- 无标题文档
查看论文信息

论文中文题名:

 钠盐微胶囊阻化剂抑制煤自燃特性实验研究    

姓名:

 魏泽    

学号:

 18220080915    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 083700    

学科名称:

 工学 - 安全科学与工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 煤火灾害防控    

第一导师姓名:

 马砺    

第一导师单位:

  西安科技大学    

论文提交日期:

 2021-06-18    

论文答辩日期:

 2021-05-31    

论文外文题名:

 Experimental Study on Microcapsule Sodium Salt Inhibitor for Preventing Coal Spontaneous Combustion    

论文中文关键词:

 煤自燃 ; 钠盐微胶囊阻化剂 ; 热重分析 ; 程序升温 ; 活性官能团    

论文外文关键词:

 Coal spontaneous combustion ; Microcapsule sodium salt inhibitor ; Thermogravimetric analysis ; Temperature programed ; Active functional group    

论文中文摘要:

钠盐阻化剂是一种新型吸水性阻化剂,常用于矿井防灭火。该阻化剂在常温条件下存在刺激性气味,吸湿率高等问题,易造成阻化剂材料浪费。因此本文对钠盐阻化剂进行微胶囊化改性处理,旨在降低阻化剂储存过程中吸湿性,提高阻化剂在使用过程中的阻化效率。

采用融化分散冷凝法以聚乙二醇20000(PEG-20000)为壁材,钠盐阻化剂为芯材成功制备钠盐微胶囊阻化剂。微胶囊化改性可降低钠盐阻化剂在常温条件下的吸湿率,壁材与芯材质量比为2:1时吸湿率下降67.3%;钠盐阻化剂、钠盐微胶囊阻化剂初始分解温度分别为753.1 ℃和384.5 ℃,微胶囊化钠盐阻化剂热稳定性降低。

通过热重和程序升温实验,研究阻化剂对煤样氧化特性抑制效果。钠盐阻化剂和钠盐微胶囊阻化剂均可抑制煤样自燃。原煤样和添加阻化剂煤样耗氧速率、CO产生率、CO2产生率随温度升高呈指数型增大,添加阻化剂煤样数值均低于原煤样。实验条件下,15%浓度钠盐微胶囊阻化剂对黑沟煤样低温氧化抑制效果最佳,添加该阻化剂煤样水分蒸发及气体脱附阶段表观活化能较原煤样增大64.7%,吸氧增重阶段表观活化能增加56.9%;15%浓度钠盐微胶囊阻化剂平均阻化率为66.6%,110 ℃时最高阻化率达83.8%。

利用红外光谱实验研究升温过程中钠盐微胶囊阻化剂对煤样阻化特性的影响。实验初期,钠盐微胶囊阻化剂壁材PEG-20000与煤中羟基、含羰基类活性组分发生反应,降低煤样氧化活性官能团含量,抑制煤样自燃氧化。随着煤样温度升高,PEG-20000熔融覆盖于煤体表面,芯材钠盐阻化剂逐渐暴露于空气中,通过隔绝氧气、吸收水分实现煤样氧化自燃的抑制作用。

论文外文摘要:

Sodium salt inhibitor (SSI) is a new type of water-absorbing inhibitor, often used in mine fire prevention. But SSI has the problems of pungent odor and high moisture absorption rate under normal temperature conditions. Thus, SSI is more prone to cause inhibitor waste. Therefore, in this study, SSI is modified by microencapsulation, to reduce the moisture absorption rate and improve the efficiency.

Microcapsule sodium salt inhibitor (MSSI)was successfully prepared melting dispersion and condensation method, with polyethylene glycol 20000 (PEG-20000) as the wall material and SSI as the core material. Microcapsule modification can reduce the moisture absorption rate of SSI at normal temperature conditions. When the mass ratio of wall material to core material is 2:1, the moisture absorption rate is reduced by 67.3%; The initial decomposition temperature of SSI and MSSI are 753.1 ℃ and 384.5 ℃, and thermal stability of MSSI is reduced.

The thermogravimetric and temperature-programmed experiments was applied to exlplore the oxidation characteristics of coal samples treated with inhibitors. SSI and MSSI can inhibit coal spontaneous combustion. With the increase in temperature, the oxygen consumption rate, CO generation rate, and CO2 generation rate of the raw coal and coal samples treated with inhibitors increase exponentially. and the values of coal samples treated with inhibitors are lower than those of raw coal. Under the experimental conditions, 15% concentration MSSI has the best inhibitory effect on low-temperature oxidation of Hei Gou coal samples. Compared with raw coal, the apparent activation energy of water evaporation and gas desorption stage increased by 64.7%, and oxygen absorption weight gain stage increased by 56.9%; the average inhibition rate of 15% MSSI is 66.6%, and the highest inhibition rate at 110 ℃ reached 83.8%.

The infrared spectroscopy was used to test the influence of MSSI on the inhibition characteristics of coal samples during the heating process. At the beginning of the experiment, PEG-20000 can react with the hydroxyl and carbonyl-containing active components to reduce coal sample oxidation active functional group content, inhibit coal self-ignition oxidation. As the temperature of the coal sample increases, PEG-20000 melts and covers the surface of the coal, and the sodium salt inhibitor of the core material is gradually exposed to the air, achieving inhibition by isolating oxygen and absorbing moisture.

参考文献:

[1] 徐精彩. 煤自燃危险区域判定理论[M]. 北京: 煤炭工业出版社, 2001.

[2] Musa S D, Zhonghua T, Ibrahim A O, et al. China's energy status: A critical look at fossils and renewable options[J]. Renewable and Sustainable Energy Reviews, 2017, 81: 2281-2290.

[3] 王德明, 邵振鲁, 朱云飞. 煤矿热动力重大灾害中的几个科学问题[J]. 煤炭学报, 2021, 46(01): 57-64.

[4] Deng J, Lei C K, Xiao Y, et al. Determination and prediction on “three zones” of coal spontaneous combustion in a gob of fully mechanized caving face[J]. Fuel, 2018, 211: 458-470.

[5] 梁运涛, 侯贤军, 罗海珠, 等. 我国煤矿火灾防治现状及发展对策[J]. 煤炭科学技术, 2016, 44(06): 1-6,13.

[6] Xia T, Zhou F B, Wang X, et al. Controlling factors of symbiotic disaster between coal gas and spontaneous combustion in longwall mining gobs[J]. Fuel, 2016, 182: 886-896.

[7] 邓军, 李亚清, 张玉涛, 等. 羟基(-OH)对煤自燃侧链活性基团氧化反应特性的影响[J]. 煤炭学报, 2020, 45(01): 232-240.

[8] Ren L F, Li Q W, Deng J, et al. Inhibiting effect of CO2 on the oxidative combustion thermodynamics of coal[J]. RSC Advances, 2019, 9(70): 41126-41134.

[9] 叶庆树. 二氧化碳对煤自燃特性的影响规律[J]. 煤矿安全, 2021, 52(02): 43-47.

[10] Zhou F B, Shi B B, Cheng J W, et al. A New Approach to Control a Serious Mine Fire with Using Liquid Nitrogen as Extinguishing Media[J]. Fire Technology, 2015, 51(02): 325-334.

[11] 赵建会, 张辛亥. 矿用灌浆注胶防灭火材料流动性能的实验研究[J]. 煤炭学报, 2015, 40(02): 383-388.

[12] 文虎, 徐精彩, 邓军, 等. 煤层自燃多功能灌浆注胶防灭火系统及其应用[J]. 煤炭工程, 2004(05): 4-6.

[13] 朱红青, 王翰锋, 刘涛, 等. 自动均压系统的均压效果影响分析及研究[J]. 煤炭科学技术, 2005(05): 74-76.

[14] 武福生, 黄林华, 何敏, 等. 均压防灭火自动变频调控系统设计[J]. 工矿自动化, 2014, 40(05): 84-87.

[15] 王德明, 李增华, 秦波涛, 等. 一种防治矿井火灾的绿色环保新材料的研制[J]. 中国矿业大学学报, 2004(02): 81-84.

[16] Yu S J, Xie F C, Jia B Y, et al. Influence Study of Organic and Inorganic Additive to Coal Combustion Characteristic[J]. Procedia Environmental Sciences, 2012, 12(33): 459-467.

[17] Manquais L K, Snape C, Barker J, et al. TGA and drop tube furnace investigation of alkali and alkaline earth metal compounds as coal combustion additives[J]. Energy Fuels, 2012; 26(3): 1531-1539.

[18] Cui C, Jiang S, Shao H, et al. Experimental study on thermo-responsive inhibitors inhibiting coal spontaneous combustion[J]. Fuel Processing Technology, 2018, 175: 113-122.

[19] 马砺, 任立峰, 艾绍武, 等. 氯盐阻化剂对煤自燃极限参数影响的试验研究[J]. 安全与环境学报, 2015, 15(04): 83-88.

[20] 马砺, 任立峰, 艾绍武, 等. 氯盐阻化剂抑制煤初次和二次氧化特性的实验研究[J]. 矿业安全与环保, 2015, 42(01): 1-4,8.

[21] Slovák V, Taraba B. Urea and CaCl2 as inhibitors of coal low-temperature oxidation [J]. Journal of Thermal Analysis and Calorimetry, 2012, 110(1): 363-367.

[22] 余明高, 孟牒, 路长, 等. 基于锥形量热仪实验研究阻化剂对煤自燃的影响[J]. 热科学与技术, 2010, 9(04): 343-347.

[23] 郑兰芳. 抑制煤氧化自燃的盐类阻化剂性能分析[J]. 煤炭科学技术, 2010, 38(05): 70-72,96.

[24] 何理, 蒋仲安, 钟茂华. 正交实验法优选煤炭自燃凝胶阻化剂及其应用[J]. 中国安全生产科学技术, 2006(04): 40-44.

[25] 于水军, 余明高, 谢锋承, 等. 无机发泡胶凝材料防治高冒区托顶煤自燃火灾[J]. 中国矿业大学学报, 2010, 39(02): 173-177.

[26] Huang Z, Sun C, Gao Y, et al. R&D of colloid components of composite material for fire prevention and extinguishing and an investigation of its performance[J]. Process Safety and Environmental Protection, 2018, 113: 357-368.

[27] Ren X, Hu X, Xue D, et al. Novel sodium silicate/polymer composite gels for the prevention of spontaneous combustion of coal[J]. Journal of hazardous materials, 2019, 371: 643-654.

[28] 秦波涛, 张雷林. 防治煤炭自燃的多相凝胶泡沫制备实验研究[J]. 中南大学学报, 2013, 44(11): 4652-4657.

[29] 王刚. 新型高分子凝胶防灭火材料在煤矿火灾防治中的应用[J]. 煤矿安全, 2014, 45(02): 228-229.

[30] 邓军, 王楠, 文虎, 等. 胶体防灭火材料阻化性能试验研究[J]. 煤炭科学技术, 2011, 39(07): 49-52.

[31] 于水军, 陈晓利, 李彬, 等. 粉煤灰悬浮胶体的悬浮稳定性实验研究[J]. 河南理工大学学报(自然科学版), 2015, 34(03): 426-432.

[32] Xu Y L, Wang L Y, Chu T X, et al. Suspension mechanism and application of sand-suspended slurry for coalmine fire prevention[J]. International Journal of Mining Science and Technology, 2014, 24(05): 649-656.

[33] Xu Y L, Wang D M, Wang L Y, et al. Experimental research on inhibition performances of the sand-suspended colloid for coal spontaneous combustion[J]. Safety Science, 2012, 50(04): 822-827.

[34] Cheng W, Hu X, Xie J, et al. An intelligent gel designed to control the spontaneous combustion of coal: fire prevention and extinguishing properties[J]. Fuel, 2017, 210: 826-835.

[35] 李孜军, 陈天丰, 李明, 等. 化学泡沫阻化剂对硫化矿石自燃阻化效果研究[J]. 中国安全科学学报, 2017, 27(10): 44-49.

[36] 朱红青, 胡超, 周全涛, 等. 泥浆泡沫性能及影响因素研究[J]. 矿业科学学报, 2019, 4(04): 343-348.

[37] 孟献梁, 张静, 刘亚菲, 等. 防煤自燃聚乙烯醇泡沫材料的制备及性能[J]. 西安科技大学学报, 2011, 31(06): 663-667.

[38] Ren W X, Kang Z H, Wang D M. Causes of Spontaneous Combustion of Coal and Its Prevention Technology in The Tunnel Fall of Ground of Extra-thick Coal Seam[J]. Procedia Engineering, 2011, 26: 717-724.

[39] Qin B, Lu Y, Li Y, et al. Aqueous three-phase foam supported by fly ash for coal spontaneous combustion prevention and control[J]. Advanced Powder Technology, 2014, 25(5): 1527-1533.

[40] Lu Y. Laboratory Study on the Rising Temperature of Spontaneous Combustion in Coal Stockpiles and a Paste Foam Suppression Technique[J]. Energy & Fuels, 2017, 31(7): 7290-7298.

[41] Qin B, Lu Y, Li F, et al. Preparation and Stability of Inorganic Solidified Foam for Preventing Coal Fires[J]. Advances in Materials Science and Engineering, 2014, 2014: 1-10.

[42] Li J, Li Z, Yang Y, et al. Inhibitive effects of antioxidants on coal spontaneous combustion[J]. Energy & Fuels, 2017, 31(12): 14180-14190.

[43] Dou G, Wang D, Zhong X, et al. Effectiveness of catechin and poly (ethylene glycol) at inhibiting the spontaneous combustion of coal[J]. Fuel processing technology, 2014, 120: 123-127.

[44] Li Z, Kong B, Wei A, et al. Free radical reaction characteristics of coal low-temperature oxidation and its inhibition method[J]. Environmental Science and Pollution Research, 2016, 23(23): 23593-23605.

[45] Zhan J, Wang H H, Song S N, et al. Role of an additive in retarding coal oxidation at moderate temperatures [J]. Processing Combustion Instant, 2011, 33(2): 2515-2522.

[46] Li J, Lu W, Cao Y, et al. Method of pre-oxidation treatment for spontaneous combustion inhibition and its application[J]. Process Safety and Environmental Protection, 2019, 131: 169-177.

[47] Dai F W. Quantum Chemical Application in Inhibitor Suppressed the Spontaneous Combustion of Coal [J]. Advanced Materials Research, 2012, 524(3): 658-661.

[48] Dou G, Jiang Z. Sodium humate as an effective inhibitor of low-temperature coal oxidation[J]. Thermochimica Acta, 2019, 673: 53-59.

[49] 杨胜强. 氢氧化钙对高硫煤的阻化实验及机理分析[J]. 中国矿业大学学报, 1996(04): 68-72.

[50] Zhang W Q, Jiang S G, Wu Z Y, et al. Influence of imidazolium-based ionic liquids on coal oxidation[J]. Fuel. 2018; 217: 529-35.

[51] Wang L, Xu Y, Jiang S, et al. Imidazolium based ionic liquids affecting functional groups and oxidation properties of bituminous coal[J]. Safety science, 2012, 50(7): 1528-1534.

[52] Lü H F, Xiao Y, Deng J, et al. Inhibiting effects of 1-butyl-3-methyl imidazole tetrafluoroborate on coal spontaneous combustion under different oxygen concentrations [J]. Energy, 2019, 186: 115907-115915.

[53] Deng J, Bai Z J, Xiao Y, et al. Effects of imidazole ionic liquid on macroparameters and microstructure of bituminous coal during low-temperature oxidation[J]. Fuel, 2019, 246: 160-168.

[54] Deng J, Bai Z J, Xiao Y, et al. Thermogravimetric analysis of the effects of four ionic liquids on the combustion characteristics and kinetics of weak caking coal[J]. Journal of Molecular Liquids, 2019, 277: 876-885.

[55] Bai Z J, Wang C P, Deng J. Analysis of thermodynamic characteristics of imidazolium-based ionic liquid on coal[J]. Journal of Thermal Analysis and Calorimetry, 2020, 140(4): 1957-1965.

[56] 宋长磊, 刘向荣, 赵顺省, 等. 咪唑类离子液体中阴离子对新疆褐煤阻燃性能[J]. 煤炭学报, 2020, 45(S1): 470-480.

[57] 肖旸, 吕慧菲, 任帅京, 等. 咪唑类离子液体抑制煤自燃特性的研究[J]. 中国矿业大学学报, 2019, 48(01): 175-181.

[58] To T Q, Shah K, Tremain P, et al. Treatment of lignite and thermal coal with low cost amino acid based ionic liquid-water mixtures[J]. Fuel, 2017, 202: 296-306.

[59] Zhong Y, Yang S, Hu X, et al. Whole process inhibition of a composite superabsorbent polymer-based antioxidant on coal spontaneous combustion[J]. Arabian journal for science and engineering, 2018, 43(11): 5999-6009.

[60] Cai J, Yang S, Zhong Y, et al. A Physical-chemical Synergetic Inhibitor for Coal Spontaneous Combustion and Its Fire Prevention Performance[J]. Combustion Science and Technology, 2020: 1-13.

[61] 王婕, 张玉龙, 王俊峰, 等. 无机盐类阻化剂和自由基捕获剂对煤自燃的协同抑制作用[J]. 煤炭学报, 2020, 45(12): 4132-4143.

[62] 许红英. 复合阻化剂抑制煤自燃的热重动力学实验研究[J]. 矿业研究与开发, 2019, 39(06): 79-84.

[63] Pandey J, Mohalik N K, Mishra R K, et al. Investigation of the Role of Fire Retardants in Preventing Spontaneous Heating of Coal and Controlling Coal Mine Fires[J]. Fire Technology, 2015, 51(2): 227-245.

[64] Chen P, Huang F J, Fu Y. Performance of water-based foams affected by chemical inhibitors to retard spontaneous combustion of coal[J]. International Journal of Mining Science and Technology, 2016, 26(03): 443-448.

[65] Wang G, Yan G, Zhang X, et al. Research and development of foamed gel for controlling the spontaneous combustion of coal in coal mine[J]. Journal of Loss Prevention in the Process Industries, 2016, 44: 474-486.

[66] Qin B, Dou G, Wang Y, et al. A superabsorbent hydrogel–ascorbic acid composite inhibitor for the suppression of coal oxidation[J]. Fuel, 2017, 190: 129-135.

[67] Tang Y B. Experimental investigation of applying MgCl2 and phosphates to synergistically inhibit the spontaneous combustion of coal[J]. Journal of the Energy Institute, 2018, 91(5): 639-645.

[68] Xi Z, Li A. Characteristics of thermoplastic powder in an aqueous foam carrier for inhibiting spontaneous coal combustion[J]. Process Safety & Environmental Protection, 2016, 104: 268-276.

[69] Xi Z, Li D, Feng Z. Characteristics of polymorphic foam for inhibiting spontaneous coal combustion[J]. Fuel, 2017, 206: 334-341.

[70] Qi X, Wei C, Li Q, et al. Controlled-release inhibitor for preventing the spontaneous combustion of coal[J]. Natural Hazards, 2016, 82(2): 891-901.

[71] 胡拉, 吕少一, 傅峰, 等. 微胶囊技术在木质功能材料中的应用及展望[J]. 林业科学, 2016, 52(07): 148-157.

[72] 陈少康. 防治煤自燃的阻化微胶囊制备及性能研究[D]. 西安科技大学, 2020.

[73] 李孜军, 郭兆东, 吴靓. 氯化镁微胶囊泡沫作用机理及阻化效果研究[J]. 中国安全生产科学技术, 2016, 12(06): 54-58.

[74] 焦庚新. 防治煤自燃抗氧化型微胶囊化阻化剂研究[D]. 中国矿业大学, 2020.

[75] 马超. 高倍微胶囊阻化剂泡沫防灭火技术在煤矿的应用[J]. 煤矿安全, 2010, 41(09): 48-50.

[76] 胡相明, 薛迪, 赵艳云, 等. 防治煤炭自燃的微胶囊阻化剂泡沫凝胶材料及其制备方法, 2020.

[77] 白子明. 防治煤自燃的微胶囊化复合阻化剂研究[D]. 中国矿业大学, 2019.

[78] 蒋曙光, 崔传波, 高翔宇, 等. 一种防治煤炭自燃的复合微胶囊阻化剂的制备方法, 2019.

[79] 吴世博. 煤矿用微胶囊材料防灭火性能研究[D]. 西安科技大学, 2018.

[80] Zhai X W, Yang C, Shi B B, et al. Inhibition performance of microcapsule material on coal oxidation[J]. Journal of Thermal Analysis and Calorimetry, 2021: 1-13.

[81] 汪洁生, 徐明婵, 李春, 等. 银/金刚石微粉复合材料对硝酸盐红外吸收特性的影响[J]. 光谱学与光谱分析, 2017, 37(09): 2737-2742.

[82] 刘旭光, 辛梅华, 李明春, 等. 壳聚糖/N-乙烯基吡咯烷酮接枝共聚物的制备及其性能[J]. 化工进展, 2020, 39(09): 3535-3542.

[83] 孙萌, 王福生, 王建涛, 等. 2-羧乙基苯基次膦酸抑制煤自燃特性研究[J]. 矿业研究与开发, 2021, 41(04): 76-80.

[84] 杨计先, 白祖锦. LDHs阻化剂对烟煤的阻化特性实验研究[J]. 煤矿安全, 2018, 49(08): 35-38+42.

[85] 王威. 利用热重分析研究煤的氧化反应过程及特征温度[D]. 西安科技大学, 2005.

[86] 吴浩然. 酒糟废弃物热解产物及热动力学研究[D]. 哈尔滨工业大学, 2020.

[87] 邓军, 赵婧昱, 张嬿妮, 等. 不同变质程度煤二次氧化自燃的微观特性试验[J]. 煤炭学报, 2016, 41(05): 1164-1172.

[88] Ma L, Wang D, Wang Y, et al. Experimental investigation on a sustained release type of inhibitor for retarding the spontaneous combustion of coal[J]. Energy & Fuels, 2016, 30(11): 8904-8914.

中图分类号:

 TD752.2    

开放日期:

 2021-06-18    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式