- 无标题文档
查看论文信息

论文中文题名:

     

姓名:

 郭千慧子    

学号:

 19210061034    

保密级别:

     

论文语种:

 chi    

学科代码:

 081602    

学科名称:

  - -     

学生类型:

     

学位级别:

     

学位年度:

 2022    

培养单位:

 西    

院系:

 测绘科学与技术学院    

专业:

 测绘科学与技术    

研究方向:

     

第一导师姓名:

 汤伏全    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-24    

论文答辩日期:

 2022-06-05    

论文外文题名:

 Research on the Characteristics of Cultivated Land Change in Loess Mining Area Based on Time Series Remote Sensing    

论文中文关键词:

 黄土矿区 ; 耕地 ; 采煤沉陷 ; 时序遥感监测 ; GEE云平台    

论文外文关键词:

 Loess mining area ; Cultivated land ; Coal mining subsidence ; Time series remote sensing monitoring ; Googel Earth Engine    

论文中文摘要:
<p>&nbsp; &nbsp; &nbsp; -GEE</p> <p>&nbsp; &nbsp; &nbsp;1SNIC9.81%5.6%</p> <p>&nbsp; &nbsp; &nbsp; 22005-2020LandTrendr&ldquo;&rdquo;93.33%GEE</p> <p>&nbsp; &nbsp; &nbsp; 3InSAR-24.27%-19.39%24.07%</p>
论文外文摘要:
<p>&nbsp; &nbsp; &nbsp; The Loess Plateau mining area is one of the major coal producing areas in China. The ground collapse caused by large-scale and high-intensity underground mining inevitably causes continuous damage to the arable land resources in the mining area, which in turn leads to the reduction of the arable land area and quality in the loess mining area, making the human-land conflict increasingly prominent. Therefore, it is of great significance to conduct quantitatively research on the dynamic evolution of arable land resources in coal mining areas for the sustainable development of mining areas. At present, satellite remote sensing technology has become an important means of monitoring land use changes. But the results of time-series remote sensing monitoring for the evolution of arable land resources in mining areas with complex terrain on the Loess Plateau are still insufficient. In this context, this paper takes Dafosi coal mine as the study area, which is a typical loess mining area. Based on the long time series remote sensing image data, the Spatio-temporal segmentation algorithm is used on the GEE platform to extract information on the change of arable land in the Dafosi mining area, analyze the change characteristics of land use, especially arable land use, and explore the influence of topographic factors on the spatial distribution and evolution of arable land to reveal the disturbance effect of coal mining subsidence deformation on the Spatio-temporal evolution characteristics of arable land in the mining area. The main contents and results of the paper are as follows.</p> <p>&nbsp; &nbsp; &nbsp; (1) A multi-featured image extraction technology method based on spatio-temporal segmentation of cropland is constructed, by combining the spatial features of remote sensing images with the time windows of cropland crop growing period. The specific elements of the method are to generate statistics such as median and standard deviation of spectral features in stages according to the critical crop fertility period, add texture features and use the results of principal component analysis as input to the SNIC algorithm to achieve image spatial segmentation; introduce topographic factors and apply the results of feature preference to the random forest classification algorithm. The results show that the method used in this paper achieves better accuracy in extracting the spatial distribution of cultivated land in long time series, small and medium scale complex terrain areas, and the accuracy of the classification results is improved by about 9.81% compared with single time phase images and about 5.6% compared with pixel-based classification method. The terrain correction effectively solves the confusion of image element types caused by uneven illumination in complex terrain areas and reduces the misclassification rate.</p> <p>&nbsp; &nbsp; &nbsp; (2) In this section, the spatial and temporal characteristics of arable land changes in the Dafosi mining area between 2005 and 2020 are quantitatively analysed using dynamic land use indicators, and the influence of topographic factors on the spatial distribution and evolution of arable land is explored. In addition, the spatial location and time of occurrence of arable land evolution in the mining area were obtained on an annual basis based on the LandTrendr time-trajectory breakpoint monitoring model. The results show that the phase change of the arable land use process in the mine area is obvious, and the overall arable land use structure shows a fluctuating upward trend, and the abandonment phenomenon is more common in the mine area, and the length of abandonment is inversely proportional to the area of abandoned arable land. In terms of temporal changes, the intensity of cultivated land transfer during the study period showed a trend of &quot;increasing before decreasing&quot;, with the main transfer directions being construction land, forest and grassland and bare land, and the main transfer directions being forest, grassland and bare land; the characteristics of change in cultivated land use changed from a high abandonment rate and a low recovery rate to a low abandonment rate and a high recovery rate. In terms of spatial changes, the distribution of cropland evolution and topographic factors show a strong spatial correlation, which is reflected in the fact that cropland is generally located in areas with higher elevation, gentler slope and higher topographic position, while abandoned cropland is mostly located in areas with obvious topographic changes, among which, the gently sloping areas of high-altitude plateau are the areas where cropland is most likely to be converted. In comparison with the existing classification results, the accuracy of the temporal trajectory model can reach 93.33%, which demonstrates the effectiveness of the GEE platform in extracting the evolutionary features of arable land on a small regional scale in a long time series.</p> <p>&nbsp; &nbsp; &nbsp; (3) The spatial and temporal characteristics of the evolution of arable land in mining subsidence areas and the impact of subsidence disturbance on the change of arable land are analysed by combining the extent of coal mining subsidence disturbance and related indicators.The InSAR technique and the mining subsidence calculation model were used to obtain the extent of mining-induced surface subsidence and to circle the area of arable land destruction. The study area was then divided into different coal mining impact areas according to the degree of mining disturbance, and the spatial and temporal distribution of the reduction in arable land area within each impact area was analysed and statistically calculated, and finally the mechanism of the impact of coal mining subsidence deformation on arable land was analysed in terms of the changes in arable land levelling and soil properties.The results show that the reduction of arable land area is positively correlated with the degree of mining impact. Among them, the change rates of arable land area in the mining subsidence area, indirectly affected area and non-affected area were -24.27%, -19.39% and 24.07% respectively. The uneven subsidence of the surface within the mining subsidence area changed the flatness of the arable land, and the mining cracks damaged the integrity of the arable land, causing excessive loss of soil moisture and fertility and reducing the quality of the arable land in the mine area.</p>
参考文献:

[1] 李绪国. 我国煤炭资源安全高效绿色开发现状与思路[J]. 煤炭科学技术, 2013,

41(08): 53-57+73.

[2] 雷少刚, 卞正富. 西部干旱区煤炭开采环境影响研究[J]. 生态学报, 2014, 34(11):2837-2843.

[3] 杨志. 陕北榆神矿区生态地质环境特征及煤炭开采影响机理研究[D]. 徐州: 中国矿业大学, 2019.

[4] 陶文旷, 雷少刚. 半干旱煤炭开采沉陷区植被扰动响应的时间特征[J]. 生态与农村环境学报, 2016, 32(02): 200-206.

[5] 景明, 白中科, 陈晓辉, 等. 黄土丘陵区大型露天煤矿地形时空演变分析—以平朔安家岭露天煤矿为例[J]. 安全与环境工程, 2014, 21(03): 1-6.

[6] 张希彪. 黄土高原沟壑区土地结构与土地资源的合理利用研究[J]. 干旱地区农业研究, 2007(02): 190-195+217.

[7] 刘慧芳, 毕如田, 文博. 流域“地-矿”土地水资源利用冲突测度确定及土地整治策略[J]. 农业工程学报, 2017, 33(14): 238-249.

[8] 刘翔. 陕北煤矿井工开采对土地破坏程度的分级[J]. 矿业安全与环保, 2015, 42(06):117-119+123.

[9] 李树志, 李学良, 门雷雷, 等. 高潜水位平原矿区采煤塌陷地复垦方向划定及规划分区[J]. 煤炭科学技术, 2020, 48(04): 60-69.

[10]冀伟珍. 渭北煤矿区开采沉陷对土地资源的破坏及防治对策[D]. 西安: 西安科技大学, 2010.

[11]薛娟娟. 复杂采煤条件下黄土高原矿区地面沉降和生态扰动研究[D]. 太原: 太原理工大学, 2020.

[12]马飞. 矿区沉降 InSAR 监测与预测方法研究[D]. 西安: 长安大学, 2020.

[13]刘辉. 西部黄土沟壑区采动地裂缝发育规律及治理技术研究[D]. 徐州: 中国矿业大学, 2014.

[14]王世云, 黄土高原露天煤矿复垦农用地跟踪监测研究[D]. 北京: 中国地质大学,

2014.

[15]卞正富, 沈渭寿. 西部重点矿区土地退化因素调查[J]. 生态与农村环境学报, 2016,32(02): 173-177.

[16]卞正富, 于昊辰, 侯竟, 等. 西部重点煤矿区土地退化的影响因素及其评估[J]. 煤炭学报, 2020, 45(01): 338-350.

[17]李海东, 沈渭寿, 司万童, 等. 中国矿区土地退化因素调查: 概念、类型与方法[J].生态与农村环境学报, 2015, 31(04): 445-451.

[18]张平, 孙强强, 孙丹峰, 等. 基于遥感光谱的干旱区土地退化评价体系构建[J]. 农业工程学报, 2019, 35(09): 228-237.

[19]Easdale M H, Fariña C, Hara S, et al. Trend-cycles of vegetation dynamics as a tool for land degradation assessment and monitoring[J]. Ecological Indicators, 2019, 107: 105545.

[20]白中科, 段永红, 杨红云, 等. 采煤沉陷对土壤侵蚀与土地用的影响预测[J]. 农业工程学报, 2006, 22(6): 67-70.

[21]王帅红, 孙泰森, 周伟, 等. 黄土丘陵沟壑区煤矿沉陷耕地复垦[J]. 农业工程学报,2011, 27( 9): 299-304.

[22]习文强, 杜世宏, 杜守基. 多时相耕地覆盖提取和变化分析: 一种结合遥感和空间统计的时空上下文方法[J]. 地球信息科学学报, 2022, 24(02): 310-325.

[23]邱炳文, 闫超, 黄稳清. 基于时序遥感数据的农作物种植制度研究进展与展望[J].

地球信息科学学报, 2022, 24(01): 176-188.

[24]牟昱璇, 邬明权, 牛铮, 等. 南方地区复杂条件下的耕地面积遥感提取方法[J]. 遥感技术与应用, 2020, 35(05): 1127-1135.

[25]张新乐, 钱蕾, 鲍依临, 等. 黑土区田块尺度耕地质量遥感监测与评价[J]. 土壤通报,2020, 51(06): 1303-1312.

[26]Costa H, Foody G M, Boyd D S. Supervised methods of image segmentation accuracy assessment in land cover mapping[J]. Remote Sensing of Environment, 2018, 205: 338-351.

[27]Estel S, Kuemmerle T, Alcántara C, et al. Mapping farmland abandonment and recultivation across Europe using MODIS NDVI time series[J]. Remote Sensing of Environment, 2015, 163: 312-325.

[28]Ustuner M, Sanli F B, Abdikan S, et al. Crop type classification using vegetationindices of rapideye imagery[J]. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2014, 40(7): 195.

[29]Nitze I, Schulthess U, Asche H. Comparison of machine learning algorithms random forest, artificial neural network and support vector machine to maximum likelihood for supervised crop type classification[J]. Proceedings of the 4th GEOBIA, Rio de Janeiro, Brazil, 2012, 79: 3540.

[30]郑长春, 王秀珍, 黄敬峰. 基于特征波段的 SPOT-5 卫星影像水稻面积信息自动提取的方法研究[J]. 遥感技术与应用, 2008(03): 294-299.

[31]牛鲁燕, 张晓艳, 郑继业, 等. 基于 Landsat8 OLI 数据的山东省耕地信息提取研究[J]. 中国农学通报, 2014, 30(34): 264-269.

[32]贺原惠子, 王长林, 贾慧聪, 等. 基于随机森林算法的冬小麦提取研究[J]. 遥感技术与应用, 2018, 33(06): 1132-1140.

[33]Liu S, Peng D, Zhang B, et al. The Accuracy of Winter Wheat Identification at Different Growth Stages Using Remote Sensing[J]. Remote Sensing, 2022, 14(4): 893.

[34]Stroppiana D, Boschetti M, Azar R, et al. In-season early mapping of rice area and flooding dynamics from optical and SAR satellite data[J]. European Journal of Remote Sensing,2019, 52(1): 206-220.

[35]张喜旺, 秦耀辰, 秦奋. 综合季相节律和特征光谱的冬小麦种植面积遥感估算. 农业工程学报, 2013, 29(8): 154-163.

[36]李正国, 杨鹏, 周清波, 等. 基于时序植被指数的华北地区作物物候期/种植制度的时空格局特征[J]. 生态学报, 2009, 29(11): 6216-6226.

[37]范德芹, 赵学胜, 朱文泉, 等. 植物物候遥感监测精度影响因素研究综述[J]. 地理科学进展, 2016, 35(03): 304-319.

[38]欧阳玲, 毛德华, 王宗明, 等. 基于 GF-1 与 Landsat8 OLI 影像的作物种植结构与产量分析[J]. 农业工程学报, 2017, 33(11): 147-156+316.

[39]郭昱杉, 刘庆生, 刘高焕, 等. 基于 MODIS 时序 NDVI 主要农作物种植信息提取研究[J]. 自然资源学报, 2017, 32(10): 1808-1818.

[40]张焕雪, 曹新, 李强子, 等. 基于多时相环境星 NDVI 时间序列的农作物分类研究[J]. 遥感技术与应用, 2015, 30(02): 304-311.

[41]张荣群, 王盛安, 高万林, 等. 基于时序植被指数的县域作物遥感分类方法研究[J]. 农业机械学报, 2015, 46(S1): 246-252.

[42]张健康, 程彦培, 张发旺, 等. 基于多时相遥感影像的作物种植信息提取[J]. 农业工程学报, 2012, 28(02): 134-141.

[43]Durgun Y Ö, Gobin A, Van De Kerchove R, et al. Crop area mapping using 100-m ProbaV time series[J]. Remote Sensing, 2016, 8(7): 585.

[44]Salehi B, Daneshfar B, Davidson A M. Accurate crop-type classification using multitemporal optical and multi-polarization SAR data in an object-based image analysis framework[J]. International Journal of Remote Sensing, 2017, 38(14): 4130-4155.

[45]Sun R, Chen S, Su H, et al. The effect of NDVI time series density derived from spatiotemporal fusion of multisource remote sensing data on crop classification accuracy[J]. ISPRS International Journal of Geo-Information, 2019, 8(11): 502.

[46]Zhang M, Lin H. Object-based rice mapping using time-series and phenological data[J]. Advances in Space Research, 2019, 63(1): 190-202.

[47]Chen S, Wang W, Liang H. Evaluating the effectiveness of fusing remote sensing images with significantly different spatial resolutions for thematic map production[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2019, 110: 71-80.

[48]Cao Z, Chen S, Gao F, et al. Improving phenological monitoring of winter wheat by considering sensor spectral response in spatiotemporal image fusion[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2020, 116: 102859.

[49]牛海鹏, 王占奇, 肖东洋. 基于时空数据融合的县域水稻种植面积提取[J]. 农业机械学报, 2020, 51(04): 156-163.

[50]Liu W, Zeng Y, Li S, et al. An Improved Spatiotemporal Fusion Approach Based on Multiple Endmember Spectral Mixture Analysis. Sensors. 2019; 19(11): 2443.

[51]Beckschäfer P. Obtaining rubber plantation age information from very dense Landsat TM & ETM+ time series data and pixel-based image compositing[J]. Remote Sensing of Environment, 2017, 196: 89-100.

[52]E Nyland K, E Gunn G, I Shiklomanov N, et al. Land cover change in the lower Yenisei River using dense stacking of Landsat imagery in Google Earth Engine[J]. Remote Sensing, 2018, 10(8): 1226.

[53]Xie S, Liu L, Zhang X, et al. Automatic land-cover mapping using landsat time-series data based on google earth engine[J]. Remote Sensing, 2019, 11(24): 3023.

[54]Phan T N, Kuch V, Lehnert L W. Land cover classification using Google Earth Engine and random forest classifier—The role of image composition[J]. Remote Sensing, 2020, 12(15): 2411.

[55]段梦岩. 基于田块的多时相多特征冬油菜遥感识别方法研究[D]. 武汉: 华中农业大学, 2021.

[56]马玥, 姜琦刚, 孟治国, 等. 基于随机森林算法的农耕区土地利用分类研究[J]. 农业机械学报, 2016, 47(01): 297-303.

[57]Peña-Barragán J M, Ngugi M K, Plant R E, et al. Object-based crop identification using multiple vegetation indices, textural features and crop phenology[J]. Remote Sensing of Environment, 2011, 115(6): 1301-1316.

[58]史泽鹏, 马友华, 王玉佳, 等. 遥感影像土地利用/覆盖分类方法研究进展[J]. 中国农学通报, 2012, 28(12): 273-278.

[59]黄瑾. 面向对象遥感影像分类方法在土地利用信息提取中的应用研究[D]. 成都: 成都理工大学, 2010.

[60]Blaschke T. Object based image analysis for remote sensing[J]. ISPRS journal of photogrammetry and remote sensing, 2010, 65(1): 2-16.

[61]张成业, 李军, 雷少刚, 等. 矿区生态环境定量遥感监测研究进展与展望[J/OL]. 金属矿山: 1-38.

[62]范德芹, 邱玥, 孙文彬, 等. 基于遥感生态指数的神府矿区生态环境评价[J]. 测绘通报, 2021(07): 23-28.

[63]Garai D, Narayana A C. Land use/land cover changes in the mining area of Godavari coal fields of southern India[J]. The Egyptian Journal of Remote Sensing and Space Science, 2018, 21(3): 375-381.

[64]Obodai J, Adjei K A, Odai S N, et al. Land use/land cover dynamics using Landsat data in a gold mining basin-the Ankobra, Ghana[J]. Remote Sensing Applications: Society and Environment, 2019, 13: 247-256.

[65]Orimoloye I R, Ololade O O. Spatial evaluation of land-use dynamics in gold mining area using remote sensing and GIS technology[J]. International Journal of Environmental Science and Technology, 2020, 17(11): 4465-4480.

[66]李保杰, 顾和和, 纪亚洲. 矿区土地利用分形特征动态变化[J]. 农业工程学报, 2013,29(21): 233-240+302.

[67]曹银贵, 白中科, 刘泽民, 等. 安太堡露天矿区土地类型变化研究[J]. 西北林学院学报, 2007(02): 44-48.

[68]王凡, 吴一平, 李汇文, 等. 陕北煤炭基地榆神矿区生态系统弹性力时空演变分析

[J]. 生态学报, 2021, 41(20): 8016-8029.

[69]徐嘉兴, 李钢, 余嘉琦, 等. 煤炭开采对矿区土地利用景观格局变化的影响[J]. 农业工程学报, 2017, 33(23): 252-258.

[70]张敏. 大型露天煤矿区土地利用时空演变特征及生态影响研究[D]. 北京: 中国地质大学, 2021.

[71]Lechner A M, Baumgartl T, Matthew P, et al. The impact of underground longwall mining on prime agricultural land: a review and research agenda[J]. Land Degradation & Development, 2016, 27(6): 1650-1663.

[72]郭家新, 胡振琪, 袁冬竹, 等. 黄河流域下游煤矿采煤塌陷区耕地破碎化动态演变—以山东济宁市为例[J]. 煤炭学报, 2021, 46(09): 3039-3055.

[73]张茹, 张蓓, 任鸿瑞. 山西轩岗矿区耕地流失时空特征及其影响因子研究[J]. 广西师范大学学报(自然科学版), 2018, 36(03): 121-132.

[74]许传阳, 马守臣, 张合兵, 等. 煤矿沉陷区沉陷裂缝对土壤特性和作物生长的影响

[J]. 中国生态农业学报, 2015, 23(05): 597-604.

[75]毕银丽, 邹慧, 彭超, 等. 采煤沉陷对沙地土壤水分运移的影响[J]. 煤炭学报, 2014,39(S2): 490-496.

[76]谭学玲. 榆神府煤矿区土地退化动态演变及驱动力分析[D]. 徐州: 中国矿业大学,

2018.

[77]张沛沛. 煤粮复合区采煤沉陷对土壤质量的影响研究[D]. 北京: 中国矿业大学,

2016.

[78]Darmody R G, Bauer R, Barkley D, et al. Agricultural impacts of longwall mine subsidence: the experience in Illinois, USA and Queensland, Australia[J]. International Journal of Coal Science & Technology, 2014,1(2): 207-212.

[79]赵晓霞, 李晶, 刘子上, 等. 矿—粮复合区采煤塌陷损毁耕地分级研究[J]. 环境科学与技术, 2014, 37(07): 177-181+192.

[80]赵艳玲, 房铄东, 笪宏志, 等. 基于改进 OTSU 算法的采煤沉陷耕地作物绝产边界识别[J]. 煤炭科学技术, 2020, 48(04): 136-141.

[81]李晶, 刘喜韬, 胡振琪, 等. 高潜水位平原采煤沉陷区耕地损毁程度评价[J]. 农业工程学报, 2014, 30(10): 209-216.

[82]蔡华杨. 耕地损毁程度评价研究[D]. 南京: 南京农业大学, 2019.

[83]李树志, 高均海, 鲁叶江, 等. 平原矿区采煤沉陷地复垦耕地生产力评价[J]. 矿山测量, 2010(01): 5-9+4.

[84]曹银贵, 白中科, 张耿杰, 等. 山西平朔露天矿区复垦农用地表层土壤质量差异对比[J]. 农业环境科学学报, 2013, 32(12): 2422-2428.

[85]Ma Z, Jia G, Schaepman M E, et al. Uncertainty analysis for topographic correction of hyperspectral remote sensing images[J]. Remote Sensing, 2020, 12(4):705.

[86]Soenen S A, Peddle D R, Coburn C A. SCS+ C: A modified sun-canopy-sensor topographic correction in forested terrain[J]. IEEE Transactions on geoscience and remote sensing, 2005, 43(9): 2148-2159.

[87]Yin H, Prishchepov A V, Kuemmerle T, et al. Mapping agricultural land abandonment from spatial and temporal segmentation of Landsat time series[J]. Remote sensing of environment, 2018, 210: 12-24.

[88]Tassi A, Vizzari M. Object-oriented lulc classification in google earth engine combining snic, glcm, and machine learning algorithms[J]. Remote Sensing, 2020, 12(22): 3776.

[89]Liu J, Feng Q, Gong J, et al. Winter wheat mapping using a random forest classifier combined with multi-temporal and multi-sensor data[J]. International journal of digital earth, 2018, 11(8): 783-802.

[90]徐嘉兴. 典型平原矿区土地生态演变及评价研究[D]. 徐州: 中国矿业大学, 2013.

[91]Kennedy R E, Yang Z, Cohen W B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms[J].Remote Sensing of Environment, 2010, 114(12): 2897-2910.

[92]Yin H, Brandão Jr A, Buchner J, et al. Monitoring cropland abandonment with Landsat time series[J]. Remote Sensing of Environment, 2020, 246: 111873.

[93]Dara A, Baumann M, Kuemmerle T, et al. Mapping the timing of cropland abandonment and recultivation in northern Kazakhstan using annual Landsat time series[J]. Remote Sensing of Environment, 2018, 213: 49-60.

[94]李培现, 谭志祥, 邓喀中. 地表移动概率积分法计算参数的相关因素分析[J]. 煤矿开采, 2011, 16(06): 14-18+5.

[95]张健. 黄土矿区开采损害预计分析系统研究[D]. 西安: 西安科技大学, 2015.

[96]汤伏全, 黄韩, 孙学阳, 等. 黄土沟壑区开采沉陷对地形因子的影响研究[J]. 干旱区资源与环境, 2016, 30(05): 124-128.

[97]李雯雯. 基于多源监测数据的采煤沉陷区土壤湿度变化研究[D]. 西安: 西安科技大学, 2020.

中图分类号:

 TD325/P237    

开放日期:

 2022-06-27    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式