- 无标题文档
查看论文信息

论文中文题名:

 宝鸡市生态网络构建与优化研究    

姓名:

 张心洁    

学号:

 20210061041    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0816    

学科名称:

 工学 - 测绘科学与技术    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2025    

培养单位:

 西安科技大学    

院系:

 测绘科学与技术学院    

专业:

 测绘科学与技术    

研究方向:

 地理空间信息可视化    

第一导师姓名:

 杨永崇    

第一导师单位:

 西安科技大学    

论文提交日期:

 2025-06-19    

论文答辩日期:

 2025-06-08    

论文外文题名:

 Construction and Optimization Research of Ecological Network in Baoji City    

论文中文关键词:

 生态网络 ; 生态源地 ; 遥感生态指数 ; 生态系统服务 ; 形态学空间格局分析 ; 宝鸡市    

论文外文关键词:

 Ecological network ; Ecological source ; Remote sensing ecological index ; Ecosystem services ; Morphological spatial pattern analysis ; Baoji city    

论文中文摘要:

生态网络的构建是提升生态质量、保护生物多样性和促进可持续发展的关键途径。通过科学合理地构建和优化生态网络,可以修复生态环境的破碎性,增强物种的连通性,减少生态孤岛效应,从而保障生态网络的完整性和区域生态安全。本研究以宝鸡市为研究区,基于Landsat影像数据、土地利用数据及DEM数据等多源数据,运用遥感生态指数(Remote Sensing Ecological Index, RSEI)、生态系统服务(Ecosystem Services, ES)和形态学空间格局分析(Morphological Spatial Pattern Analysis, MSPA)3种方法对2020年宝鸡市的生态质量、服务功能和生态系统的空间形态分别进行评价并提取生态源地,通过这3种方法组合出7种不同的生态源地识别方法,采用生态网络评价指标与秩和比法确定最优生态源地识别方法。基于最优方法分析2000年、2005年、2010年、2015年和2020年5期宝鸡市生态网络的演变特征。基于2020年宝鸡市生态网络,识别重要生态区域,通过生态源地的增补对生态网络优化,并对比了优化前后的生态网络,围绕生态关键点制定了修复策略,并进一步提出生态网络的优化建议。主要结论如下:

(1)2020年宝鸡市大部分地区生态质量良好,南部和西部的生态质量优于中部和东部。RSEI、ES和MSPA中的高生态质量、高服务功能和生态系统的空间形态核心区分别占宝鸡市总面积48.47%、19.67%、58.52%。多方法组合后的7种方法中,基于MSPA方法识别的生态源地数量最多,RSEI+MSPA和RSEI+ES+MSPA方法识别的数量最少;基于MSPA方法生成的生态廊道数量最多,RSEI+MSPA和RSEI+ES+MSPA方法生成的廊道数量最少。基于RSEI方法构建的生态网络覆盖程度最高,基于ES+MSPA方法的网络结构最复杂、连通性最强,基于MSPA方法的网络流通成本最低,效益最高。秩和比法的综合评价结果表明,基于ES+MSPA方法构建的生态网络表现最优。

(2)2000-2020年宝鸡市的生态源地面积持续增加,从2000年的9990.85km²增长至2020年的10383.41km²,大部分区县的生态源地面积呈增长趋势,但增长幅度和速率有所差异。生态源地数量从2000年的22处增长至2020年的23处,总体变化较为稳定,新增源地主要集中在原有源地周边。宝鸡市的高阻力区域逐步扩大,主要集中在中部城区及道路沿线。低阻力区域保持稳定,主要分布在秦岭山脉等自然保护区。生态廊道数量和总长度呈波动变化,廊道总长度变化趋势为“增加-减少-增加”。廊道密度在2005年与2020年达到峰值,而2000年与2015年达到最低值。生态网络连通性在2010年达到最优状态,尽管2015年略有下降,但2020年仍高于2000年。生态网络成本比在2005年最高,流通成本最大。

(3)2020年宝鸡市共识别5个极重要生态源地和16条极重要生态廊道,生态关键点包括41个生态夹点、26个生态障碍点和26个生态断裂点。通过增补10个生态源地,生成新的生态廊道,优化后的生态网络生态源地为生态廊道为71条,总长度为335.04km。优化后的生态网络在各项指标上均有所提升,整体结构得到改善。最后,本研究针对宝鸡市生态网络的未来发展,提出了相应的优化建议。

论文外文摘要:

The construction of ecological networks is a key approach to improving ecological quality, protecting biodiversity, and promoting sustainable development. By scientifically and rationally building and optimizing ecological networks, it is possible to repair the fragmentation of the ecological environment, enhance species connectivity, and reduce the effects of ecological isolation. This, in turn, ensures the integrity of the ecological network and the ecological security of the region.This study took Baoji City as the study area and utilized multi-source data, including Landsat imagery, land use data, and DEM data. Three methods—Remote Sensing Ecological Index (RSEI), Ecosystem Services (ES), and Morphological Spatial Pattern Analysis (MSPA)—were employed to evaluate the ecological quality, service functions, and spatial morphology of the ecosystem in Baoji City in 2020, respectively, and to extract ecological sources. Based on combinations of these three methods, seven different ecological source identification approaches were proposed. The optimal method was determined using ecological network evaluation indicators and the rank-sum ratio method. The evolution of Baoji's ecological network in 2000, 2005, 2010, 2015, and 2020 was then analyzed based on the optimal method. Important ecological areas in 2020 were identified, and the ecological network was optimized through the supplementation of ecological sources. The structure of the ecological network before and after optimization was compared, restoration strategies were formulated focusing on ecological key points, and further recommendations were proposed for ecological network optimization. The main conclusions are as follows:

(1) In 2020, the ecological quality of most areas in Baoji City was good, with the southern and western regions exhibiting better ecological quality than the central and eastern regions. The high ecological quality, high service functions, and core ecological areas in the MSPA, RSEI, and ES methods accounted for 48.47%, 19.67%, and 58.52% of Baoji City's total area, respectively. Among the seven methods combined, the MSPA method identified the most ecological sources, while the RSEI+MSPA and RSEI+ES+MSPA methods identified the fewest. The MSPA method generated the most ecological corridors, while the RSEI+MSPA and RSEI+ES+MSPA methods generated the fewest. The ecological network constructed based on the RSEI method had the highest coverage, while the network structure based on ES+MSPA was the most complex and had the strongest connectivity. The network based on the MSPA method had the lowest circulation cost and the highest efficiency. The comprehensive evaluation results based on the rank sum ratio method showed that the ecological network constructed with the ES+MSPA method performed the best.

(2) From 2000 to 2020, the area of ecological sources in Baoji City continued to increase, from 9990.85 km² in 2000 to 10383.41 km² in 2020. Most districts and counties showed an increasing trend in the area of ecological sources, although the rate and magnitude of growth varied. The number of ecological sources increased from 22 in 2000 to 23 in 2020, with the overall change being relatively stable, and the newly added sources concentrated around the existing sources. The high-resistance areas in Baoji City gradually expanded, mainly concentrated in the central urban area and along roads. The low-resistance areas remained stable, mainly in natural reserves such as the Qinling Mountains. The number and total length of ecological corridors exhibit fluctuating changes, with the overall trend of corridor length being "increase-decrease-increase.". The corridor density reached its peak in 2005 and 2020, while it was at its lowest in 2000 and 2015. The connectivity of the ecological network reached its optimal state in 2010, and although it slightly decreased in 2015, it was still higher in 2020 compared to 2000. The ecological network cost ratio was highest in 2005, with the greatest circulation cost.

(3) In 2020, Baoji City identified five extremely important ecological sources and 16 extremely important ecological corridors. The key ecological points included 41 ecological pinpoints, 26 ecological barriers, and 26 ecological fracture points. By adding 10 ecological sources and generating new ecological corridors, the optimized ecological network included 71 ecological sources and corridors, with a total length of 335.04 km. The optimized ecological network showed improvements in all indicators, and the overall structure was enhanced. Finally, this study proposed corresponding optimization suggestions for the future development of Baoji City's ecological network.

参考文献:

[1] 马小淞, 闫庆武, 移明昊, 等. 天山中段城市化水平与生态环境质量时空耦合研究 [J]. 生态与农村环境学报, 2025, 41(2): 172-182.

[2] 魏辅文, 聂永刚, 苗海霞, 等. 生物多样性丧失机制研究进展 [J]. 科学通报, 2014, 59(6): 430-437.

[3] 李久林, 胡大卫, 储金龙, 等. 基于未来情景模拟的安徽省潜山市生态网络构建与优化 [J]. 应用生态学报, 2023, 34(6): 1474-1482.

[4] 王奕淇, 孙学莹. 黄河流域生态系统服务权衡协同关系及其时空异质性 [J]. 环境科学, 2025, 46(2): 972-989.

[5] Yao L, Li X, Li Q, et al. Temporal and Spatial Changes in Coupling and Coordinating Degree of New Urbanization and Ecological-Environmental Stress in China [J]. Sustainability, 2019, 11(4): 1171.

[6] 张友国. 构建生态文明新格局:释义与路径探索 [J]. 中国人口·资源与环境, 2023, 33(7): 9-17.

[7] 凌云, 杨宜男, 许迦龙, 等. 京津冀地区城市化对典型生态系统服务供需关系的影响 [J]. 生态学报, 2023, 43(13): 5289-5304.

[8] Ernstson H. The social production of ecosystem services: a framework for studying environmental justice and ecological complexity in urbanized landscapes [J]. Landscape and Urban Planning, 2013, 109(1): 7⁃ 17.

[9] 朱炳臣, 李同昇, 陈谢扬, 等. 汉江流域生态综合网络构建与生态安全格局识别研究 [J]. 长江流域资源与环境, 2024, 33(2): 362-373.

[10] 孙丽慧, 刘浩, 汪丁, 等. 基于生态系统服务与生态环境敏感性评价的生态安全格局构建研究 [J]. 环境科学研究, 2022, 35(11): 2508-2517.

[11] 王浩阳, 牛文浩, 宋曼, 等. 基于LUCC及其ESV响应的陕西省生态网络构建与空间优化 [J]. 资源科学, 2023, 45(7): 1380-1395.

[12] 王晨旭, 刘焱序, 于超月, 等. 面向居民生态福祉的国土空间生态网络构建:以临沂市为例 [J]. 生态学报, 2022, 42(21): 8650-8663.

[13] 田硕娟, 张文君, 何灵, 等. 基于Linkage Mapper与复杂网络的成都市生态网络构建与优化 [J]. 西北林学院学报, 2023, 38(3): 176-184.

[14] 赵昊天, 陈继春, 覃亮, 等. 基于MSPA-MCR的攀枝花市生态空间网络构建及优化研究 [J]. 四川林业科技, 2022, 43(5): 18-26.

[15] 朱春凤, 宋宏利, 张启斌, 等. 景观生态网络国内外研究进展及发展趋势 [J]. 世界生态学, 2022, 11(2): 126-139.

[16] Patten B C. Energy cycling in the ecosystem [J]. Ecological Modelling, 1985, 28(1-2): 1-71.

[17] Ahern J. Greenways as a planning strategy [J]. Landscape and urban planning, 1995, 33(3): 131-155.

[18] Opdam P, Steingröver E, Van Rooij S. Ecological networks: A spatial concept for multi-actor planning of sustainable landscapes [J]. Landscape and urban planning, 2006, 75(3-4): 322-332.

[19] Bennett, Graham. Conserving Europe's Natural Heritage:Towards A European Ecological Network [M]. Zookeys, 1994.

[20] 韩博平. 生态网络分析的研究进展 [J]. 生态学杂志, 1993, 12(6): 41-45.

[21] 俞孔坚. 生物保护的景观生态安全格局 [J]. 生态学报, 1999, 19(1): 10-17.

[22] 王越, 林箐. 基于MSPA的城市绿地生态网络规划思路的转变与规划方法探究 [J]. 中国园林, 2017, 33(5): 68-73.

[23] 杨佳伟, 许秀环, 胡兴宜, 等. 长江两岸造林绿化工程背景下石首市森林生态格局分析[J]. 长江流域资源与环境, 2022, 31(5): 1051-1061.

[24] 凌子燕, 蒋卫国, 李金嵬, 等. 桂林市典型喀斯特区湿地生态网络研究 [J]. 湿地科学, 2022, 20(6): 739-746.

[25] 吕佩锦, 刘艳中, 吴丹, 等. 基于MSPA与MCR模型的武汉市河湖生态网络构建 [J]. 中国水运, 2024, 24(16): 28-30.

[26] 高娜, 姜雪, 郑曦. 基于生态系统服务的永定河流域北京段生态网络构建与优化 [J]. 北京林业大学学报, 2022, 44(3): 106-118.

[27] 朱陇强, 郭泽呈, 肖敏, 等. 半干旱区县域生态安全格局构建——以临洮县为例 [J]. 生态学报, 2022, 42(14): 5799-5811.

[28] Aminzadeh B, Khansefid M. A case study of urban ecological networks and a sustainable city: Tehran’s metropolitan area [J]. Urban Ecosystems, 2010, 13(1): 23-36.

[29] 史芳宁, 刘世梁, 安毅, 等. 基于生态网络的山水林田湖草生物多样性保护研究——以广西左右江为例 [J]. 生态学报, 2019, 39(23): 8930-8938.

[30] 赵础昊, 徐芳芳. 基于生态安全格局的公园城市建设分析 [J]. 生态经济, 2022, 38(3): 220-227.

[31] Hermoso V, Morán-Ordóñez A, Lanzas M, et al. Designing a network of green infrastructure for the EU [J]. Landscape and Urban Planning, 2020, 196: 103732.

[32] 李婷, 董玉祥. 基于RSEI和景观功能的珠三角地区1986—2019年生态安全格局演 变过程及其影响因子 [J]. 陕西师范大学学报(自然科学版), 2022, 50(4): 69-80.

[33] 孙杰, 杨温鑫, 刘盛源, 等. 基于MSPA与MCR模型的洛阳市生态网络构建研究 [J]. 林业调查规划, 2025, 50(1): 72-79.

[34] 吕静, 李明阳. 基于生态系统服务价值评价的松花江流域吉林段生态安全格局构建 [J]. 河南科学, 2024, 42(3): 384-392.

[35] Pickett S T A, Cadenasso M L, Rosi-Marshall E J, et al. Dynamic heterogeneity: a framework to promote ecological integration and hypothesis generation in urban systems [J]. Urban Ecosystems, 2016, 20(1): 1-14.

[36] 王佳雪, 刘春芳, 张世虎. 北方防沙带典型县域生态安全格局研究 [J]. 生态学报, 2022, 42(10): 3989-3997.

[37] 石晶, 石培基, 王梓洋, 等. 基于复杂网络理论和电路模型的酒泉市生态网络优化 [J]. 应用生态学报, 2023, 35(1): 1-13.

[38] Godet C, Céline Clauzel. Comparison of landscape graph modelling methods for analysing pond network connectivity [J]. Landscape Ecology, 2021, 36(3): 735-748.

[39] Knaapen J P, Scheffer M, Harms B. Estimating habitat isolation in landscape planning [J]. Landscape and urban planning, 1992, 23(1): 1-16.

[40] 林一诚, 周怡宁, 郑景明. 基于MCR模型的围场县小滦河流域生态安全格局识别 [J]. 北京林业大学学报, 2024, 46(5): 26-36.

[41] Mcrae B H, Beier P. Circuit theory predicts gene flow in plant and animal populations [J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(50): 19885-19890.

[42] Fu Y, Zhang W, Gao F, et al. Ecological Security Pattern Construction in Loess Plateau Areas—A Case Study of Shanxi Province, China [J]. Land, 2024, 13(5): 709.

[43] Dai Y. Identifying the ecological security patterns of the Three Gorges Reservoir Region, China [J]. Environmental Science and Pollution Research, 2022, 29(30): 45837-45847.

[44] 沈烽, 黄睿, 曾巾, 等. 分子生态网络分析研究进展 [J]. 环境科学与技术, 2016, 39(S1): 94-98+173.

[45] Fath B D, Scharler U M, Ulanowicz R E, et al. Ecological network analysis: network construction [J]. Ecological Modelling, 2007, 208(1): 49-55.

[46] Borrett S R, Patten B C. Structure of pathways in ecological networks: relationships between length and number [J]. Ecological Modelling, 2003, 170(2-3): 175-184.

[47] 王晞月, 郑菲, 徐昉, 等. 基于多元资源整合的区域生态-文化复合廊道网络格局研究——以成渝地区为例 [J]. 中国园林, 2024, 40(6): 15-21.

[48] 张乐相, 柴波, 张岩, 等. 基于重力模型与电路理论的生态网络对比研究——以济宁市为例 [J]. 生态学报, 2025, 45(4): 1684-1696.

[49] 潘越, 龚健, 杨建新, 等. 基于生态重要性和MSPA核心区连通性的生态安全格局构建——以桂江流域为例 [J]. 中国土地科学, 2022, 36(4): 86-95.

[50] 邓馨, 陈永毕, 杨霄, 等. 喀斯特地区生态网络构建及典型区域优化——以黔西南布依族苗族自治州为例 [J]. 西南农业学报, 2024, 37(6): 1349-1360.

[51] 杨欣, 肖豪立, 王艺霏. 长江中游城市群生态网络构建、优化与协同治理 [J]. 水土保持学报, 2024, 38(1): 300-309+318.

[52] 廖剑威, 闫淑君, 叶佳伟, 等. 基于MSPA-Linkage Mapper的福州滨海长乐区生态网络构建与优化 [J]. 西北林学院学报, 2023, 38(5): 243-251.

[53] 周超凡, 王毅勇, 田思婷, 等. 基于DPSR模型的宝鸡市水环境评价及障碍因子诊断 [J]. 西安理工大学学报, 2024, 40(4): 554-561.

[54] 陈蕾, 段渊古. 基于网络分析法的宝鸡城市公园可达性研究 [J]. 西北林学院学报, 2021, 36(1): 250-256.

[55] 刘引鸽, 罗紫薇, 郭慧君, 等. 基于遥感数据的河谷地区气候水文变化特征及区域差异——以宝鸡地区为例 [J]. 水土保持研究, 2025, 32(1): 181-194.

[56] 张华, 宋金岳, 李明, 等. 基于GEE的祁连山国家公园生态环境质量评价及成因分析 [J]. 生态学杂志, 2021, 40(6): 1883-1894.

[57] 王芳, 李文慧, 林妍敏, 等. 1990~2020年黄河流域典型生态区生态环境质量时空格局及驱动力分析 [J]. 环境科学, 2023, 44(5): 2518-2527.

[58] Liu Y, Chai C, Zhang Q, et al. Monitoring and Evaluation of Ecological Environment Quality in the Tianshan Mountains of China Using Remote Sensing from 2001 to 2020 [J]. Sustainability, 2025, 17(4): 1673.

[59] Kimothi S, Thapliyal A, Gehlot A, et al. Spatio-temporal fluctuations analysis of land surface temperature (LST) using Remote Sensing data (LANDSAT TM5/8) and multifractal technique to characterize the urban heat Islands (UHIs) [J]. Sustainable Energy Technologies and Assessments, 2023, 55: 102956.

[60] Rikimaru A, Roy P, Miyatake S. Tropical forest cover density mapping [J]. Tropical ecology, 2002, 43(1): 39-47.

[61] 王婉, 张浩斌, 宋妤婧, 等. 宁夏西海固九县区遥感生态质量变化及驱动分析 [J]. 测绘科学, 2024, 49(6): 106-125.

[62] 辛会超, 郭玮, 王贺封. 基于GEE和RSEI的京津冀地区生态环境质量时序动态评估 [J]. 西北林学院学报, 2024, 39(2): 106-114.

[63] Zhu D, Chen T, Wang Z, et al. Detecting ecological spatial-temporal changes by Remote Sensing Ecological Index with local adaptability [J]. Journal of Environmental Management, 2021, 299: 113655.

[64] 徐涵秋. 区域生态环境变化的遥感评价指数 [J]. 中国环境科学, 2013, 33(5): 889-897.

[65] 江民. 西南喀斯特地区生态系统服务功能时空变化及驱动因子分析 [D]. 武汉: 华中农业大学, 2022.

[66] 刘佳依, 许大为, 徐嘉. 基于InVEST模型的蒲河流域景观格局及生境质量时空演变分析 [J]. 水土保持学报, 2024, 38(2): 258-267.

[67] 常建波, 朱博文, 闫宝伟. 黄河流域产水量时空变化及归因分析 [J]. 环境科学与技术, 2024, 47(8): 113-122.

[68] Goyal M K, Khan M. Assessment of spatially explicit annual water-balance model for Sutlej River Basin in eastern Himalayas and Tungabhadra River Basin in peninsular India [J]. Nordic Hydrology, 2017, 48(2): 542-558.

[69] Zhang L, Hickel K, Dawes W R, et al. A rational function approach for estimating mean annual evapotranspiration [J]. Water Resources Research, 2004, 40(2): 85-94.

[70] 王勇, 杨彦昆, 程先, 等. 土壤保持功能对土地利用变化的敏感性研究 [J]. 水土保持学报, 2020, 34(6): 22-29+36.

[71] 刘笑语, 武玮, 杨程珺. 大汶河流域生态系统服务时空变化及其驱动因素 [J]. 水生态学杂志, 2025, 46(1): 189-202.

[72] 章文波, 付金生. 不同类型雨量资料估算降雨侵蚀力 [J]. 资源科学, 2003, 25(1): 35-41.

[73] 翟子宁, 王克勤, 苏备, 等. 松华坝水源区不同土地利用类型土壤可蚀性研究 [J]. 西南林业大学学报, 2016, 36(5): 118-124.

[74] Williams J R, Renard K G, Dyke PT. EPIC: A new method for assessing erosion's effecton soil productivity [J]. Journal of Soil & Water Conservation, 1983, 38(5): 381-383.

[75] 张科利, 彭文英, 杨红丽. 中国土壤可蚀性值及其估算 [J]. 土壤学报, 2007, 44(1): 7-13.

[76] 丁禹元, 席愉, 王玉, 等. 生态脆弱区县域生态系统服务综合管控分区模拟与优化——以陕西陇县为例 [J]. 水土保持研究, 2024, 31(5): 344-354+364.

[77] 王硕, 盛艳, 范淑花, 等. 基于InVEST模型的窟野河流域碳储量变化对土地利用格局的响应 [J]. 水土保持研究, 2025, 32(3): 149-158.

[78] Dai L Y, Che T, Wang J, et al. Snow depth and snow water equivalent estimation from AMSR-E data based on a prior is now characteristics in Xinjiang, China [J]. Remote Sensing of Environment, 2012, 127(1): 14-29.

[79] Wang R Y, Mo X Y, Ji H, et al. Comparison of the CASA and InVEST models’ effects for estimating spatiotemporal differences in carbon storage of green spaces in megacities [J]. Scientific Reports, 2024, 14(1): 5456

[80] 李倩, 王成军, 冯涛, 等. 基于SD-PLUS耦合模型的陕西省土地利用变化及碳储量多情景预测 [J]. 水土保持学报, 2024, 38(3): 195-206+215.

[81] Delaney M, Brown S, Lugo A E, et al. The quantity and turnover of dead wood in permanent forest plots in six life zones of Venezuela [J]. Biotropica, 1998, 30(1): 2-11.

[82] Zhang M, Zhang H, Deng W, et al. Assessment of Habitat Quality in Arid Regions Incorporating Remote Sensing Data and Field Experiments [J]. Remote Sensing, 2024, 16(19): 3648.

[83] 程静, 王鹏, 陈红翔, 等. 渭河流域生境质量时空演变及其地形梯度效应与影响因素 [J]. 干旱区地理, 2023, 46(3): 481-491.

[84] Zhu X, Wang Z, Gu T, et al. Multi–Scenario Prediction of Land Cover Changes and Habitat Quality Based on the FLUS–InVEST Model in Beijing [J]. Land, 2024, 13(8): 1163.

[85] 贾磊, 姚顺波, 邓元杰, 等. 2000~2020年陕西秦巴山区生境质量时空演变及其地形梯度效应 [J]. 长江流域资源与环境, 2022, 31(2): 398-413.

[86] Yao Y, Ma L, Che X, et al. Simulation study of urban expansion under ecological constraint-Taking Yuzhong County, China as an example [J]. Urban forestry & urban greening, 2021, 57(1): 126933.

[87] 余慈衔, 王柳柱, 赵晟, 等. 基于MSPA和MCR模型的舟山岛生态安全格局构建及优化 [J]. 海洋通报, 2023, 42(1): 102-111.

[88] IWANOWSKI M. Morphological classification of binary image's pixels [J]. Machine Graphics & Vision, 2009, 18(2): 155-173.

[89] 潘振华, 周媛, 姚婧, 等. 基于形态空间格局分析与最小累积阻力模型的城市热环境生态网络优化研究 [J]. 浙江农林大学学报, 2024, 41(5): 1085-1093.

[90] 陈南南, 康帅直, 赵永华, 等. 基于MSPA和MCR模型的秦岭(陕西段)山地生态网络构建 [J]. 应用生态学报, 2021, 32(5): 1545-1553.

[91] 何思俊, 支锦亦. 基于AHP-独立性权数法的列车旅客界面设计评价 [J]. 西南交通大学学报, 2021, 56(4): 897-904.

[92] Xu C, Cheng L, Su J, et al. Developing regional ecological networks along the Grand Canal based on an integrated analysis framework [J]. Journal of Resources Ecology, 2021, 12(6): 801-813.

[93] 屠越, 刘敏, 高婵婵, 等. 大都市区生态源地识别体系构建及国土空间生态修复关键区诊断 [J]. 生态学报, 2022, 42(17): 7056-7067.

[94] Yu K. Security patterns and surface model in landscape ecological planning [J]. Landscape and urban planning, 1996, 36(1): 1-17.

[95] Zhou D, Lin Z L, Ma S M, et al. Assessing an ecological security network for a rapid urbanization region in Eastern China [J]. Land Degradation & Development, 2021, 32(8): 2642-2660.

[96] Indrayani P, Mitani Y, Djamaluddin I, et al. A GIS based evaluation of land use changes and ecological connectivity index [J]. Geoplanning Journal of Geomatics & Planning, 2017, 4(1): 9-18.

[97] Wade T G, Wickham J D, Zacarelli N, et al. A multi-scale method of mapping urban influence [J]. Environmental Modelling & Software, 2009, 24(10): 1252-1256.

[98] Carroll C, Mcrae B H, Brookes A. Use of linkage mapping and centrality analysis across habitat gradients to conserve connectivity of gray wolf populations in western North America [J]. Conserv Biol, 2012, 26(1): 78-87.

[99] 闫水玉, 杨会会, 王昕皓. 重庆市域生态网络构建研究 [J]. 中国园林, 2018, 34(5): 57-63.

[100] 李华, 郑育桃, 黄荷, 等. 基于MSPA和MCR模型的庐山市生态网络构建 [J]. 中南林业科技大学学报, 2024, 44(2): 98-107.

[101] 田凤调. 秩和比法及其应用 [J]. 中国医师杂志, 2002, 4(2): 115-119.

[102] 徐得潜, 张伟. 乡村河道生态护坡评价方法 [J]. 水土保持通报, 2017, 37(6): 197-201+208.

[103] 陈雨霖, 朱斌, 魏俊, 等. 基于加权秩和比法的灌区运行水平综合评价——以四川省典型灌区为例 [J]. 中国农村水利水电, 2018, (6): 122-127.

[104] 赵菊花, 杨永崇, 王涛, 等. 黄土高原2000—2020年生态网络演变及关键修复区识别 [J]. 测绘通报, 2023, (8): 19-23+77.

[105] 陈昕, 彭建, 刘焱序, 等. 基于“重要性—敏感性—连通性”框架的云浮市生态安全格局构建 [J]. 地理研究, 2017, 36(3): 471-484.

[106] Adriaensen F, Chardon J P, Blust G D, et al. The application of ‘least-cost’ modelling as a functional landscape model [J]. Landscape & Urban Planning, 2003, 64(4): 233-247.

[107] 张美丽, 齐跃普, 张利, 等. 基于Linkage Mapper与粒度反推法的太行山中北段生态节点识别与分析:以河北省阜平县为例 [J]. 生态与农村环境学报, 2020, 36(12): 1569-1578.

[108] 周燕, 刘梦瑶, 王丽娜, 等. 基于生态网络优化对比的国土空间生态修复策略研究 [J]. 中国园林, 2024, 40(9): 43-49.

[109] 许静, 王德仁. 基于适应性循环的兰西城市群生态网络构建与优化 [J]. 干旱区研究, 2024, 41(5): 856-864.

中图分类号:

 P237    

开放日期:

 2025-06-20    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式