- 无标题文档
查看论文信息

论文中文题名:

 自正则方法在长记忆多均值变点检验中的应用    

姓名:

 刘一    

学号:

 20301221005    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 025200    

学科名称:

 经济学 - 应用统计    

学生类型:

 硕士    

学位级别:

 经济学硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 理学院    

专业:

 应用统计    

研究方向:

 时间序列分析    

第一导师姓名:

 金浩    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-17    

论文答辩日期:

 2024-06-04    

论文外文题名:

 Application of self-normalization method in long memory multi-mean change point test    

论文中文关键词:

 长记忆 ; 时间序列 ; 多变点 ; 自正则 ; 非监督    

论文外文关键词:

 Longmemory ; time series ; variable points ; self-normalize    

论文中文摘要:

在统计学和时间序列分析中,长期记忆性(LongMemory)是指时间序列数据在时间上具有持久的相关性,过去的观测值对未来的影响持续存在。研究发现,在很多实际应用中,例如金融时间序列、地球物理学数据等,不符合传统的独立同分布假设,而是具有长期相关性。

而变点问题一直以来都是统计学和数据分析领域的热门话题。其主要研究时间序列中某些特定时刻发生突变的位置和性质,这些突变可能代表了系统结构的变化或外部因素的影响。解决变点问题有助于本文更好地理解数据的变化趋势和性质。而且在实际应用中,时间序列数据往往存在多个变点。且变点的个数是不可知的。因此本文围绕非监督前提下,长记忆时间序列的多变点检验的问题展开讨论。具体内容如下:

相对于经典的累积和统计量,本文采用了自正则方法构造统计量研究长记忆序列的多变点检验问题。均值变点检验中,理论证明本文的自正则构造统计量在原假设下的极限分布为分数布朗运动,在备择假设下证明了该统计量的一致性。并且数值模拟的结果也表明,并且随着样本变点个数的增加,自正则的统计量相对于传统的累计和统计量在经验功效方面也表现出相对稳定的结果。

鉴于实际应用中还需要检验类似的其他一维变点(如中位数变点等)的情况,基于均值的自正则统计量,本文也构造了针对其他一维变点的统计量,并推导了在原假设和备择假设下的极限分布。同时针对上述统计量计算量大的缺陷进行优化,提出了基于比值的优化统计量。最后,选取了1981年至2006年间全球范围热带气旋风力变化和2018年至2022年道琼斯指数变化数据进一步验证了文章提出的自正则统计量的合理性和有效性。

论文外文摘要:

In statistics and time series analysis, long memory refers to the phenomenon where time series data exhibit persistent correlations over time, meaning past observations have a lasting impact on future values. Research has shown that in many practical applications, such as financial time series and geophysical data, the data do not conform to the traditional assumption of independent and identically distributed (i.i.d.) observations, but instead exhibit long-term correlations.

Change point detection has always been a popular topic in statistics and data analysis. It primarily studies the locations and nature of abrupt changes at certain specific points in time series data. These changes may represent structural changes in the system or the influence of external factors. Solving change point problems helps to better understand the trends and characteristics of data changes. Moreover, in practical applications, time series data often contain multiple change points, and the number of change points is unknown. Therefore, this paper discusses the problem of multiple change point detection in long memory time series under an unsupervised framework. The specific content is as follows:

Compared to the classic cumulative sum statistics, this paper adopts a self-normalization method to construct statistics for the multiple change point detection problem in long memory series. In mean change point detection, the theoretical proof shows that the self-normalized constructed statistic follows a fractional Brownian motion under the null hypothesis and proves the consistency of the statistic under the alternative hypothesis. Numerical simulation results also indicate that, as the number of change points in the sample increases, the self-normalized statistic exhibits relatively stable empirical power compared to traditional cumulative sum statistics.

Considering that practical applications also require testing for other one-dimensional change points (such as median change points), this paper constructs statistics for other one-dimensional change points based on the self-normalized mean statistic and derives the asymptotic distribution under the null and alternative hypotheses. Additionally, to address the computational burden of the aforementioned statistics, an optimized statistic based on the ratio is proposed. Finally, the proposed self-normalized statistics' rationality and effectiveness are further validated using global tropical cyclone wind speed data from 1981 to 2006 and Dow Jones Index data from 2018 to 2022..

参考文献:

[1] GOMBAYE, L. HORVATH. Asymptotic distributions of maximum likelihood tests for change in the mean. Biometrika, 1990, 77(2), 411–414.

[2] 王黎明.位置参数模型变点问题的非参数检验.应用概率统计,1994,10(4),379–386.

[3] 袁芳,田铮,苏晓丽,陈占寿.独立序列均值与方差变点的累积和估计及应用.控制理论与应用,2010,27(3),395–399.

[4] 沈燕,胡舒合.正态分布均值变点估计的收敛速度研究.合肥工业大学学报:自然科学版,2008,31(12),2062–2065.

[5] 赵文芝,夏志明,贺兴时.随机设计下非参数回归模型方差变点ratio检验.数学的实践与认识,2012,24(16),224–229.

[6] 张学新,段志霞.最小二乘法对多变点检验的性能研究.河南师范大学学报:自然科学版,2009,37(6),7–10.

[7] Aue, A. and L. Horváth. Structural breaks in time series. Journal of Time Series Analysis, 2013, 34(1), 1–16.

[8] 秦瑞兵,田铮,陈占寿.独立随机序列均值多变点的非参数检测.应用概率统计,2013,29(5),449–457.

[9] 吕会琴, 赵文芝, 赵蕊. 厚尾相依序列均值多变点 ANOVA 型检验. Basic Sciences Journal of Textile Universities / Fangzhi Gaoxiao Jichu Kexue Xuebao, 2016, 29(1).

[10] Bai, J., & Perron, P. Estimating and testing linear models with multiple structural changes. Econometrica, 1998, 47-78.

[11] 胡丹青,赵为华.基于遗传算法的多结构变点检测及其应用.统计与决策,2022.

[12] 黄淼淇,夏志明.均值模型中多变点问题的平均估计方法[J].系统科学与数学,2023,43(09):2373-2387.

[13] 徐小平,刘君,李拂晓.面板数据中方差多变点的估计[J].统计与决,2013,策37(12):10-14.

[14] 王红玉,施三支.多变点检验及在城市轨道交通中的应用[J].数学的实践与认识,2017,47(17):222-228.

[15] 乔杉,谢胜蓝,刘金山.贝叶斯随机搜索的多变点模型分析[J].统计与决策,2017,(16),79-81.

[16] Hidalgo, J., & Robinson, P. M. Testing for structural change in a long-memory environment. Journal of Econometrics, 1996, 70(1), 159–174.

[17] Wright, J. H. Testing for a structural break at unknown date with long-memory disturbances. Journal of Time Series Analysis, 1998, 19(3), 369-376.

[18] Lazarová, Š. Testing for structural change in regression with long memory processes. Journal of Econometrics, 2005, 129(1-2), 329-372.

[19] Vogelsang T J. Sources of nonmonotonic when testing for a shift in mean of a dynamic time series. Journal of Econometrics, 1999, 88:283–299.

[20] Shao, X., & Zhang, X. Testing for change points in time series. Journal of the American Statistical Association, 2010.

[21] Lobato, I. N. Testing that a dependent process is uncorrelated. Journal of the American Statistical Association, 2001, 96(455), 1066–1076.

[22] Shao, X. A self-normalized approach to confidence interval construction in time series. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2010b, 72: 343–366.

[23] Shao, X. Self-normalization for time series: A review of recent developments. Journal of the American Statistical Association, page to appear, 2015.

[24] Yao, Y. C. Estimating the number of change-points via Schwarz's criterion. Statistics & Probability Letters, 1988, 6(3), 181-189.

[25] Hidalgo, J., & Robinson, P. M. Testing for structural change in a long-memory environment. Journal of Econometrics, 1996, 70(1), 159–174.

[26] Frühwirth-Schnatter, S. Finite mixture and Markov switching models. Springer Science & Business Media, 2006.

[27] Killick, R., Fearnhead, P., & Eckley, I. A. Optimal detection of changepoints with a linear computational cost. Journal of the American Statistical Association, 2012, 107(500), 1590-1598.

[28] Shao, X. A simple test of changes in mean in the possible presence of long-range dependence. Journal of Time Series Analysis, 2011, 32(6), 598-606.

[29] Andrews, D. W. K. Tests for Parameter Instability and Structural Change with Unknown Change Point. Econometrica, 1993, 61(4), 821-856.

[30] Hansen, B. E. Tests for Parameter Instability in Regressions with I(1) Processes. Journal of Business & Economic Statistics, 1992, 10(3), 321-335.

[31] Zeileis, A., Kleiber, C., & Krämer, W. Testing and dating of structural changes in practice. Computational Statistics & Data Analysis, 2003, 44(1-2), 109-123.

[32] Chen, J., & Gupta, A. K. Parametric statistical change point analysis: With applications to genetics, medicine, and finance. Springer Science & Business Media, 2012.

[33] Lavielle, M. Using penalized contrasts for the change-point problem. Signal Processing, 2005, 85(8), 1501-1510.

[34] Lavielle, M., & Moulines, E. Least-squares estimation of an unknown number of shifts in a time series. Journal of Time Series Analysis, 2000, 21(1), 33-59.

[35] Giraitis, L., Kokoszka, P., & Leipus, R. Stationary ARCH models: Dependence structure and central limit theorem. Econometric theory, 2000, 16(1), 3-22.

[36] Kim, H. J. Change-point detection for correlated observations. Statistica Sinica, 1996, 275-287.

[37] Beran, J., & Terrin, N. Testing for a change of the long-memory parameter. Biometrika, 1996, 83(3), 627-638.

[38] Hidalgo, J., & Robinson, P. M. Testing for structural change in a long-memory environment. Journal of Econometrics, 1996, 70(1), 159-174.

[39] Berkes, I., Horváth, L., Kokoszka, P., & Shao, Q.-M. On discriminating between long-range dependence and changes in mean. The Annals of Statistics, 2006, 34(3), 1140–1165.

[40] 习代青,肖洪策.长记忆时间序列的均值单变点估计.统计与决策,2024,40(03):51-57.

[41] 孟斌,林晓倩,匡海波,等.经济政策不确定性对航运市场与金融市场的长记忆联动影响[J].系统工程理论与实践,2023,43(07):1927-1945.

[42] 陈淼鑫,黄振伟.股价波动的长记忆性与横截面股票收益——基于中国市场的实证研究[J].中国管理科学,2023,31(04):1-10.

[43] Künsch, H. The jackknife and the bootstrap for general stationary observations. Ann. Statist., 1989, 17, 1217–1241.

[44] Liu, R. Y., & Singh, K. Moving block jackknife and bootstrap capture weak dependence. In Exploring the Limits of Bootstrap (eds R. LePage and L. Billard), 1992, pp. 225–248. New York: Wiley.

[45] Politis, D. N., Romano, J. P., & Wolf, M. Subsampling. Springer, New York, 1999.

[46] Hampel, F., Ronchetti, E., Rousseeuw, P., & Stahel, W. Robust Statistics: The Approach Based on Influence Functions. New York: Wiley, 1986.

[47] Billingsley, F. P., & Bloor, J. E. Theoretical studies on the electronic spectra of substituted aromatic molecules: IV. PPP-SCF parameters for polysubstituted benzenes and five-membered ring heterocyclics containing nitrogen, oxygen, and sulfur. Theoretica Chimica Acta, 1968, 11, 325-343.

[48] Hannan, E. The central limit theorem for time series regression. Stochastic Processes and their Applications, 1979, 9(3), 281–289.

[49] Herrndorf, N. A functional central limit theorem for weakly dependent sequences of random variables. The Annals of Probability, 1984, 12(1), 141–153.

[50] Zhang, T., & Lavitas, L. Unsupervised self-normalized change-point testing for time series. Journal of the American Statistical Association, 2018, 113(522), 637-648.

[51] Zhou, Z., & Shao, X. Inference for linear models with dependent errors. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2013, 75: 323–343.

[52] Newey, W. K., & West, K. D. A simple, positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix. Econometrica, 1987, 55(3): 703–708.

[53] Liu, W., & Wu, W. B. Asymptotics of spectral density estimates. Econometric Theory, 2010, 26: 1218–1245.

[54] Politis, D. N. Higher-order accurate, positive semi-definite estimation of large-sample covariance and spectral density matrices. Econometric Theory, 2011, 27: 703–744.

[55] Kunsch, H. R. The jackknife and the bootstrap for general stationary observations, 1989.

[56] Lahiri, S. N. Resampling Methods for Dependent Data. Springer-Verlag, New York, 2003.

[57] Shao, X. The dependent wild bootstrap. Journal of the American Statistical Association, 2010a.

[58] Zhou, Z. Heteroscedasticity and autocorrelation robust structural change detection. Journal of the American Statistical Association, 2013, 108: 726–740.

[59] Hall, P., & Jing, B. Y. On sample reuse methods for dependent data. Journal of the Royal Statistical Society, 1996.

[60] Huang, Y., Volgushev, S., & Shao, X. On self-normalization for censored dependent data. Journal of Time Series Analysis, 2015, 36: 109–124.

[61] van der Vaart, A. W., & Wellner, J. A. Weak Convergence and Empirical Processes. Springer Verlag, New York, 1996.

[62] Volgushev, S., & Shao, X. A general approach to the joint asymptotic analysis of statistics from sub-samples. Electronic Journal of Statistics, 2014, 8(1): 390–431.

[63] Wu, W. B. Strong invariance principles for dependent random variables, 2007.

[64] Berkes, I., Liu, W., & Wu, W. B. Komlós-Major-Tusnády approximation under dependence, 2014.

[65] Zhou, Z. Heteroscedasticity and autocorrelation robust structural change detection. Journal of the American Statistical Association, 2013.

[66] Elsner, J. B., Kossin, J. P., & Jagger, T. H. The increasing intensity of the strongest tropical cyclones, 2008.

[67] Zhou, Z. Nonparametric inference of quantile curves for nonstationary time series, 2010.

[68] Zhang, T., & Wu, W. B. Testing parametric assumptions of trends of a nonstationary time series, 2011.

中图分类号:

 O212.61    

开放日期:

 2024-06-18    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式