论文中文题名: | 自正则方法在长记忆多均值变点检验中的应用 |
姓名: | |
学号: | 20301221005 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 025200 |
学科名称: | 经济学 - 应用统计 |
学生类型: | 硕士 |
学位级别: | 经济学硕士 |
学位年度: | 2024 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 时间序列分析 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2024-06-17 |
论文答辩日期: | 2024-06-04 |
论文外文题名: | Application of self-normalization method in long memory multi-mean change point test |
论文中文关键词: | |
论文外文关键词: | |
论文中文摘要: |
在统计学和时间序列分析中,长期记忆性(LongMemory)是指时间序列数据在时间上具有持久的相关性,过去的观测值对未来的影响持续存在。研究发现,在很多实际应用中,例如金融时间序列、地球物理学数据等,不符合传统的独立同分布假设,而是具有长期相关性。 而变点问题一直以来都是统计学和数据分析领域的热门话题。其主要研究时间序列中某些特定时刻发生突变的位置和性质,这些突变可能代表了系统结构的变化或外部因素的影响。解决变点问题有助于本文更好地理解数据的变化趋势和性质。而且在实际应用中,时间序列数据往往存在多个变点。且变点的个数是不可知的。因此本文围绕非监督前提下,长记忆时间序列的多变点检验的问题展开讨论。具体内容如下: 相对于经典的累积和统计量,本文采用了自正则方法构造统计量研究长记忆序列的多变点检验问题。均值变点检验中,理论证明本文的自正则构造统计量在原假设下的极限分布为分数布朗运动,在备择假设下证明了该统计量的一致性。并且数值模拟的结果也表明,并且随着样本变点个数的增加,自正则的统计量相对于传统的累计和统计量在经验功效方面也表现出相对稳定的结果。 鉴于实际应用中还需要检验类似的其他一维变点(如中位数变点等)的情况,基于均值的自正则统计量,本文也构造了针对其他一维变点的统计量,并推导了在原假设和备择假设下的极限分布。同时针对上述统计量计算量大的缺陷进行优化,提出了基于比值的优化统计量。最后,选取了1981年至2006年间全球范围热带气旋风力变化和2018年至2022年道琼斯指数变化数据进一步验证了文章提出的自正则统计量的合理性和有效性。 |
论文外文摘要: |
In statistics and time series analysis, long memory refers to the phenomenon where time series data exhibit persistent correlations over time, meaning past observations have a lasting impact on future values. Research has shown that in many practical applications, such as financial time series and geophysical data, the data do not conform to the traditional assumption of independent and identically distributed (i.i.d.) observations, but instead exhibit long-term correlations. Change point detection has always been a popular topic in statistics and data analysis. It primarily studies the locations and nature of abrupt changes at certain specific points in time series data. These changes may represent structural changes in the system or the influence of external factors. Solving change point problems helps to better understand the trends and characteristics of data changes. Moreover, in practical applications, time series data often contain multiple change points, and the number of change points is unknown. Therefore, this paper discusses the problem of multiple change point detection in long memory time series under an unsupervised framework. The specific content is as follows: Compared to the classic cumulative sum statistics, this paper adopts a self-normalization method to construct statistics for the multiple change point detection problem in long memory series. In mean change point detection, the theoretical proof shows that the self-normalized constructed statistic follows a fractional Brownian motion under the null hypothesis and proves the consistency of the statistic under the alternative hypothesis. Numerical simulation results also indicate that, as the number of change points in the sample increases, the self-normalized statistic exhibits relatively stable empirical power compared to traditional cumulative sum statistics. Considering that practical applications also require testing for other one-dimensional change points (such as median change points), this paper constructs statistics for other one-dimensional change points based on the self-normalized mean statistic and derives the asymptotic distribution under the null and alternative hypotheses. Additionally, to address the computational burden of the aforementioned statistics, an optimized statistic based on the ratio is proposed. Finally, the proposed self-normalized statistics' rationality and effectiveness are further validated using global tropical cyclone wind speed data from 1981 to 2006 and Dow Jones Index data from 2018 to 2022.. |
参考文献: |
[2] 王黎明.位置参数模型变点问题的非参数检验.应用概率统计,1994,10(4),379–386. [3] 袁芳,田铮,苏晓丽,陈占寿.独立序列均值与方差变点的累积和估计及应用.控制理论与应用,2010,27(3),395–399. [4] 沈燕,胡舒合.正态分布均值变点估计的收敛速度研究.合肥工业大学学报:自然科学版,2008,31(12),2062–2065. [5] 赵文芝,夏志明,贺兴时.随机设计下非参数回归模型方差变点ratio检验.数学的实践与认识,2012,24(16),224–229. [6] 张学新,段志霞.最小二乘法对多变点检验的性能研究.河南师范大学学报:自然科学版,2009,37(6),7–10. [8] 秦瑞兵,田铮,陈占寿.独立随机序列均值多变点的非参数检测.应用概率统计,2013,29(5),449–457. [11] 胡丹青,赵为华.基于遗传算法的多结构变点检测及其应用.统计与决策,2022. [12] 黄淼淇,夏志明.均值模型中多变点问题的平均估计方法[J].系统科学与数学,2023,43(09):2373-2387. [13] 徐小平,刘君,李拂晓.面板数据中方差多变点的估计[J].统计与决,2013,策37(12):10-14. [14] 王红玉,施三支.多变点检验及在城市轨道交通中的应用[J].数学的实践与认识,2017,47(17):222-228. [15] 乔杉,谢胜蓝,刘金山.贝叶斯随机搜索的多变点模型分析[J].统计与决策,2017,(16),79-81. [40] 习代青,肖洪策.长记忆时间序列的均值单变点估计.统计与决策,2024,40(03):51-57. [41] 孟斌,林晓倩,匡海波,等.经济政策不确定性对航运市场与金融市场的长记忆联动影响[J].系统工程理论与实践,2023,43(07):1927-1945. [42] 陈淼鑫,黄振伟.股价波动的长记忆性与横截面股票收益——基于中国市场的实证研究[J].中国管理科学,2023,31(04):1-10. [45] Politis, D. N., Romano, J. P., & Wolf, M. Subsampling. Springer, New York, 1999. [55] Kunsch, H. R. The jackknife and the bootstrap for general stationary observations, 1989. [56] Lahiri, S. N. Resampling Methods for Dependent Data. Springer-Verlag, New York, 2003. [57] Shao, X. The dependent wild bootstrap. Journal of the American Statistical Association, 2010a. [63] Wu, W. B. Strong invariance principles for dependent random variables, 2007. [64] Berkes, I., Liu, W., & Wu, W. B. Komlós-Major-Tusnády approximation under dependence, 2014. [67] Zhou, Z. Nonparametric inference of quantile curves for nonstationary time series, 2010. |
中图分类号: | O212.61 |
开放日期: | 2024-06-18 |