- 无标题文档
查看论文信息

题名:

 金属氢氧化物与多孔炭材料对硅橡胶泡沫阻燃抑烟减毒特性研究    

作者:

 郭兰兰    

学号:

 22220226099    

保密级别:

 保密(1年后开放)    

语种:

 chi    

学科代码:

 085700    

学科:

 工学 - 资源与环境    

学生类型:

 硕士    

学位:

 工程硕士    

学位年度:

 2025    

学校:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 消防科学与工程    

导师姓名:

 康付如    

导师单位:

 西安科技大学    

提交日期:

 2025-06-22    

答辩日期:

 2025-06-07    

外文题名:

 Study on flame retardancy, smoke suppression and toxicity reduction of silicone rubber foam by metal hydroxide and porous carbon materials    

关键词:

 硅橡胶泡沫 ; 金属氢氧化物 ; 多孔炭材料 ; 阻燃抑烟 ; 烟气毒性    

外文关键词:

 Silicone rubber foam ; Metal hydroxide ; Porous carbon material ; Smoke toxicity ; Flame retardant and smoke suppression    

摘要:

硅橡胶泡沫(SRF)作为一种高性能高分子材料,因其优异的柔韧性和绝缘性,广泛应用于新能源汽车、轨道交通、航空航天等领域。然而,SRF在高温或明火条件下易燃烧并释放大量烟雾和有毒气体,严重威胁人员安全和环境健康。因此,对其进行抑烟减毒处理是提升其安全性能的关键研究方向。金属氢氧化物具有吸热分解、气体稀释及促进炭层生成等特性从而提升材料的阻燃性能,而多孔炭材料利用其特有的空隙结构,实现对有毒气体及烟气的高效吸附与阻隔。金属氢氧化物和多孔炭材料复配是目前阻燃领域的研究热点,但其在SRF中应用较少。为此,本研究通过将不同种类和含量的金属氢氧化物与多孔炭材料引入SRF体系中,系统研究分析其对SRF阻燃抑烟性能的影响。通过材料产烟毒性分析对其烟气成分与毒性进行评价,并揭示其抑烟减毒机理。主要取得了以下成果: 

构建了SRF阻燃抑烟体系。通过化学修饰方法制备了羟基化碳纳米管(CNTs-OH)与氨基化碳纳米管(CNTs-NH₂)。利用扫描电子显微镜(SEM)、傅里叶变换红外光谱仪(FTIR)、X射线光电子能谱仪(XPS)以及X射线衍射仪(XRD)对其结构与组成进行了表征,结果表明两种改性碳纳米管均成功获得。在此基础上,将4种金属氢氧化物(Cu(OH)₂、Fe(OH)₃、Al(OH)₃和Mg(OH)₂)与4种多孔炭材料(碳纳米管(CNTs)、CNTs-OH、CNTs-NH₂以及碳分子筛)分别引入至SRF中,构建SRF阻燃抑烟体系。

(2)研究了金属氢氧化物与多孔炭材料对SRF的阻燃抑烟性能影响。通过极限氧指数、水平垂直燃烧、烟密度以及锥形量热测试表明,4种金属氢氧化物均可显著提升SRF的阻燃效果,其中Mg(OH)₂/SRF复合材料的效果最佳,LOI从27.2%提升至29.7%,HRR和THR较纯SRF分别降低20.3%和36.4%。多孔炭材料的引入进一步增强了抑烟性能,其中添加CNTs-OH后,LOI提升至32.1%,阻燃等级达到V-0,SPR和TSP分别较纯SRF降低69.4%和37.3%。此外,Mg(OH)₂与CNTs-OH的复配表现出优异的协同作用,当7wt%Mg(OH)₂与1.5wt%CNTs-OH共同引入SRF体系,所得复合材料的LOI达30.4%,阻燃等级达到V-0,SDR、MSD、HRR、THR、SPR、TSP分别较纯SRF降低了35.5%、52.9%、39.1%、67.0%、69.5%和70.5%,火灾危险性显著降低。

(3)掌握了Mg(OH)₂/CNTs-OH/SRF复合材料燃烧产生的烟气成分及毒性等级。在烟气产物成分方面,采用烟密度箱与FTIR联用的毒性分析法对SRF复合材料燃烧释放的气体进行研究,结果表明:纯SRF材料热解时主要释放CO和CH4,而添加阻燃抑烟剂的SRF复合材料其主要产物为SO₂、CO和CO₂。其中,SO₂为引发人员伤害的关键有毒组分,毒性指数为0.0823,符合欧盟标准要求。此外,还检测到一定量的烃类、醛类及其他有毒气体。在烟气毒性评价方面,通过动物暴露试验结果显示,SRF复合材料燃烧烟气具有一定的麻醉性与刺激性,但均在安全范围内,烟气毒性等级评定为准安全一级(ZA1级),表明该材料在实际应用中具备良好的毒性安全性能。

(4)揭示了Mg(OH)₂与CNTs-OH对SRF复合材料的阻燃抑烟抑烟减毒机理。综合FTIR、XPS、SEM-EDS及热重分析(TGA)结果表明,CNTs-OH作为有效碳源,在Mg(OH)₂的催化条件下发生脱水炭化,生成致密的炭化层。与此同时,Mg²⁺热分解所形成的MgO有助于增强炭层的结构稳定性,释放的水蒸气则起到稀释可燃气体的作用。在协效阻燃抑烟剂的共同作用下,复合材料燃烧时形成SiO₂堆积层与炭化层构成的双层屏障,有效阻隔氧气与热量,显著提升了材料的阻燃性能,并降低了烟气及有毒产物的释放,展现出优异的抑烟减毒效果。

外文摘要:

Silicone rubber foam (SRF), as a high-performance polymer material, is widely used in new energy vehicles, rail transit, aerospace and other fields due to its excellent flexibility and insulation. However, SRF is prone to combustion and release a large amount of smoke and toxic gases under high-temperature or open flame conditions, seriously threatening personnel safety and environmental health. Therefore, conducting smoke suppression and detoxification treatment on it is a key research direction for enhancing its safety performance. Metal hydroxides possess properties such as endothermic decomposition, gas dilution, and promotion of carbon layer formation, thereby enhancing the flame retardancy of materials. Meanwhile, porous carbon materials utilize their unique pore structure to efficiently adsorb and block toxic gases and smoke. The combination of metal hydroxides and porous carbon materials is currently a research hotspot in the field of flame retardancy, but its application in SRF is relatively rare. For this purpose, in this study, different types and contents of metal hydroxides and porous carbon materials were introduced into the SRF system to systematically investigate and analyze their effects on the flame retardant and smoke suppression performance of SRF. The smoke composition and toxicity of the material were evaluated through the analysis of its smoke generation toxicity, and the mechanism of smoke suppression and toxicity reduction was revealed. The following achievements have mainly been made:

(1) The SRF flame retardant and smoke suppression system was constructed. Hydroxylated carbon nanotubes (CNTs-OH) and aminated carbon nanotubes (CNTs-NH₂) were prepared by chemical modification methods. The structure and composition of the two modified carbon nanotubes were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD). The results show that both of the two modified carbon nanotubes were successfully obtained. On this basis, four kinds of metal hydroxides (Cu(OH)₂, Fe(OH)₃, Al(OH)₃ and Mg(OH)₂) and four kinds of porous carbon materials (carbon nanotubes (CNTs), CNTS-OH, CNTS-NH ₂ and carbon molecular sieves) were respectively introduced into SRF to construct the SRF flame retardant and smoke suppression system.

The flame retardant and smoke inhibition performance of SRFs with metal hydroxides and porous carbon materials was investigated.The limiting oxygen index(LOI),horizontal and vertical combustion,smoke density,and cone calorimetry tests showed that the four metal hydroxides could significantly enhance the flame retardancy of SRF,among which the Mg(OH)2/SRF composite material was the best,with a LOI of 29.7%,and the HRR and THR were reduced by 20.3%and 36.4%compared with that of pure SRF,respectively.The introduction of porous carbon materials further enhanced the smoke suppression performance,in which the addition of CNTs-OH elevated the LOI to 32.1%,the flame retardant grade reached V-0,and the SPR and TSP were reduced by 69.4%and 37.3%,respectively,compared with that of pure SRF.In addition,the compounding of Mg(OH)2 with CNTs-OH showed excellent synergistic effects,in which 7 wt%Mg(OH)2 and 1.5 wt%CNTs-OH were co-introduced into the SRF,and the resulting composites had an LOI of 30.4%,a flame retardant grade of V-0,and the SDR,MSD,HRR,THR,SPR,and TSP were reduced compared to the pure SRF,respectively by 35.5%,52.9%,39.1%,67.0%,69.5%and 70.5%,respectively,compared with the pure SRF,and the fire hazard was significantly reduced.

(3) The composition and toxicity level of the flue gas produced by the combustion of Mg(OH)₂/CNTs-OH/SRF composites were characterized. As for the composition of smoke products, the toxicity analysis method of smoke density box coupled with FTIR was used to study the gases released from the combustion of SRF composites, and the results showed that the pure SRF materials mainly released CO and CH4 during pyrolysis, while the main products of SRF composites with flame retardant and smoke suppressant added were SO₂, CO and CO₂. Among them, SO₂ is the key toxic component that triggers personnel injury, and the toxicity index is 0.0823, which meets the requirements of the EU standard. In addition, a certain amount of hydrocarbons, aldehydes and other toxic gases were detected. In terms of smoke toxicity evaluation, the results of animal exposure test show that the combustion smoke of SRF composite material has a certain degree of anesthesia and irritation, but they are all within the safe range, and the smoke toxicity rating is assessed as quasi-safe level 1 (ZA1 level), indicating that the material has good toxicity safety performance in practical applications.

(4)The flame retardant and smoke inhibition and smoke reduction mechanism of Mg(OH)2 and CNTs-OH on SRF composites was revealed.The combined FTIR,XPS,SEM-EDS and thermogravimetric analysis(TGA)results showed that CNTs-OH,as an effective carbon source,underwent dehydration carbonization under the catalytic condition of Mg(OH)2 to produce a dense carbonized layer.At the same time,MgO formed by thermal decomposition of Mg²⁺helps to enhance the structural stability of the carbon layer,and the released water vapor serves to dilute the combustible gases.Under the joint action of the synergistic flame retardant and smoke suppressant,SiO2 is formed when the composite material burns.

参考文献:

[1]卞永杰,沈玉红,曾军豪,等.室温硫化发泡硅橡胶研究进展[J].有机硅材料,2023,37(04):69-74.

[2]Yuan Y,Lin W S,Xiao Y,et al.Advancements in Flame-Retardant Systems for RigidPolyurethane Foam[J].Molecules,2023,28(22):7549-7549.

[3]Yang W,Zhang W,Xie D,et al.A flame retardant containing dicyandiamide and aluminum hypophosphite for polyethylene[J].Case Studies in Construction Materials, 2023,18(9):e01797-e01797.

[4]鲍庆煌,李俊,袁英杰,等.PUF、PP和PS阻燃复合塑料研究现状和发展趋势[J].材料导报,2023,37(S1):529-535.

[5]王新古.陶瓷化硅橡胶的介电与防火性能研究[D].青岛:山东理工大学,2021.

[6]曾浩,王庭慰,蔡焓炳,等.阻燃陶瓷化硅橡胶的制备与性能[J].合成橡胶工业,2015,38(4):1-4.

[7]骆晓宇.陶瓷化阻燃硅橡胶复合材料的设计,制备与机理研究[D].合肥:中国科学技术大学,2023.

[8]付强,李浩明,彭磊,等.填充型导热绝缘硅橡胶复合材料的研究进展[J].绝缘材料,2024,57(09):1-14.

[9]费华峰,喻研,张志杰.硅橡胶介电弹性体的研究进展[J].有机硅材料,2023,37(5):61-69.

[10]夏乔琦,李扬,曹承飞,等.硅橡胶泡沫复合材料的制备、性能与应用[J].中国材料进展,2018,37(3):168-189.

[11]Liu S,Jiang T,Wang Q,et al.Identification and Characterization of the Chalking Layer of High Temperature Vulcanized Silicone Rubber[J].2022 IEEE International Conference on High Voltage Engineering and Applications(ICHVE),2022,18(09):10-20.

[12]Ji Z,Ma J,Wang H,et al.The effect of MgAl-LDH/APP distribution control in the closed-cell structure of SBR/EVA foam on flame retardance and mechanical properties[J].Polymer Degradation and Stability,2023,212(01):110354-110354.

[13]Du W,Yin C,Huang H,et al.Vinyl‐functionalized polyborosiloxane for improving mechanical and flame‐retardancy performances of silicone rubber foam composites[J].Polymer International,2021,71(09):124-131.

[14]邵路山,姚忠樱,冯秀艳,等.有机磷系阻燃剂阻燃热塑性聚酯的研究进展[J].工程塑料应用,2024,52(05):171-180.

[15]Liu X,Ma L,Sheng Y,et al.Synergistic flame‐retardant effect of modified hydrotalcite and expandable graphite for silicone rubber foam[J].Journal of Applied Polymer Science,2022,140(7):14-25.

[16]刘朵朵,徐哲,张雷,等.氮系无卤阻燃剂对液体硅橡胶阻燃泡沫材料性能的影响[J].有机硅材料,2023,37(01):53-60.

[17]郝聃,王锐,王文庆.硼系阻燃剂在高聚物阻燃中的应用研究进展[J].高分子材料科学与工程,2021,37(05):115-123.

[18]Silva N,Zanini N,Souza A,et al.Halogen-Based Flame Retardants in Polyurethanes[J].Acs Symposium Series,2021,10(09):141-171.

[19]郭正虹,王炳涛,李娟,等.高分子材料阻燃抑烟中的自由基捕捉作用[J].中国材料进展,2024,43(08):697-703.

[20]李威翰,周波超,吴鸿飞,等.抑烟阻燃微胶囊开发与性能验证[J].市政技术,2024,42(05):8-16.

[21]Zhi M,Yang X,Fan R,et al.A comprehensive review of reactive flame-retardant epoxy resin:fundamentals,recent developments,and perspectives[J].Polymer Degradation and Stability,2022, 201(8):109976-109976.

[22]Shang K,Lin G,Jiang H,et al.Flame retardancy,combustion,and ceramization behavior of ceramifiable flame‐retardant room temperature vulcanized silicone rubber foam[J].Fire and Materials,2023, 47(8):1082-1091.

[23]Zhang Z,Du W,Liu Y,et al.Thermal management ability and flame retardancy of silicone rubber foam filled with flame retardant phase change capsules[J].Applied Clay Science,2023, 240(8):106977-106977.

[24]胡文军,陈宏,徐镜廉,周德惠.蜂窝结构复合硅橡胶泡沫材料的制备与性能[J].橡胶工业,2000,47(9):543-546.

[25]刘芳,余凤湄,罗世凯,等.液体硅橡胶泡沫材料研究进展[J].有机硅材料,2014,28(1):54-58.

[26]刘克胜.包覆型抑烟剂微球/含磷环氧树脂复合材料制备及其协同抑烟机理研究[D].北京:北京化工大学,2021.

[27]杜振霞.热裂解气相色谱-质谱研究阻燃纤维的结构及烟雾毒性[J].分析测试学报,2004(z1):287-288.

[28]张尧,陈露,黄小冬,等.阻燃聚氨酯的研究及应用进展[J].塑料助剂,2020(01):1-10.

[29]Liu H,Zhang B,Han J.Improving the Flame Retardancy and Smoke Suppression Properties of Polyurethane Foams with SiO2 Microcapsule and its Flame-Retardant Mechanism[J].Polymer-plastics Technology and Engineering,2017,57(11):1139-1149.

[30]邓军,成晨阳,康付如.含钴基金属有机框架硅橡胶泡沫阻燃特性研究[J].中国安全生产科学技术,2021,17(12):5-10.

[31]康付如,邓军,庞青涛,等.含微胶囊化氢氧化铝有机硅泡沫阻燃抑烟特性[J].高分子材料科学与工程,2021,37(08):58-66.

[32]魏泽,马砺,刘西西,刘志超,康付如.改性水滑石的制备及在硅橡胶泡沫阻燃抑烟中的应用[J].高分子材料科学与工程,2020,36(10):55-61.

[33]Hong L,Hu X.Mechanical and Flame Retardant Properties and Microstructure of Expandable Graphite/Silicone Rubber Composites[J].Journal of Macromolecular Science Part B,2016,55(2):175-187.

[34]Huang X,Tian Z,Zhang Q L J.The synergetic effect of antimony(Sb2O3)and melamine cyanurate(MCA)on the flame-retardant behavior of silicon rubber[J].Polymer bulletin,2021,78(1):185-202.

[35]Zhang Y,Zeng X,Li H,et al.Zirconium phosphate functionalized by hindered amine:A new strategy for effectively enhancing the flame retardancy of addition-cure liquid silicone rubber[J].Materials Letters,2016,174(jul.1):230-233.

[36]Thi N H,Nguyen T N,Oanh H T,et al.Synergistic effects of aluminum hydroxide,red phosphorus,and expandable graphite on the flame retardancy and thermal stability of polyethylene[J].Journal of Applied Polymer Science,2020,138(17):50317-50317.

[37]Guo F,Zhang Y,Cai L,et al.Functionalized graphene with Platelet-like magnesium hydroxide for enhancing fire safety,smoke suppression and toxicity reduction of Epoxy resin[J].Applied Surface Science,2022, 578(2):152052-152052.

[38]Liang S,Liu J,Guo Y,et al.Role of expandable graphite on flame retardancy,smoke suppression,and acid resistance of polypropylene/magnesium hydroxide composites[J].Polymer Engineering and Science,2022,62(10):3168-3179.

[39]Yang F,Hu A,Du C,et al.Preeminent Flame-Retardant and Smoke Suppression Properties of PCaAl-LDHs Nanostructures on Bamboo Scrimber[J].Molecules,2023,28(11):4542-4542.

[40]Shi X,Hong S Y,Xie W,et al.Organic copper phosphate-decorated layered double hydroxide to enhance the flame retardancy and smoke suppression of epoxy resin[J].Polymer Degradation and Stability, 2024,220(2):110664-110664.

[41]Li S,Yang B,Lin T,et al.Preparation of TPU/GO/Mg‐Al LDHs Hybrid Material With Enhancing Flame Retardancy and Smoke Suppression Performance[J].ChemistrySelect,2022,7(44):161-175.

[42]张海龙.碳纳米管表面官能团特性对丙烯腈聚合物结构的影响[D].北京:北京化工大学,2010.

[43]Fa Y,Ma X,Cai W B,et al.Nature of Oxygen-Containing Groups on Carbon for High-Efficiency Electrocatalytic CO2 Reduction Reaction[J].Journal of the American Chemical Society,2019,141(51):20451-20459.

[44]Budak B,Demirel S.Synthesis and characterization of PANI and PANI/nanometal oxides,photocatalytic and adsorbent applications[J].Turkish Journal of Chemistry,2023,47(2):346-363.

[45]Li T,An X,Fu D.Review on Nitrogen-Doped Porous Carbon Materials for CO2 Adsorption and Separation:Recent Advances and Outlook[J].Energy&Fuels,2023,37(12):8160-8179.

[46]樊瑞军.多孔炭的制备、改性及其在CO2吸附中的应用[D].大连:大连理工大学,2013.

[47]Robertson C,Mokaya R.Microporous activated carbon aerogels via a simple subcritical drying route for CO2 capture and hydrogen storage[J].Microporous and Mesoporous Materials,2013, 179(9):151-156.

[48]Wei H J N H.Biomass-derived nitrogen-doped porous carbon with superior capacitive performance and high CO2 capture capacity[J].Electrochimica Acta,2018, 266(3):161-169.

[49]Cao W,Xu H,Zhang X,et al.Novel post-treatment of ultrasound assisting with acid washing enhance lignin-based biochar for CO2 capture:Adsorption performance and mechanism[J].Chemical Engineering Journal,2023, 471(16):144523-144523.

[50]Iijima,Sumio.Helical microtubules of graphitic carbon[J].Nature,1991,354(6348):56-58.

[51]Lee M S,Lee S Y,Park S J.Preparation and characterization of multi-walled carbon nanotubes impregnated with polyethyleneimine for carbon dioxide capture[J].International Journal of Hydrogen Energy,2015,40(8):3415-3421.

[52]Qing,Ye,Jianqing,et al.Adsorption of Low-Concentration Carbon Dioxide on Amine-Modified Carbon Nanotubes at Ambient Temperature[J].Energy&Fuels,2012,26(4):2497-2504.

[53]Rende D,Ozgur L,Baysal N,et al.A Computational Study on Carbon Dioxide Storage in Single Walled Carbon Nanotubes[J].Journal of Computational&Theoretical Nanoscience,2012,9(10):1-9.

[54]张东海,岳勇,许锴霖,等.过渡金属修饰的碳纳米管降低烟气中氢氰酸[J].广州化工,2013,41(23):66-68.

[55]林柏泉.安全学原理[M].安全学原理,2018.

[56]丁勇,张阳,代培刚,等.基于动物染毒试验的不同聚合物材料烟气毒性研究[J].广州化工,2015,43(8):101-103.

[57]于华.燃气成分及其含量对气体机燃烧过程的影响[D].青岛:山东大学,2016.

[58]欧凯.建筑材料燃烧烟雾毒性测试及综合伤害评价研究[D].广州:华南理工大学,2015.

[59]Wang B,Sheng H,Shi Y,et al.The influence of zinc hydroxystannate on reducing toxic gases(CO,NOx and HCN)generation and fire hazards of thermoplastic polyurethane composites[J].Journal of Hazardous Materials,2016,314(aug.15):260-269.

[60]Sheng H,Zhang Y,Ma C,et al.Influence of zinc stannate and graphene hybrids on reducing the toxic gases and fire hazards during epoxy resin combustion[J].Polymers for Advanced Technologies,2018,30(3):666-674.

[61]李赛,张漪帆,陈悦.聚苯乙烯装饰材料燃烧烟热特性研究[J].中国安全生产科学技术,2019(S1):150-155.

[62]彭然,郭玉辉,李聪.不同初始质量小尺度松木燃烧特性实验研究[J].科学技术与工程,2023,23(15):6693-6699.

[63]Sheng H,Zhang Y,Ma C,et al.Influence of zinc stannate and graphene hybrids on reducing the toxic gases and fire hazards during epoxy resin combustion[J].Polymers for Advanced Technologies,2018,30(3):666-674.

[64]周全会.材料产烟毒性危险分级的动物试验方法[J].消防技术与产品信息,2009(2):30-33.

[65]晏建波.阻燃胶合板燃烧性能与产烟毒性风险监测探究[J].广州化工,2017,45(10):118-119+138.

[66]丁勇,张阳,代培刚,等.基于动物染毒试验的不同聚合物材料烟气毒性研究[J].广州化工,2015,43(8):101-103.

[67]严家荣,郑玉连,吴贤生,等.阻燃绝缘聚氯乙烯电线槽产烟对小鼠的毒性试验[J].动物医学进展,2019,40(6):140-144.

[68]葛欣国,何瑾,刘微,等.有机保温材料燃烧烟气毒性及热性能分析[J].新型建筑材料,2018,45(4):1-4.

[69]Mentes D,Kováts N,Muránszky G,et al.Evaluation of flue gas emission factor and toxicity of the PM-bounded PAH from lab-scale waste combustion[J].Journal of Environmental Management,2022, 324(59):116371-116371.

[70]刘伟.火灾烟气毒性评价与研究:中国消防协会[C],2012.

[71]陈永锋,李朵,朱振宇,等.烟草火灾危害后果定量评价研究[J].灾害学,2016,31(1):50-54.

[72]陈银,蒋勇,潘龙苇,等.基于EDC模型的含HCN火灾烟气数值模拟及毒性评价[J].安全与环境工程,2015,22(2):117-123.

[73]李山岭,蒋勇,邱榕,等.火灾烟气危害定量评价模型THVCH及其应用[J].安全与环境学报,2012,12(2):250-256.

[74]陈鑫宏,毕海普,邢志祥,等.火灾烟气危害评价HTV模型的应用与验证[J].中国安全科学学报,2013,23(9):20-25.

[75]Babrauskas V,Gann R G,Levin B C,et al.A methodology for obtaining and using toxic potency data for fire hazard analysis[J].Fire Safety Journal,1998, 31(4):345-358.

[76]Wang X,Kalali E N,Wan J,et al.Carbon-family materials for flame retardant polymeric materials[J].Progress in Polymer Science,2017, 17(2):249-249.

[77]赵杰.火灾烟雾中的有毒气体[J].疾病控制杂志,2003,7(04):338-340.

[78]许佳.碳纳米管和石墨烯阻燃疏水修饰及其施加于棉的功能效果[D].上海:东华大学,2016.

[79]张娇.功能化碳纳米管、石墨烯增强聚酰胺66纤维[D].天津:天津工业大学,2023.

[80]孙俊芬,郑龙,李云华,等.氨基化多壁碳纳米管的制备与研究[J].纺织科学与工程学报,2018,35(01):118-122.

[81]Xu X,Zheng L,Shi B.Preparation and Characterization of Hydroxylated Multi-Walled Carbon Nanotube(MWCNTs-OH)Composite Nanofiltration Membrane[J].Environmental science and engineering,2024,0(1863-5520):445-456.

[82]刘建勇,赵侠,易爱华,等.轨道交通材料烟气毒性测试技术研究[J].消防科学与技术,2016,35(02):149-152.

[83]胡鹏. 含纳米过渡金属氧化物的硅橡胶泡沫烟气危害性和抑烟作用研究[D].西安:西安科技大学,2023.

[84]刘中平,姚中红,白文浩.基于EN 45545-2:2020的材料氧指数试验与垂直燃烧试验相关性研究[J].铁道技术监督,2023,51(1):8-13.

[85]李邦昌.材料产烟毒性危险分级试验方法学原理[J].消防科学与技术,2003,22(6):445-448.

[86]李邦昌.材料产烟毒性危险分级试验方法学原理:2003年火灾科学与消防工程国际学术会议[C],2003:279-284.

[87]刘军军.材料燃烧烟气毒性综合评价[D].重庆:重庆大学,2005.

[88]龚迎春,任海青,汤正捷,等.阻燃PE基木塑地板燃烧产烟毒性的动物染毒试验评价[J].木材工业,2015,29(03):18-21.

[89]严家荣,郑玉连,吴贤生,等.阻燃绝缘PVC电线槽(B)材料产烟毒性动物实验研究:第十四届中国实验动物科学年会[C],中国山东青岛,2018:509-515.

[90]汪斌,王倩.利用实验室病原微生物抽检控制实验动物质量[J].中南农业科技,2023,44(9):113-115.

[91]廖玉海.GB 5749-2022《生活饮用水卫生标准》下中小规模水质实验室能力建设策略[J].实验与分析,2023,1(01):38-42.

[92]吴强.SPF级实验动物设施环境参数测试研究[J].洁净与空调技术,2021(04):89-91.

[93]王键吉,张建军.热分析动力学与热动力学[J].物理化学学报,2020,36(06):7.

[94]潘颢丹,贾冯睿.工程热力学[M].化学工业出版社,2019

中图分类号:

 Tu998.1    

开放日期:

 2026-06-23    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式