid, and the Zhangenbu Formation and Ganhegou Formation were mainly arid climates.

(5) At a larger scale, after the Himalayan movement about 23 million years ago, the geological response of the climate in the surrounding areas of the northeastern margin of the Qinghai-Tibet Plateau, such as Chaidamu, Lanzhou, Xining, and the Ningnan Basin studied in this paper, all recorded a transition from a humid to arid climate. The strong tectonic movement that appeared in the northeastern margin of the Qinghai-Tibet Plateau about 8 million years ago further intensified the aridification of this region and caused intense transformations in the Ningnan Basin. These changes are closely related to the uplift of the Qinghai-Tibet Plateau.

参考文献:

[1] 刘晓波. 鄂尔多斯地块西缘新生代盆地演化[D]. 中国地质科学院, 2019.

[2] 房建军,刘池阳,韩鹏,等. 宁南盆地构造演化探讨[J]. 西北大学学报(自然科学版), 2008, (5): 813-816.

[3] 刘池洋,赵红格,桂小军,等. 鄂尔多斯盆地演化-改造的时空坐标及其成藏(矿)响应[J]. 地质学报, 2006, (5): 617-638.

[4] 赵晓辰,刘池阳,赵岩,等. 始新世鄂尔多斯盆地周缘裂陷解体事件在宁南地区的响应[J]. 地质科技情报, 2016, 35(6): 24-29, 37.

[5] Fang Jianjun . Tectonic Evolution and reformation of Ning nan Basin[J], 2009, xi’an:Northwestern university.

[6] 张进,马宗晋,任文军. 宁夏中南部新生界沉积特征及其与青藏高原演化的关系[J]. 地质学报, 2005, (6): 757-773.

[7] 邓辉. 宁南盆地新生代沉积—构造面貌及其演化[D]. 西北大学, 2014.

[8] 赵晓辰,刘池阳,赵岩,等. 始新世鄂尔多斯盆地周缘裂陷解体事件在宁南地区的响应[J]. 地质科技情报, 2016, 35(6): 7.

[9] 李立立. 六盘山第三系磁性地层、磁化率及其意义[D], 2007.

[10] Wang W. T. ,Zhang P. Z. ,E. Kirby, et al. A revised chronology for Tertiary sedimentation in the Sikouzi basin: Implications for the tectonic evolution of the northeastern corner of the Tibetan Plateau[J]. Tectonophysics: International Journal of Geotectonics and the Geology and Physics of the Interior of the Earth, 2011, (1): 505.

[11] 申旭辉,田勤俭,丁国瑜,等. 宁夏贺家口子地区晚新生代地层序列及其构造意义[J]. 中国地震, 2001, (2): 56-66.

[12] 程彧,董铭,龙晓泳,等. 西秦岭李坝式金矿床成矿要素分析[J]. 兰州大学学报, 2005, (2): 1-5.

[13] 张广良. 青藏高原东北缘六盘山—马东山地区晚新生代构造变形综合研究[D], 2006.

[14] 田勤俭,丁国瑜. 青藏高原东北隅似三联点构造特征[J]. 中国地震, 1998, (4): 29-37.

[15] 房建军. 宁南盆地沉积构造演化与改造[D]. 西北大学, 2009.

[16] 宁夏回族自治区地质矿产局. 宁夏回族自治区区域地质志[M]. 北京, 1990: 地质出版社.

[17] 宁夏回族自治区地质矿产局编著. 宁夏回族自治区岩石地层[J]. 宁夏回族自治区岩石地层, 1996.

[18] 杨钟健,周明镇. 甘肃灵武渐新世哺乳类动物化石[J]. 古生物学报, 1956, (4): 447-460, 647-649.

[19] 孙素英. 宁夏同心地区渐新世孢粉组合[C].中国地质科学院地质研究所文集(4): 地质出版社, 1982: 130-141.

[20] 王伟涛. 古近纪汤原断陷对物源区隆升史的沉积响应[D]. 吉林大学, 2007.

[21] 吴小力,赵帮胜,刘福田,等. 宁南盆地古近系清水营组石膏锶、硫同位素特征及其地质意义[C].中国矿物岩石地球化学学会第九次全国会员代表大会暨第16届学术年会文集, 2017: 454-455.

[22] 赵岩,刘池洋,张东东,等. 宁南盆地古近纪沉积岩地球化学特征对沉积环境的反映[J]. 地质科技情报, 2016, 35(5): 27-33.

[23] Zhao Y ,Liu C Y,Zhang D D, et al. Petrography and geochemistry of the Paleogene sandstones from the Ningnan Basin,NW China: Implications for provenance, weathering and tectonic setting[J]. Arabian Journal of Geosciences, 2016, 9( 17): 683.

[24] 吴小力,李荣西,胡建民,等. 中国北方宁南盆地古近纪晚期咸化湖盆演化及其区域地质意义[J]. 地质学报, 2017, 91(4): 954-967.

[25] 吴小力. 宁南盆地清水营组沉积期咸化湖盆发育特征与油气地质条件研究[D]. 长安大学, 2018.

[26] 李明涛,李黎明,梁志荣. 宁夏同心地区古近纪-新近纪沉积岩地球化学特征及意义[J]. 矿物岩石地球化学通报, 2020, 39(2): 304-318.

[27] 赵晓辰,刘池洋,王建强,等. 南北构造带北部香山地区中-新生代构造抬升事件[J]. 岩石学报, 2016, 32(7): 2124-2136.

[28] 吴小力,李荣西,胡建民,等. 中国北方宁南盆地古近纪晚期咸化湖盆演化及其区域地质意义[J]. 地质学报, 2017, 91(4): 14.

[29] N. Tribovillard,O. Averbuch,X. Devleeschouwer, et al. Deep-water anoxia over the Frasnian-Famennian boundary (La Serre, S France) : a tectonically-induced oceanic anoxic event ?[J]. Terra Nova, 2010, 16(5): 288-295.

[30] 姚远. 德令哈尕海硼元素法定量恢复古盐度及其古气候意义[D]. 中国科学院研究生院(青海盐湖研究所), 2006.

[31] 王成,邢顺洤. 砂岩中自生石英包裹体均—温度和盐度测定及地质应用[J]. 沉积学报, 1991, (3): 106-115.

[32] 文华国,郑荣才,唐飞,等. 鄂尔多斯盆地耿湾地区长6段古盐度恢复与古环境分析[J]. 矿物岩石, 2008, (1): 114-120.

[33] 郑荣才,柳梅青. 鄂尔多斯盆地长6油层组古盐度研究[J]. 石油与天然气地质, 1999, (1): 22-27.

[34] 许璟,蒲仁海,杨林,等. 塔里木盆地石炭系泥岩沉积时的古盐度分析[J]. 沉积学报, 2010, 28(3): 509-517.

[35] 许璟. 塔里木盆地台盆区石炭—二叠纪地层对比与沉积相研究[D]. 西北大学, 2010.

[36] 宋国奇,王延章,石小虎,等. 东营沙四段古盐度对碳酸盐岩沉积的控制作用[J]. 西南石油大学学报(自然科学版), 2013, 35(2): 8-14.

[37] 彭立才,韩德馨,濮人龙,等. 陆相咸化湖泊沉积中锶/钡比值及其地质意义[J]. 中国矿业大学学报, 1999, (1): 57-59.

[38] 刘成林,曹养同,杨海军,等. 库车前陆盆地古近纪—新近纪盐湖环境变迁及其成钾效应探讨[J]. 地球学报, 2013, 34(5): 547-558.

[39] 许中杰,程日辉,王嘹亮,等. 南海北部陆缘早侏罗世海平面变化的古盐度记录[J]. 沉积学报, 2009, 27(6): 1147-1154.

[40] 吴丰昌,万国江,蔡玉蓉. 沉积物-水界面的生物地球化学作用[J]. 地球科学进展, 1996, (2): 191-197.

[41] 冯洪真,俞剑华,方一亭,等. 五峰期上扬子海古盐度分析[J]. 地层学杂志, 1993, (3): 179-185.

[42] 钱焕菊,陆现彩,张雪芬,等. 东营凹陷沙四段上部泥质烃源岩元素地球化学及其古盐度的空间差异性[J]. 岩石矿物学杂志, 2009, 28(2): 161-168.

[43] 王昌勇,常玖,李楠,等. 四川盆地东部地区早侏罗世湖泊古水深恢复[J]. 沉积学报: 1-16.

[44] 吴福志,刘东娜,赵峰华,等. 塔里木盆地西北缘苏盖特布拉克组沉积环境及构造背景研究[J]. 矿物岩石地球化学通报, 2021, 40(2): 13.

[45] J. R. Hatch,J. S. Leventhal. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A.[J], 1992, 99(1): 0-82.

[46] Henry Elderfield,Mervyn J Greaves. The rare earth elements in seawater[J]. Nature, 1982, 296(5854): 214-219.

[47] 梁子若,侯明才,曹海洋,等. 内蒙古大青山石拐盆地侏罗系元素地球化学特征及沉积环境指示意义[J]. 成都理工大学学报:自然科学版, 2020, 47(3): 11.

[48] 宋立军,刘池阳,赵红格,等. 鄂尔多斯地区黄旗口组地球化学特征及其沉积环境与构造背景[J]. 地球科学:中国地质大学学报, 2016, 41(8): 15.

[49] 代军,王永栋,周宁,等. 鄂西秭归盆地下侏罗统香溪组泥岩地球化学特征及其古环境意义[J]. 地层学杂志, 2021, 45(1): 11.

[50] Li Tianjun ,Huang Zhilong ,Chen Xuan , et al. Paleoenvironment and organic matter enrichment of the Carboniferous volcanic-related source rocks in the Malang Sag, Santanghu Basin, NW China[J]. Petroleum Science, 2021, 18: 29-53.

[51] Tan Mingxuan ,Zhu Xiaomin ,Geng Mingyang , et al. The occurrence and transformation of lacustrine sediment gravity flow related to depositional variation and paleoclimate in the Lower Cretaceous Prosopis Formation of the Bongor Basin, Chad[J]. Journal of African Earth Sciences, 2017, 134: 134-148.

[52] Lai Hongfei ,Li Meijun ,Liu Jiguo , et al. Organic geochemical characteristics and depositional models of Upper Cretaceous marine source rocks in the Termit Basin, Niger[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 495: 292-308.

[53] James A Adeoye,Samuel O Akande,Olabisi A Adekeye, et al. Geochemistry and paleoecology of shales from the Cenomanian-Turonian Afowo formation Dahomey Basin, Nigeria: Implication for provenance and paleoenvironments[J]. Journal of African Earth Sciences, 2020, 169: 103887.

[54] B Overare,J Osokpor,PC Ekeh, et al. Demystifying provenance signatures and paleo-depositional environment of mudrocks in parts of south-eastern Nigeria: Constraints from geochemistry[J]. Journal of African Earth Sciences, 2020, 172: 103954.

[55] Usman Abubakar,Musa Bappah Usman,Kachalla Aliyuda, et al. Major and trace element geochemistry of the shales of Sekuliye Formation, Yola Sub-Basin, Northern Benue Trough, Nigeria: implications for provenance, weathering intensity, and tectonic setting[J]. Journal of Sedimentary Environments, 2021, 6(3): 473-484.

[56] 杨平,陈晔,刘泽纯. 柴达木盆地自然伽玛曲线在古气候及沉积环境研究中的应用[J]. 古地理学报, 2003, (1): 94-102.

[57] 陈丹玲,薛祥煦,张云翔,等. 陕西山阳盆地白垩系-第三系界限地层地球化学特征及古气候意义[J]. 西北大学学报(自然科学版), 2001, (2): 157-161.

[58] 田晓雪,雒昆利,谭见安,等. 黑龙江嘉荫地区白垩系与古近系界线附近的古气候分析[J]. 古地理学报, 2005, (3): 425-432.

[59] 王丹萍. 长春地区中更新世沉积物地球化学特征及其环境变化意义[D]. 吉林大学, 2008.

[60] 贾艳艳,邢学军,孙国强,等. 柴北缘西段古-新近纪古气候演化[J]. 地球科学(中国地质大学学报), 2015, 40(12): 1955-1967.

[61] 胡俊杰,马寅生,王宗秀,等. 地球化学记录揭示的柴达木盆地北缘地区中—晚侏罗世古环境与古气候[J]. 古地理学报, 2017, 19(3): 480-490.

[62] 张英帅,毛家仁,王启林,等. 贵阳乌当石炭系底部古风化壳地球化学特征及古环境意义[J]. 中国地质调查, 2018, (3): 66-73.

[63] W. Getaneh. Geochemistry provenance and depositional tectonic setting of the Adigrat Sandstone northern Ethiopia[J]. Journal of African Earth Sciences, 2002, 35(2): 185-198.

[64] 金中国,刘辰生,邹林,等. 贵州务-正-道地区二叠纪铝土矿沉积环境地球化学证据[J]. 地质学报, 2018, 92(4): 817-827.

[65] 师晶,黄文辉,吕晨航,等. 鄂尔多斯盆地临兴地区上古生界泥岩地球化学特征及地质意义[J]. 石油学报, 2018, 39(8): 14.

[66] 李文博,李晓海,丁秋红,等. 辽宁北部秀水盆地白垩系义县组泥岩地球化学特征及地质意义[J]. 现代地质, 2019, 33(2): 9.

[67]Fan Longgang ,Meng Qingren ,Wu Guoli, et al. Paleogene crustal extension in the eastern segment of the NE Tibetan plateau[J]. Earth and Planetary Science Letters, 2019: 62-71.

[68] 赵晓辰,刘池洋,王建强,等. 中国南北构造带北部中生代地质事件及其演化序列[J]. 地质论评, 2018, 64(6): 15.

[69] 邱占祥,谢骏义,阎德发. 甘肃东乡几种早中新世哺乳动物化石[J]. 古脊椎动物学报, 1990, (1): 9-24, 82-84.

[70] 赵杨. 宁南盆地丁家二沟剖面古近纪-新近纪沉积特征及其构造意义[D]. 中国地质大学(北京), 2019.

[71] Wang W.T. ,Eric Kirby,Zhang Pei zhen, et al. Tertiary basin evolution along the northeastern margin of the Tibetan Plateau: Evidence for basin formation during Oligocene transtension[J]. Bulletin of the Geological Society of America, 2013, 125(3): 377-400.

[72] 冯杨伟,姜亭,宋博,等. 中哈边境伊犁地区中二叠统沉积环境的地球化学判别[J]. 地质学报, 2017, 91(4): 12.

[73] 赵振华. 矿物微量元素组成用于火成岩构造背景判别[J]. 大地构造与成矿学, 2016, 40(5): 986-995.

[74] B. Overare,J. Osokpor,P. C. Ekeh, et al. Demystifying provenance signatures and paleo-depositional environment of mudrocks in parts of south-eastern Nigeria: Constraints from geochemistry[J]. Journal of African Earth Sciences, 2020, 172: 103954.

[75] K. H. Wedepohl. The Composition of the Continental Crust[J]. Geochimica Et Cosmochimica Acta, 1995, 59(7): 1217-1232.

[76] Ronald A Sprague,JA Melvin,FG Conradi, et al. Integration of core-based chemostratigraphy and petrography of the Devonian Jauf Sandstones, Uthmaniya area, Ghawar field, eastern Saudi Arabia[J]. Search and Discovery Article, 2009, 20065: 34.

[77] Michael M Herron. Geochemical classification of terrigenous sands and shales from core or log data[J]. Journal of Sedimentary Research, 1988, 58(5): 820-829.

[78] G. Shields,P. Stille. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: an isotopic and REE study of Cambrian phosphorites[J]. Chemical Geology, 2001, (1): 175.

[79] 黄静,李琦,胡俊杰,等. 羌塘角木日地区中二叠统龙格组泥岩地球化学特征及其地质意义[J]. 高校地质学报, 2015, 21(1): 59-67.

[80] Li Hongxia ,Liu Bo ,Liu Xingzhou , et al. Mineralogy and inorganic geochemistry of the Es4 shales of the Damintun Sag, northeast of the Bohai Bay Basin: Implication for depositional environment[J]. Marine and Petroleum Geology, 2019, 110: 886-900.

[81] Huang Hanyu ,He Dengfa ,Li Di , et al. Geochemical characteristics of organic-rich shale, Upper Yangtze Basin: implications for the Late Ordovician–Early Silurian orogeny in South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 554: 109822.

[82] Rónadh Cox,Donald R Lowe,RL Cullers. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States[J]. Geochimica Et Cosmochimica Acta, 1995, 59(14): 2919-2940.

[83] 王彦洁,武法东,李秀明,等. 甘肃敦煌雅丹地貌沉积物常量元素地球化学特征及指示意义[J]. 干旱区资源与环境, 2019, 33(4): 161-167.

[84] HWp Nesbitt,GM Young. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885): 715-717.

[85] Christopher M Fedo,H Wayne Nesbitt,Grant M Young. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance[J]. Geology, 1995, 23(10): 921-924.

[86] Luc Harnois. The CIW index: a new chemical index of weathering[J]. Sedimentary Geology, 1988, 55(3): 319-322.

[87] Suttner l j Dutta-P-K. Alluvial sandstone composition and paleo-climate, I. Framework Mineralogy[J]. Journal of SedimentaryPetrology, 1986: 56( 3) : 329-345.

[88] Ken-Ichiro Hayashi,Hiroyuki Fujisawa,Heinrich D Holland, et al. Geochemistry of∼ 1.9 Ga sedimentary rocks from northeastern Labrador, Canada[J]. Geochimica Et Cosmochimica Acta, 1997, 61(19): 4115-4137.

[89] Barry P Roser,Russell J Korsch. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data[J]. Chemical Geology, 1988, 67(1): 119-139.

[90] 邵磊,刘志伟,朱伟林. 陆源碎屑岩地球化学在盆地分析中的应用[J]. 地学前缘, 2000, (3): 297-304.

[91] B. P. Roser,R. J. Korsch. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data[J]. Chemical Geology, 1988, 67.

[92] 徐增连,张博,里宏亮,等. 松辽盆地开鲁坳陷钱家店地区姚家组砂岩地球化学特征及物源和构造背景分析[J]. 矿物岩石地球化学通报, 2019, 38(3): 15.

[93] Li X. H. ,Li Z. X.,Mtd Wingate, et al. Geochemistry of the 755 Ma Mundine Well dyke swarm, northwestern Australia: Part of a Neoproterozoic mantle superplume beneath Rodinia?[J]. Precambrian Research, 2006, 146(1): 1-15.

[94] Roser b p Korsch-R-J. Determination of tectonic setting of sand- stone-mudstone suites using SiO2content and K 2 O / Na2O ratio[J]. The Journal of Geology, 1986, 94( 5): 635-650.

[95] Mukul R. Bhatia,Keith A. W. Crook. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins[J]. Contributions to Mineralogy and Petrology, 1986, 92.

[96] 王伟涛. 宁夏南部新生代盆地沉积演化及其对青藏高原东北角构造变形的响应[D]. 中国地震局地质研究所, 2011.

[97] A Vosoughi Moradi,A Sarı,P Akkaya. Geochemistry of the Miocene oil shale (Hançili Formation) in the Çankırı-Çorum Basin, Central Turkey: Implications for Paleoclimate conditions, source–area weathering, provenance and tectonic setting[J]. Sedimentary Geology, 2016, 341: 289-303.

[98] Li Xiaofeng ,Gang Wenzhe ,Yao Jingli , et al. Major and trace elements as indicators for organic matter enrichment of marine carbonate rocks: A case study of Ordovician subsalt marine formations in the central-eastern Ordos Basin, North China[J]. Marine and Petroleum Geology, 2020, 111: 461-475.

[99] 谭聪,袁选俊,于炳松,等. 鄂尔多斯盆地南缘上二叠统—中下三叠统地球化学特征及其古气候、古环境指示意义[J]. 现代地质, 2019, 33(3): 615-628.

[100] 田景春,张翔. 沉积地球化学[M]. 北京: 地质出版社, 2016: 63-77.

[101] 张才利,高阿龙,刘哲,等. 鄂尔多斯盆地长7油层组沉积水体及古气候特征研究[J]. 天然气地球科学, 2011, 22(4): 582-587.

[102] Berna Yavuz Pehlivanli. factors controlling the paleo-sedimentary conditions of eltek oil shale, sorgun-yozgat/turkey bulletin of the mineral research and exploration bulletin of the mineral research and exploration contents[J], 2019.

[103] Li D. ,Li R. ,Zhu Z. , et al. Elemental characteristics of lacustrine oil shale and its controlling factors of palaeo-sedimentary environment on oil yield: a case from Chang 7 oil layer of Triassic Yanchang Formation in southern Ordos Basin[J], 2018, 37(2): 16.

[104] B Nagender Nath,M Bau,B Ramalingeswara Rao, et al. Trace and rare earth elemental variation in Arabian Sea sediments through a transect across the oxygen minimum zone[J]. Geochimica Et Cosmochimica Acta, 1997, 61(12): 2375-2388.

[105] Guo Ling ,Jiang Zaixing ,Zhang Jinchuan , et al. Paleoenvironment of Lower Silurian black shale and its significance to the potential of shale gas, southeast of Chongqing, China[J]. Energy Exploration & Exploitation, 2011, 29(5): 597-616.

[106] Karin Goldberg,Munir Humayun. Geochemical paleoredox indicators in organic-rich shales of the Irati Formation, Permian of the Paraná Basin, southern Brazil[J]. Brazilian Journal of Geology, 2016, 46: 377-393.

[107] Xi Zhaodong ,Tang Shuheng . Geochemical characteristics and organic matter accumulation of Late Ordovician shale in the Upper Yangtze Platform, South China[J]. Energy Reports, 2021, 7: 667-682.

[108] Bryn Jones,David AC Manning. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111(1): 111-129.

[109] Kay Scheffler,Dieter Buehmann,Lorenz Schwark. Analysis of late Palaeozoic glacial to postglacial sedimentary successions in South Africa by geochemical proxies–Response to climate evolution and sedimentary environment[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 240(1): 184-203.

[110] Paul B Wignall,Richard J Twitchett. Oceanic anoxia and the end Permian mass extinction[J]. Science, 1996, 272(5265): 1155-1158.

[111] Susan M Rimmer. Geochemical paleoredox indicators in Devonian–Mississippian black shales, central Appalachian Basin (USA)[J]. Chemical Geology, 2004, 206(3): 373-391.

[112] 黄俨然,肖正辉,余烨,等. 湘西北下寒武统黑色岩系元素地球化学特征及地质意义[J]. 地球化学, 2020, 49(5): 516-527.

[113] 吴朝东,杨承运,陈其英. 湘西黑色岩系地球化学特征和成因意义[J]. 岩石矿物学杂志, 1999, (1): 28-29, 31-41.

[114] 吴明清,欧阳自远. 铈异常—一个寻迹古海洋氧化还原条件变化的化学示踪剂[J]. 科学通报, 1992, (3): 242-244.

[115] 白顺良. 泥盆纪弗拉阶-法门阶事件的化学-生物地层学研究[J]. 北京大学学报(自然科学版), 1998, (Z1): 231-237.

[116] Hu Junjie ,Li Qi ,Song Chunyan , et al. Geochemical characteristics of the Permian sedimentary rocks from Qiangtang Basin: constraints for paleoenvironment and paleoclimate[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2017, 28(3): 271-282.

[117] Hallberg R.O.. A geochemical method for investigation of palaeoredox conditions in sediments[J]. Ambio Special Rep, 1976, 4: 139–147.

[118] 李明涛. 宁夏同心地区古近纪-新近纪沉积岩地球化学特征及意义[J], 2020.

[119] 张天福,孙立新,张云,等. 鄂尔多斯盆地北缘侏罗纪延安组、直罗组泥岩微量、稀土元素地球化学特征及其古沉积环境意义[J]. 地质学报, 2016, 90(12): 3454-3472.

[120] 陈骏,汪永进,陈旸,等. 中国黄土地层Rb和Sr地球化学特征及其古季风气候意义[J]. 地质学报, 2001, (2): 259-266.

[121] 于健,郭巍,王少华,等. 饶河地区大岭桥组沉积环境恢复及其地质意义[J]. 世界地质, 2015, 34(1): 113-119.

[122] Lee J. Suttner Prodip K. Dutta. Alluvial Sandstone Composition and Paleoclimate, II. Authigenic Mineralogy[J]. Journal of Sedimentary Research, 1986, Vol. 56.

[123] 胡晓峰,刘招君,柳蓉,等. 桦甸盆地始新统桦甸组黏土矿物和无机地球化学特征及其古环境意义[J]. 煤炭学报, 2012, 37(3): 8.

[124] 施辉,刘震,丁旭光,等. 柴达木盆地西南地区古近纪—新近纪断裂坡折带与沉积相分布[J]. 古地理学报, 2013, 15(3): 317-326.

[125] Zachos,J.. Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present[J]. Science, 2001, 292(5517): 686-693.

[126] 李吉均. 青藏高原隆升与晚新生代环境变化[J]. 兰州大学学报:自然科学版, 2013, 49(2): 6.

[127] 戴霜,张明震,彭栋祥,等. 中国西北地区中—新生代构造与气候格局演化[J]. 海洋地质与第四纪地质, 2013, 33(4): 16.

[128] J. C. Zachos,G. R. Dickens,R. E. Zeebe. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics[J]. Nature, 2008, 451(7176): 279-283.

[129] Chamberlain,C.,Page, et al. Role of the westerlies in Central Asia climate over the Cenozoic[J]. Earth and Planetary Science Letters: a Letter Journal Devoted to the Development in Time of the Earth and Planetary System, 2015, 428: 33-43.

[130] J. Shukla,C. A. Nobre,P. J. Sellers. Amazon Deforestation and Climate Change[J]. Science, 1990, 247(4948): 1322-1325.

[131] Clark,Douglas,B., et al. Modeling the Impact of Land Surface Degradation on the Climate of Tropical North Africa.[J]. Journal of Climate, 2001.

[132] T. Westerhold,N. Marwan,A. J. Drury, et al. An astronomically dated record of Earth's climate and its predictability over the last 66 million years[J]. Science, 369.

[133] Paul N. Pearson,Gavin L. Foster,Bridget S. Wade. Atmospheric carbon dioxide through the Eocene–Oligocene climate transition[J]. Nature, 2009, 461(7267): 1110-3.

[134] Pagani,Mark,Huber, et al. The Role of Carbon Dioxide During the Onset of Antarctic Glaciation.[J]. Science, 2011.

[135] D. B. Rowley,B. S. Currie. Rowley, D. B. & Currie, B. S. Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet. Nature 439, 677-681[J]. Nature, 2006, 439(7077): 677-681.

[136] 刘东生,郑绵平,郭正堂. 亚洲季风系统的起源和发展及其与两极冰盖和区域构造运动的时代耦合性[J]. 第四纪研究, 1998, (3): 194-204.

[137] Sun X. ,Wang P. How old is the Asian monsoon system? Paleobotanical records from China[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2005, 222(3): 181-222.

[138] Guo Z. T. ,Sun B. ,Zhang Z. S. , et al. A major reorganization of Asian climate regime by the Early Miocene[J]. Climate of the Past, 2008, 4(3): 153-174.

[139] 王伟彬. 兰州盆地早渐新世-中中新世古土壤环境磁学特征及古气候[D]. 兰州大学, 2022.

[140] Peter Molnar,Philip England,Joseph Martinod. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon[J]. Reviews of Geophysics, 1993, 31(4): 357-396.

[141] An Zhisheng,John E Kutzbach,Warren L Prell, et al. Evolution of Asian monsoons and phased uplift of the Himalaya–Tibetan plateau since Late Miocene times[J]. Nature, 2001, 411(6833): 62-66.

[142] 李吉均. 青藏高原的地貌演化与亚洲季风[J]. 海洋地质与第四纪地质, 1999, (1): 7-17.

[143] 葛肖虹,任收麦,马立祥,等. 青藏高原多期次隆升的环境效应[J]. 地学前缘, 2006, (6): 118-130.

[144] Richard Allan. Beck. Late Cretaceous ophiolite obduction and Paleocene India-Asia collision in the westernmost Himalaya.[J], 1995.

[145] A. Patzelt,Li H. ,Wang J. , et al. Palaeomagnetism of Cretaceous to Tertiary sediments from southern Tibet: evidence for the extent of the northern margin of India prior to the collision with Eurasia[J]. Tectonophysics, 1996, 259(4): 259-284.

[146] C. F. Chang,R. M. Shackleton,J. F. Dewey, et al. The Geological Evolution of Tibet. Royal Society-Academia Sinica Geotraverse of the Qinghai-Xizang Plateau[J], 1988.

[147] W. Ruddiman,J. Kutzbach. Forcing of late Cenozoic Northern Hemisphere climate by plateau uplift in Asia and North America[J], 1989.

[148] 李吉均,方小敏. 青藏高原隆起与环境变化研究[J]. 科学通报, 1998, (15): 1569-1574.

[149] Guo Z. T. ,F W. Ruddiman,Q. Z. Hao, et al. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China.[C].Nature, 2002: 159.

[150] Miao Y F,M Herrmann, et al. What controlled Mid-Late Miocene long-term aridification in Central Asia? - Global cooling or Tibetan Plateau uplift: A review[J], 2012.

[151] G. Ramstein,F. Fluteau,J. Besse, et al. Effect of orogeny, plate motion and land|[ndash]|sea distribution on Eurasian climate change over the past 30 million years[J]. Nature, 1997, 386(6627): 788-795.

[152] Guillaume Dupont-Nivet,Wout Krijgsman,Cor G Langereis, et al. Tibetan Plateau aridification linked to global cooling at the Eocene-Oligocene transition[J]. Nature, 2007, 445(7128): 635-638.

[153] Jjm Sun. Eocene seawater retreat from the southwest Tarim Basin and implications for early Cenozoic tectonic evolution in the Pamir Plateau[C].Tectonophysics: International Journal of Geotectonics and the Geology and Physics of the Interior of the Earth, 2013: 185-196.

[154] Dai Shuang ,Fang Xiaomin ,Guillaume Dupont-Nivet, et al. Magnetostratigraphy of Cenozoic sediments from the Xining Basin: Tectonic implications for the northeastern Tibetan Plateau[J]. Journal of Geophysical Research, 2006, 111(B11): B11102.

[155] 刘志飞,王成善. 可可西里盆地早渐新世雅西措群沉积环境分析及古气候意义[J]. 沉积学报, 2000, (3): 355-361.

[156] W. Craddock,E. Kirby,H. Zhang. Late Miocene–Pliocene range growth in the interior of the northeastern Tibetan Plateau[J]. Lithoshere, 2011, 3(6): 420-438.

[157] Xiao Guoqiao. Evidence for northeastern Tibetan Plateau uplift between 25 and 20 Ma in the sedimentary archive of the Xining Basin, Northwestern China[J]. Earth & Planetary Science Letters, 2012.

[158] Fang X. ,M. Y. Rob,D. K. Rea, et al. Late Cenozoic deformation and uplift of the NE Tibetan Plateau:Evidence from high-resolution magnetostratigraphy of the Guide Basin,Qinghai Province,China[J], 2005.

[159] R. O. Lease,D. W. Burbank,B. Hough, et al. Pulsed Miocene range growth in northeastern Tibet: Insights from Xunhua Basin magnetostratigraphy and provenance[J]. Geological Society of America, 2012.

[160] Fang X. ,Wang J. ,Zhang W. , et al. Tectonosedimentary evolution model of an intracontinental flexural (foreland) basin for paleoclimatic research[J]. Global & Planetary Change, 2016, 145.

[161] Zhang P. , H. Ao, M. J. Dekkers, et al. An. Magnetochronology of the Oligocene mammalian faunas in the Lanzhou Basin, Northwest China.[J]. Asian Earth Sci., 2018, 159.

[162] Wang X. ,M. Zattin,Li J. , et al. Eocene to Pliocene exhumation history of the Tianshui-Huicheng region determined by Apatite fission track thermochronology: Implications for evolution of the northeastern Tibetan Plateau margin[J]. Journal of Asian Earth Sciences, 2011, 42(1): 97-110.

[163] Zheng D. ,Zhang P. Z. ,Wan J. , et al. Rapid exhumation at ~ 8 Ma on the Liupan Shan thrust fault from apatite fission-track thermochronology: Implications for growth of the northeastern Tibetan Plateau margin[J]. Earth and Planetary Science Letters, 2006, 248(1): 198-208.

中图分类号:

 P59    

开放日期:

 2023-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式