- 无标题文档
查看论文信息

题名:

 高稳定泡沫体系构建及其流变性研究    

作者:

 张含灵    

学号:

 21220226154    

保密级别:

 保密(2年后开放)    

语种:

 chi    

学科代码:

 085700    

学科:

 工学 - 资源与环境    

学生类型:

 硕士    

学位:

 工程硕士    

学位年度:

 2024    

学校:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 消防科学与工程    

导师姓名:

 盛友杰    

导师单位:

 西安科技大学    

提交日期:

 2024-06-17    

答辩日期:

 2024-06-02    

外文题名:

 Study of construction and rheological property of highly stabilized foam    

关键词:

 高稳定泡沫 ; 纳米颗粒 ; 水溶性聚合物 ; 泡沫析液 ; 流变性 ; 灭火性能    

外文关键词:

 high stability foam ; nanoparticle ; water-soluble polymer ; foam drainage ; rheological property ; fire extinguishing performance    

摘要:

大型石化企业、建筑等场所重大火灾事故频繁发生,现有常规泡沫灭火剂灭火性能和隔热防护能力已难以满足这些场所日益增长的火灾高效扑救重大需求,开发新一代高稳定泡沫灭火技术迫在眉睫。在灭火过程中,泡沫内部结构不断地发生变化,导致泡沫物性参数也随之发生变化,从而影响泡沫喷射效率以及扩散效率,进而影响灭火性能。因此,研究泡沫在剪切作用下流动行为和粘弹性具有重大意义。

首先,通过文献调研和预实验,筛选了性能优异的表面活性剂、纳米颗粒和水溶性聚合物。所选起泡剂为两性离子型氟碳表面活性剂FS-50、非离子型碳氢表面活性剂APG-0810,稳泡剂为SiO2、Al(OH)3和β-Al2O3三种纳米颗粒、黄原胶(XG)和瓜尔胶(GG)两种水溶性聚合物;研究了不同浓度XG和GG水溶液起泡性和泡沫析液,确定了起泡性和稳定性优异的XG和GG浓度;构建了高稳定泡沫体系。

其次,分别研究了不同组分高稳定泡沫液表面张力、电导率、起泡性和泡沫析液,分析了不同纳米颗粒、水溶性聚合物和表面活性剂间的相互作用。结果表明:XG/GG加入导致含SiO2泡沫液表面张力和起泡性下降,电导率升高。含Al(OH)3泡沫液中,泡沫液表面张力、电导率和起泡性随着XG加入呈下降趋势,当XG浓度达到0.05 wt%时,表面张力、电导率和起泡性呈上升趋势;GG对泡沫液表面张力和电导率的影响与XG相同,但当GG浓度达到0.2 wt%时,起泡性持续下降。含β-Al2O3泡沫液中,XG/GG的存在会降低其表面张力和起泡性,0.01 wt%浓度XG导致电导率下降,当浓度达到0.05 wt%时,电导率升高,添加GG电导率持续下降。XG/GG的存在会增强含SiO2/β-Al2O3纳米颗粒的泡沫稳定性,而添加XG/GG会加速Al(OH)3纳米颗粒稳定的泡沫析液。

再次,研究了不同组分高稳定泡沫液和泡沫流动行为及粘弹性,采用Cross模型对泡沫流动曲线拟合。结果表明:仅有表面活性剂的泡沫液呈现出类似牛顿流体的流动行为。含纳米颗粒和水溶性聚合物的泡沫液是具有剪切稀化行为的非牛顿流体。XG/GG的存在提高了含SiO2泡沫液表观粘度和粘弹性模量。含Al(OH)3泡沫液中,添加XG会降低泡沫液表观粘度和粘弹性模量,添加GG会增强表观粘度,降低粘弹性模量。含β-Al2O3泡沫液中,添加XG/GG会增加泡沫液表观粘度,XG的存在降低泡沫液粘弹性模量,GG的存在则起相反作用。所有泡沫亦是非牛顿流体,具有剪切稀化行为,流动曲线符合Cross模型。添加纳米颗粒会改变泡沫粘弹性特征,提高泡沫粘弹性模量。除仅由表面活性剂稳定的泡沫外,纳米颗粒或纳米颗粒与水溶性聚合物共同稳定的泡沫均呈现粘弹性固体特征。纳米颗粒、水溶性聚合物和表面活性剂相互吸附形成聚集体分布在液膜和Plateau边界,从而改变液膜结构强度和抗损伤能力。施加剪切力后,粘弹性模量更高的泡沫具有更强的拉伸强度和恢复能力。

最后,基于上述结果,优选性能优异的高稳定泡沫配方,研究其灭火性能和抗烧性能。结果表明本研究开发的高稳定泡沫具有优异的灭火及抗烧性能。纳米颗粒和水溶性聚合物的加入对泡沫灭火时间影响较小,对90%控火时间基本无影响,但是能不同程度提升抗烧性能。纳米颗粒和水溶性聚合物的加入导致泡沫表观粘度增大从而使其扩撒速度相对较慢,但是也因二者存在,泡沫具有更高粘弹性,从而使其具有更持久的灭火能力。在五组高稳定泡沫中,由SiO2与XG共同稳定的高稳定泡沫不仅具有较短的灭火时间,同时还具有优异的抗烧性能。

外文摘要:

The large petrochemical enterprises, buildings, and other places where major fire accidents occur frequently, the fire extinguishing performance and thermal insulation protection ability of existing conventional fire fighting foams have been difficult to meet the growing number of these places to fight fires efficiently major needs. It is urgent to develop a new generation of highly stable foam fire extinguishing technology. In the fire-fighting process, the internal structure of the foam is constantly changing, leading to changes in the physical parameters of the foam, thus affecting the spraying efficiency of the foam and the spreading efficiency, which in turn affects the fire-fighting performance. Therefore, it is of great significance to study the flow behavior and viscoelasticity of foam under shear.

Firstly, the surfactants, nanoparticles, and water-soluble polymers with excellent performance were screened through literature research and preexperimentation. The selected foaming agents were amphoteric fluorocarbon surfactant FS-50 and nonionic hydrocarbon surfactant APG-0810, and the foam stabilizers were three kinds of nanoparticles, SiO2, Al(OH)3, and β-Al2O3, and two kinds of water-soluble polymers, xanthan gum (XG) and guar gum (GG). The foaming ability and foam drainage of the two water-soluble polymer solutions of XG and GG at different concentrations were investigated, and the concentrations of XG and GG with excellent foaming ability and stabilization were determined. Finally, a highly stable foam system was constructed.

Secondly, the surface tension, conductivity, foaming ability, and foam drainage of different components of highly stable foams were investigated separately. And the interactions among different nanoparticles, water-soluble polymers, and surfactants were analyzed. The results showed that the addition of XG/GG decreased the surface tension and foaming ability, and increased the conductivity of the foam solution containing SiO2. The surface tension, conductivity, and foaming ability of the foam solution decreased with the addition of XG, and the surface tension, conductivity and foaming ability increased as the concentration reached 0.05 wt%. The effect of GG on the surface tension and conductivity of the foam solution is the same as that of XG, but the foaming ability continuous decreased as the concentration of GG reached 0.2 wt%. The presence of XG/GG in the foam solution containing β-Al2O3 will reduce its surface tension and foaming ability, and the conductivity decreases at concentration of 0.01 wt% XG, and increases as the concentration reaches 0.05wt%. And the addition of GG leads to the continuous decrease of conductivity.The presence of XG/GG enhances the stability of the foam containing SiO2/β-Al2O3 nanoparticles, but the addition of XG/GG in the foam stabilized by Al(OH)3 nanoparticles accelerates foam drainage.

Thirdly, the flow behavior and viscoelasticity of different components of highly stable foam solution and foams were investigated, and the foam flow curves were fitted by the Cross model. The results showed that the surfactant-only foam solution exhibited flow behavior similar like Newtonian fluid. Foam solution containing nanoparticles and water-soluble polymers were non-Newtonian fluids with shear-thinning behavior. The presence of XG/GG increased the apparent viscosity and viscoelastic modulus of foam solution containing SiO2. In foam solution containing Al(OH)3, the addition of XG decreased the apparent viscosity and viscoelastic modulus of the foam solution, and the addition of GG enhanced the apparent viscosity and decreased the viscoelastic modulus. In foam solution containing β-Al2O3, the addition of XG/GG increased the apparent viscosity of the foam solution, the presence of XG decreases the viscoelastic modulus of the foam solution, and the presence of GG has the opposite effect. All foams were also non-Newtonian fluids with shear-thinning behavior, and the foam flow curves were consistent with the Cross model. The addition of nanoparticles changed the viscoelastic characteristics of the foams and increased the viscoelastic modulus of the foams. Foams stabilized by nanoparticles or nanoparticles and water-soluble polymers exhibited viscoelastic solid characteristics, except for foams only stabilized by surfactants. Nanoparticles, water-soluble polymers, and surfactants adsorb each other to form aggregates, distributing in the liquid film and Plateau boarders, thus changing the structural strength and damage resistance of the liquid film. The foam with higher viscoelastic modulus has stronger tensile strength and recovery ability after applying shear force.

Finally, based on the results of the above studies, high stabilized foam formulations with excellent performance were preferred, and the fire extinguishing and burn resistance properties of the high stabilized foams were investigated. The results showed that the high-stability foam system prepared in this paper have excellent fire extinguishing performance and anti-burning performance. The addition of nanoparticles and water-soluble polymers had a weak effect on the fire extinguishing time, and had no effect on the 90% fire control time. But they can improve the burning resistance to varying degrees. The addition of nanoparticles and water-soluble polymers increased the foam apparent viscosity, leading to a slower spreading speed. However, the presence of nanoparticles and water-soluble polymers increased the foam viscoelasticity, resulting in a more durable fire extinguishing ability. Among the five highly stabilized foams, the foam co-stabilized by SiO2 and XG not only had a shorter extinguishing time, but also had excellent burning resistance.

参考文献:

[1] 范维澄,刘乃安.中国火灾科学基础研究进展与展望[J].中国科学技术大学学报,2006,(01):1-8.

[2] 盛友杰,李杨,阎灿彬,彭云川.高分子稳泡剂和SiO2纳米颗粒对二元表面活性剂复配体系泡沫性能影响[J].高分子材料科学与工程,2023,(04):33-39.

[3] 李林辉,郭拥军,周薇,罗平亚,廖广志,牛金刚,孙刚.疏水改性水溶性聚合物对表面活性剂泡沫性能的影响[J].钻井液与完井液,2002,(04):23-25+28+57.

[4] 邓全花.抗盐聚合物与表面活性剂复合体系的体相和界面性能及协同增效原理[D].山东大学,2016.

[5] Sheng Y, Jiang N, Sun X, Lu S, Li C. Experimental Study on Effect of Foam Stabilizers on Aqueous Film-Forming Foam[J]. Fire Technol, 2017, 54:211–228.

[6] Palaniraj A, Jayaraman V Production. Recovery and applications of xanthan gum by Xanthomonas campestris[J]. J. Food Eng, 2011, 106:1–12.

[7] Green A J, Littlejohn K A, Hooley P, Cox P W. Formation and Stability of Food Foams and Aerated Emulsions: Hy-dro-phobins as Novel Functional Ingredients[J]. Colloid Interface Sci, 2013, 18:292–301.

[8] Verma A, Chauhan G, Baruah P P, Ojha K. Morphology, Rheology, and Kinetics of Nanosilica Stabilized Gelled Foam Fluid for Hydraulic Fracturing Application[J]. Ind Eng Chem Res, 2018, 57:13449–13462.

[9] Yu X Y, Qiu K, Li H, Miao X Y, Wang J Y, Li Q, Lu S X, Interfacial and rheological properties of long-lived foams stabilized by rice proteins complexed to transition metal ions in the presence of alkyl polyglycoside[J]. Journal of Colloid and Interface Science, 2023, 630:645-657.

[10] Yu X, Lin Y, Li F. Highly stable fluorine-free foam by synergistically combining hydrolyzed rice protein and ferrous sulfate[J]. Chemical Engineering Science, 2022, 250(15):117378.

[11] Yu X, Qiu K, Yu X, Li Q, Zong R, Lu S. Stability and thinning behaviour of aqueous foam films containing fluorocarbon and hydrocarbon surfactant mixtures[J]. Journal of Molecular Liquids, 2022, 359(1):119225.

[12] 鲍佳妮.豌豆蛋白的起泡性和稳定性的研究[J].食品工业,2023,(11):166-170.

[13] 范广琦,王俊彤,李丹,崔素萍,李晶,郑喜群.Protamex酶水解对玉米谷蛋白泡沫性质及结构特性的影响[J].食品科学,2023,24:41-49.

[14] 盛友杰,彭云川,张含灵,阎灿彬,李杨,马文智.SiO2纳米颗粒对环保型泡沫灭火剂稳定性的影响[J].材料导报,2023,18:263-268.

[15] 曹海珍,王尚彬,欧红香,薛洪来,毕海普,王钧奇.疏水改性纳米二氧化硅对无氟泡沫灭火剂性能影响[J].化工进展,2023-0881.

[16] 郑家桢,裴海华,张贵才,单景玲,蒋平.改性纳米硅颗粒强化高温泡沫的性能及机理研究[J].材料导报,2023,(07):247-251.

[17] 周日峰.含纳米二氧化硅颗粒三相泡沫性能与作用机理研究[J].火灾科学,2022,(04):224-232.

[18] Keereeta Y, Thongtem S, Thongtem T. Enhanced photocatalytic degradation of methylene blue by WO3/ZnWO4 composites synthesized by a combination of microwave-solvothermal method and incipient wetness procedure[J]. Powder Technology, 2015, 284:85-94.

[19] Liu T, Yu X, Yin H. Impact of nanoparticle size and solid state on dissolution rate by investigating modified drug powders[J]. Powder Technology, 2020, 376.

[20] Sheng Y, Xue M, Zhang S, Wang Y, Zhai X, Zhao Y, Ma L, Liu X. Role of nanoparticles in the performance of foam stabilized by a mixture of hydrocarbon and fluorocarbon surfactants[J]. Chem Eng Sci, 2020, 228:115977.

[21] Yang W, Wang T, Fan Z. Highly stable foam stabilized by alumina nanoparticles for EOR: Effects of sodium cumenesul-fonate and electrolyte concentrations[J]. Energy Fuels, 2017, 31:9016–9025.

[22] Williams B, Murray T, Butterworth C, Burger Z, Sheinson R, Fleming J. Extinguishment and burnback tests of fluorinated and fluorine-free firefighting foams with and without film formation[C]. In Suppression, Detection, and Signaling Research and Applications-A Technical Working Conference (SUPDET 2011).

[23] Hinnant K M, Ananth R, Farley J P, Whitehurst C L, Giles S L, Maza W A. Extinction Performance Summary of Commercial Fluorine-free Firefighting Foams over a 28 ft2 Pool Fire Detailed by MIL-PRF-24385[R]. NAVAL RESEARCH LAB WASHINGTON DC WASHINGTON United States, 2020, (p. 0020).

[24] 张青松,王绪友,谢华东.高倍阻化泡沫在东滩矿防治煤自燃中的应用[J].煤炭科学技术,2009,(10):39-41.

[25] 孙俊芝,徐军,王亚培,张晓晓.汽油火灾专用泡沫灭火剂的制备及灭火性能的试验研究[J].安全与环境工程,2017,(06):139-143.

[26] Yu X, Li F, Miao X, Jiang N, Zong R, Lu S. Experimental investigation on the spread of aqueous foam over ethanol surface[J]. Chinese Journal of Chemical Engineering, 2020, 28(11):2946-2954.

[27] 王尚彬,欧红香,薛洪来,曹海珍,王钧奇,毕海普.黄原胶和纳米二氧化硅对无氟泡沫性能的影响[J].化工进展,2023,(09):4856-4862.

[28] Diskin M H. The limits of applicability of the Hazen-Williams formula[J]. La Houille Blanche, 1960, 46(6):720-726.

[29] NFPA 11. Standard for Low-, Medium-, and High-Expansion Foam[P]. 2021.

[30] Cohen-Addad S, Höhler R. Rheology of foams and highly concentrated emulsions[J]. Current Opinion in Colloid & Interface Science, 2014, 19(6):536-548.

[31] Meyer D J, Diaz L H, Dlugogorski B Z. Rheological properties of solutions of fluorine-free foams[J]. Fire Safety Journal, 2023, 141:103910.

[32] 尚小琴,伍密,武伦福,陈浩亮,王信锐,彭标文.烷基糖苷表面活性剂及其复配体系流变行为研究[J].广州大学学报(自然科学版),2016,(04):29-32.

[33] 惠蒙蒙,白亚榕,杨许召,张晨龙,王军.N-酰基氨基酸型表面活性剂与离子液体表面活性剂复配体系流变性研究[J].日用化学工业,2020,(10):681-686.

[34] 张蕊.椰油酰胺丙基甜菜碱与月桂酰肌氨酸钠的协同作用研究[D].天津大学,2020.

[35] Shrestha R G, Shrestha L K, Aramaki K. Formation of wormlike micelle in a mixed amino-acid based anionic surfactant and cationic surfactant systems[J]. Journal of colloid and interface science, 2007, 311(1):276-284.

[36] Ganapathy R, Sood A K. Nonlinear flow of wormlike micellar gels: regular and chaotic time-dependence of stress, normal force and nematic ordering[J]. Journal of Non-Newtonian Fluid Mechanics, 2008, 149(1-3):78-86.

[37] Wang X, Wang R, Zheng Y, Sun L, Yu L, Jiao J. Interaction between zwitterionic surface activity ionic liquid and anionic surfactant: na+-driven wormlike micelles[J]. Journal of Physical Chemistry B, 2013, 117(6):1886.

[38] 王进爽,袁旻嘉,卢海伟,郭奕光,方波.氨基酸型/甜菜碱型表面活性剂黏弹性胶束体系研究[J].日用化学工业,2013,(06):405-409.

[39] Delgado J, Castillo R. Shear-induced structures formed during thixotropic loops in dilute worm-micelle solutions[J]. Journal of Colloid & Interface Science, 2007, 312(2):481-488.

[40] 刘慧敏,庄爽,张君娜,冯志伟.泡沫灭火剂流体类型分析及其粘度测试方法[J].消防科学与技术,2012,(04):401-404.

[41] 沈一丁.防治煤自燃高效泡沫灭火剂的实验研究[D].中国矿业大学,2018.

[42] 张建成,曹求洋,王志刚,罗剑飞,张美琪,景伟,吴刘锁.增粘型水成膜泡沫灭火剂制备及性能表征[J].工业安全与环保,2022,(03):14-17.

[43] 李兆敏.泡沫流体在油气开采中的应用[M].石油工业出版社,2010.

[44] Al-Qasim A, AlOtaibi F, Kokal S, Zhou X. CO2-Foam Rheology Behavior under Reservoir Conditions[J]. In SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition. OnePetro, 2017.

[45] Alsayednoor J, Harrison P, Guo Z. Large strain compressive response of 2-D periodic representative volume element for random foam microstructures[J]. Mechanics of Materials, 2013, 66:7-20.

[46] Lexis M, Willenbacher N. Yield stress and elasticity of aqueous foams from protein and surfactant solutions – the role of continuous phase viscosity and interfacial properties[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2014, 459:177-185.

[47] Sun X, Liang X, Wang S, Lu Y. Experimental study on the rheology of co2 viscoelastic surfactant foam fracturing fluid[J]. Journal of Petroleum Science & Engineering, 2014, 119:104-111.

[48] Hofmann M J, Motschmann H. Surface rheology and its relation to foam stability in solutions of sodium decyl sulfate[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 532:472-475.

[49] 余中柱,褚家瑛. 灭火泡沫在管道内流动特性的研究[J].消防科技,1991,(01):8-10.

[50] 张猛.消防泡沫流变特性及流体力学计算方法研究[D].天津大学,2017

[51] Meyer D J, Dlugogorski B Z, Diaz L H. RHEOLOGICAL PROPERTIES OF CONCENTRATES AND SOLUTIONS OF HIGH-VISCOSITY FIREFIGHTING FOAMS[J]. http://dx.doi.org/10.14264/ed3d8bb.

[52] Maurya N K, Mandal A. Studies on behavior of suspension of silica nanoparticle in aqueous polyacrylamide solution for application in enhanced oil recovery[J]. Petroleum Science and Technology, 2016, 34(5):429-436.

[53] Zhang T, Davidson D, Bryant S L, Huh C. Nanoparticle-Stabilized Emulsions for Applications in Enhanced Oil Recovery[C]. SPE Improved Oil Recovery Symposium. Society of Petroleum Engineers, 2010.

[54] Luo M, Jia Z, Sun H, Liao L, Wen Q. Rheological behavior and microstructure of an anionic surfactant micelle solution with pyroelectric nanoparticle[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2012, 395:267-275.

[55] 徐鸿鹏.粘弹性流体基纳米流体流变学物性研究[D].哈尔滨工业大学,2013.

[56] 贾寒,黄文健,陈德春,黄维安.SiO2纳米颗粒/蠕虫状胶束混合体系流变性能研究[J].实验室研究与探索,2021,(06):48-53.

[57] 郑家桢,裴海华,张贵才,单景玲,蒋平.改性纳米硅颗粒强化高温泡沫的性能及机理研究[J].材料导报,2023,(07):247-251.

[58] 李彩虹,张玉亮,王晓明,胡靖邦.聚合物溶液流变性研究Ⅰ聚合物溶液粘滞特性[J].大庆石油学院学报,1994,(02).

[59] 谢刚,黎勇,陈九顺,邓立育.聚丙烯酰胺水溶液的流变性质[J].应用化学,2000,(01):72-74.

[60] Jenekhe S A. Viscoelastic properties of polyamic acid solutions—precursors of polyimides[J]. Polymer Engineering & ence, 1983, 23(13), 713-718.

[61] 王志刚,王树众,林宗虎,王斌,张爱舟.超临界CO2/胍胶泡沫压裂液流变特性研究[J].石油与天然气化工,2003,(01):42-45+1.

[62] Zhong L, Oostrom M, Truex M.J, Vermeul V.R, Szecsody J.E. Rheological behavior of xanthan gum solution related to shear thinning fluid delivery for subsurface remediation[J]. Journal of Hazardous Materials, 2013, 244-245(JAN.15), 160-170.

[63] 赵众从.缔合聚合物泡沫压裂液体系研究[D].西南石油大学,2015.

[64] Zhao D, Liu H, Guo W, Qu L, Li C. Effect of inorganic cations on the rheological properties of polyacrylamide/xanthan gum solution[J]. Journal of Natural Gas Science and Engineering, 2016, 31:283-292.

[65] Reinoso D, Martin-Alfonso M.J, Luckham P.F. Rheological characterisation of xanthan gum in brine solutions at high temperature[J]. Carbohydrate polymers, 2019,203:103-109.

[66] 蓝程程,方波,卢拥军,邱晓惠.三异丙醇胺改性黄原胶溶液流变特性[J].钻井液与完井液,2019,(03):371-377.

[67] 魏晓宾.水溶性聚合物改善矿山抑尘泡沫形态及性能的实验研究[D].中国矿业大学,2020.

[68] Metin C O, Rankin K M, Nguyen Q P. Phase behavior and rheological characterization of silica nanoparticle gel[J]. Applied Nanoscience, 2014, 4(1):93-101.

[69] Xiao C, Balasubramanian S N, Clapp L.W. Rheology of supercritical CO2 foam stabilized by nanoparticles[C]. In SPE Improved Oil Recovery Conference. One Petro, 2016.

[70] Rahim R A, Manan M A, Yekeen N, Mohamed SA. Rheological properties of surface-modified nanoparticles-stabilized CO2 foam[J]. Journal of Dispersion Science and Technology, 2018, 39(12):1767-1779.

[71] Du D, Zhang X, Li Y, Zhao D, Wang F, Sun Z. Experimental study on rheological properties of nanoparticle-stabilized carbon dioxide foam[J]. Journal of Natural Gas Science and Engineering, 2020, 75:103140.

[72] 何良建.多相泡沫体系流变性及携砂规律实验研究[D].中国矿业大学,2018.

[73] 张旭.纳米颗粒稳定CO2泡沫静力学及流变学特性的实验研究[D].青岛科技大学,2020.

[74] 宋夏凯.纳米颗粒稳定的超临界CO2泡沫静力学与流变学实验研究[D].青岛科技大学,2022.

[75] 边云朋.纳米ATH三相泡沫制备及防灭火特性研究[D].安徽理工大学,2021.

[76] Jiang N, Sheng Y, Li C, Lu S. Surface activity, foam properties and aggregation behavior of mixtures of short-chain fluorocarbon and hydrocarbon surfactants[J]. Journal of Molecular Liquids, 2018, 268:249-255.

[77] Sheng Y, Zhang H, Ma L, Wang Z, Hu D. Rheological properties of gel foam co-stabilized with nanoparticles, xanthan gum, and multiple surfactants[J]. Gels, 2023, 9(7):534.

[78] Sheng Y, Zhang H, Yan C, Lin X. Enhancement effect of alumina nanoparticles with distinct crystal structures on foam stability of multiple surfactants[J]. Journal of Sol-Gel Science and Technology, 2023, 108(3):598-608.

[79] Li G, Chen L, Ruan Y, Guo Q, Liao X. Alkyl polyglycoside: a green and efficient surfactant for enhancing heavy oil recovery at high-temperature and high-salinity condition[J]. Journal of Petroleum Exploration and Production Technology, 2019, 9:2671-2680.

[80] Sheng Y, Lu S, Xu M, Wu X. Effect of Xanthan gum on the performance of aqueous film-forming foam[J]. Journal of Dispersion Science and Technology, 2016, 37(11):1664-1670.

[81] Saxena A, Pathak A.K, Ojha K. Synergistic effects of ionic characteristics of surfactants on aqueous foam stability, gel strength, and rheology in the presence of neutral polymer[J]. Industrial & Engineering Chemistry Research, 2014, 53(49):19184-19191.

[82] Zhang Y, Liu Q, Ye H, Yang L. Nanoparticles as foam stabilizer: Mechanism, control parameters and application in foam flooding for enhanced oil recovery[J]. Journal of Petroleum Science and Engineering, 2021, 202:108561.

[83] Yang W, Wang T, Fan Z. Highly stable foam stabilized by alumina nanoparticles for EOR: effects of sodium cumenesulfonate and electrolyte concentrations[J]. Energy & Fuels, 2017, 31(9):9016-9025.

[84] Chaisawang M, Suphantharika M. Pasting and rheological properties of native and anionic tapioca starches as modified by guar gum and xanthan gum[J]. Food Hydrocolloids, 2006, 20(5):641-649.

[85] Obrenović Z, Milanović M, Djenadić R.R, Stijepović I. The effect of glucose on the formation of the nanocrystalline transition alumina phases[J]. Ceramics International, 2011, 37(8):3253-3263.

[86] 黄雅妮.Al(OH)3微观晶体结构、热稳定性及成键特性的理论计算[J].材料导报(S2),2014,185-187.

[87] Ishizawa N, Miyata T, Minato I, Marumo F, Iwai S. A structural investigation of α-Al2O3 at 2170 K[J]. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 1980, 36(2):228-230.

[88] Walker J R, Catlow C R A. Structure and transport in non-stoichiometric β Al2O3[J]. Journal of Physics C: Solid State Physics, 1982, 15(30):6151.

[89] Prins R. On the structure of γ-Al2O3[J]. Journal of Catalysis, 2020, 392:336-346.

[90] Sheng Y, Peng Y, Yan C, Li Y, Ma L, Wang Q. Influence of nanoparticles on rheological properties and foam properties of mixed solutions of fluorocarbon and hydrocarbon surfactants[J]. Powder Technology, 2022, 398, 117067.

[91] Sheng Y, Yan C, Peng Y, Li Y. Influence of nano-aluminum hydroxide on foam properties of the mixtures of hydrocarbon and fluorocarbon surfactants[J]. Journal of Molecular Liquids, 2022, 357, 119158.

[92] Ross J, Miles G D. Standard test method for foaming properties of surface-active agents[J]. ASTM standard method D. 2001, 1173-53.

[93] Rosen M J, Kunjappu J T. Surfactants and interfacial phenomena[J]. John Wiley & Sons, 2012.

[94] 龚佳怡,乔建江.表面活性剂起泡及润湿性能的影响研究[J].日用化学工业,2021,(11):1073-1079.

[95] 康文东,徐志胜,丁发兴,颜龙.多糖聚合物对环保型泡沫灭火剂理化性能的影响[J].应用化工,2022,(05):1219-1225.

[96] Binks B P, Campbell S, Mashinchi S. Dispersion behavior and aqueous foams in mixtures of a vesicle-forming surfactant and edible nanoparticles[J]. Langmuir, 2015, 31(10):2967-2978.

[97] Arriaga L R, Drenckhan W, Salonen A, Rodrigues J A. On the long-term stability of foams stabilised by mixtures of nano-particles and oppositely charged short chain surfactants[J]. Soft Matter, 2012, 8(43):11085-11097.

[98] Cellesi F, Tirelli N. Sol–gel synthesis at neutral pH in W/O microemulsion: a method for enzyme nanoencapsulation in silica gel nanoparticles[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 288(1-3):52-61.

[99] Kennedy J R, Kent K E, Brown J R. Rheology of dispersions of xanthan gum, locust bean gum and mixed biopolymer gel with silicon dioxide nanoparticles[J]. Materials Science and Engineering: C, 2015, 48:347-353.

[100] Yuan Q, Williams R A. CO-stabilisation mechanisms of nanoparticles and surfactants in Pickering Emulsions produced by membrane emulsification[J]. Journal of Membrane Science, 2016, 497, 221-228.

[101] Garcıa-Ochoa F, Santos V E, Casas J A, Gómez E. Xanthan gum: production, recovery, and properties[J]. Biotechnology advances, 2000, 18(7):549-579.

[102] Oh M H, So J H, Yang S M. Rheological evidence for the silica-mediated gelation of xanthan gum[J]. Journal of colloid and interface science, 1999, 216(2):320-328.

[103] Yun-hua C, An L, Fu-xing G. Current status of chemical modification methods for nano particles[J]. China Surface Engineering, 2005, (2):5-11.

[104] Wang J, Xue G, Tian B, Li S, Chen K, Wang D. Interaction between surfactants and SiO2 nanoparticles in multiphase foam and its plugging ability[J]. Energy & Fuels, 2017, 31(1):408-417.

[105] Han Y, Yang J, Jung M, Han S, Kim S, Jeon H S. Controlling the pore size and connectivity of alumina-particle-stabilized foams using sodium dodecyl sulfate: Role of surfactant concentration[J]. Langmuir, 2020, 36(35):10331-10340.

[106] Hu M, Zhang Y, Gao W. Effects of the complex interaction between nanoparticles and surfactants on the rheological properties of suspensions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 588:124377.

[107] Krishnan J M, Deshpande A P, Kumar P S. Rheology of complex fluids[M] (pp. 3-34). New York: Springer. 2010.

[108] Luo M, Jia Z, Sun H, Liao L, Wen Q. Rheological behavior and microstructure of an anionic surfactant micelle solution with pyroelectric nanoparticle[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 395:267-275.

[109] Saint-Jalmes A, Durian D J. Vanishing elasticity for wet foams: Equivalence with emulsions and role of polydispersity[J]. Journal of Rheology, 1999, 43(6):1411-1422.

[110] Sim A, Miranda M, Cardoso C, Veiga F, Vitorino C. Rheology by design: A regulatory tutorial for analytical method validation[J]. Pharmaceutics, 2020, 12(9):820.

[111] Hamed R, Al Baraghthi T, Alkilani A Z, Abu-Huwaij R. Correlation between rheological properties and in vitro drug release from penetration enhancer-loaded Carbopol® gels[J]. Journal of pharmaceutical innovation, 2016, 11:339-351.

[112] Pisal P B, Patil S S, Pokharkar V B. Rheological investigation and its correlation with permeability coefficient of drug loaded carbopol gel: influence of absorption enhancers[J]. Drug Development and Industrial Pharmacy, 2013, 39(4):593-599.

[113] Martin J E, Wilcoxon J P. Spatial correlations and growth in dilute gels[J]. Physical Review A, 1989, 39(1):252.

[114] Mezger T. The rheology handbook: for users of rotational and oscillatory rheometers[J]. European Coatings, 2020.

[115] Verma A, Chauhan G, Baruah P P, Ojha, K. Morphology, rheology, and kinetics of nanosilica stabilized gelled foam fluid for hydraulic fracturing application[J]. Industrial & Engineering Chemistry Research, 2018, 57(40):13449-13462.

[116] Cherizol R, Sain M, Tjong J. Review of non-Newtonian mathematical models for rheological characteristics of viscoelastic composites[J]. Green and Sustainable Chemistry, 2015, 5(01):6.

[117] Song X, Cui X, Su X. Laboratory study on the rheology properties of nanoparticle-stabilized supercritical CO2 foam[J]. Journal of Petroleum Science and Engineering, 2022, 218:111065.

[118] Escudier M P, Gouldson I W, Pereira A S. On the reproducibility of the rheology of shear-thinning liquids[J]. Journal of Non-Newtonian Fluid Mechanics, 2001, 97(2-3):99.

[119] Sheng Y, Yan C, Li Y, Peng Y, Ma L. Thermal stability of gel foams stabilized by xanthan gum, silica nanoparticles and surfactants[J]. Gels, 2021, 7(4):179.

[120] Stevenson P. Foam engineering: fundamentals and applications[M]. John Wiley & Sons. 2012.

[121] Biance A L, Cohen-Addad S, Höhler R. Topological transition dynamics in a strained bubble cluster[J]. Soft Matter, 2009, 5(23):4672.

[122] Denkov N D, Tcholakova S, Golemanov K. Viscous friction in foams and concentrated emulsions under steady shear[J]. Physical review letters, 2008, 100(13):138301.

[123] Kraynik A M. Foam flows[J]. Annual Review of Fluid Mechanics, 1988, 20(1):325-357.

[124] Weaire D L, Hutzler S. The physics of foams[M]. Oxford University Press. 1999.

[125] Höhler R, Cohen-Addad S. Rheology of liquid foam[J]. Journal of Physics: Condensed Matter, 2005, 17(41):R1041.

[126] Kaptay G. On the equation of the maximum capillary pressure induced by solid particles to stabilize emulsions and foams and on the emulsion stability diagrams[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 282:387-401.

[127] 盛友杰.碳氢和有机硅表面活性剂复配体系为基剂的泡沫灭火剂研究[D].中国科学技术大学,2018.

[128] Sheng Y, Jiang N. Study of environmental-friendly firefighting foam based on the mixture of hydrocarbon and silicone surfactants[J]. Fire Technology, 2020, 56:1059-1075.

中图分类号:

 TQ569/X932    

开放日期:

 2026-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式