- 无标题文档
查看论文信息

论文中文题名:

 陕北地区部分矿区生态环境综合评价与修复治理比较研究    

姓名:

 李昱    

学号:

 19210210075    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085215    

学科名称:

 工学 - 工程 - 测绘工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 测绘科学与技术学院    

专业:

 测绘工程    

研究方向:

 矿山环境评价与治理研究    

第一导师姓名:

 刘长星    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-01-13    

论文答辩日期:

 2022-12-04    

论文外文题名:

 Comparative Study on Comprehensive Evaluation and Restoration of Ecological Environment in Some Mining Areas of Northern Shaanxi    

论文中文关键词:

 矿区生态环境 ; 遥感生态指数 ; 层次分析法 ; 模糊综合评价 ; 修复治理    

论文外文关键词:

 Ecological environment of mining area ; Remote Sensing Ecological Index ; Entropy weight method ; Analytic hierarchy process ; Fuzzy comprehensive evaluation ; Repair governance    

论文中文摘要:

矿山环境的研究是一个由总体到局部再到总体的过程,综合考量某一片区的矿山情况、进行整体分析,再充分细化考虑每个矿区不同于其他矿区的特点,最后进行总体规划,对于推动我国绿色矿山整体化建设具有重要意义。

陕西省陕北地区位于我国西北内陆地区,矿产资源丰富,气候条件恶劣、常年干旱,不利于植物生长与存活,矿山环境修复治理难度大。论文以陕西省陕北北部的德泉煤矿和黑拉畔煤矿与邻近关中地区的兴旺煤矿和永兴煤矿为研究对象,结合不同的矿区环境现状,对矿区的生态环境综合评价与修复治理措施进行对比研究。论文主要研究内容和结论如下:

(1)基于矿山环境评价的独立性、客观性、实用性及易获取性等原则,选用遥感生态指数所包含的四个指数(绿度指数-NDVI、湿度指数-WET、干度指数-NDBSI、热度指数-LST)作为评价因子。由地理空间数据云分别得到2021年5月的神木市和子长市的Landsat8影像,通过数据预处理、波段运算,得到德泉煤矿、黑拉畔煤矿、兴旺煤矿及永兴煤四个研究区的NDVI、WET、NDBSI、LST四个指数信息,并将其进行归一化。

(2)依据矿山环境综合评价相对重要性标度,为各因子的评价权值进行赋值。使用层次分析法(AHP)与熵权法分别计算出四矿区的权重,并将层次分析法可衡量权重指标的特点与熵权法可避免人为因素干扰的特点结合,求出各评价因子的综合权重。最后,使用模糊综合评价与前面的综合权重结果结合,求出综合权值-模糊综合评价结果。结果表明:德泉煤矿整体环境较好(II级),环境状况为四矿区第二;黑拉畔煤矿整体环境较差(III级),环境状况为四矿区最差;兴旺煤矿整体环境较好(II级),环境状况为四矿区最好;永兴煤矿整体环境较差(III级),环境状况为四矿区第三。

(3)依据矿山环境修复治理的技术特点,将修复治理技术分为工程治理技术、生态修复技术和生物修复技术,并对三类技术的原理与作用做出较为详细的阐述。同时,对德泉煤矿、黑拉畔煤矿、兴旺煤矿及永兴煤矿四个研究区的生产现状、自然地理、地质条件及社会经济条件等矿区现状与生态环境综合评价结果进行总结,并以此为依据分别对四个研究区提出修复治理措施与开发利用展望,为具体的矿山环境修复治理提供可靠的实施依据。

论文外文摘要:

The study of mine environment is a process from the whole to the part and then to the whole. It is of great significance to promote the overall construction of green mines in China by comprehensively considering the mine situation of a certain area, carrying out the overall analysis, fully considering the characteristics of each mining area different from other mining areas, and finally carrying out the overall planning.

Shaanxi Province is located in the inland area of Northwest China, rich in mineral resources, but the north-south span is large, the climatic conditions and natural geographical differences are obvious. The northern Shaanxi area is perennially dry, the climate in the Guanzhong area is warm, and the climate in the southern Shaanxi area is suitable and the soil is fertile. Different climatic conditions may lead to different degrees of environmental pollution caused by mining activities. This paper takes Dequan Coal Mine and Heilapan Coal Mine in the north of northern Shaanxi Province and Xingwang Coal Mine and Yongxing Coal Mine in the adjacent Guanzhong area as the research object, combined with the different mining environment status, the comprehensive evaluation of the ecological environment of the mining area and the restoration and control measures are compared. The main research contents and conclusions are as follows :

( 1 ) Based on the principles of independence, objectivity, practicality and accessibility of mine environmental assessment, four indexes ( greenness index-NDVI, humidity index-WET, dryness index-NDBSI, heat index-LST ) contained in remote sensing ecological index were selected as evaluation factors. The Landsat8 images of Shenmu City and Zichang City in May 2021 were obtained from the geospatial data cloud. Through data preprocessing and band calculation, the NDVI, WET, NDBSI and LST of the four study areas of Dequan Coal Mine, Heilapan Coal Mine, Xingwang Coal Mine and Yongxing Coal Mine were obtained and normalized..

( 2 ) According to the relative importance scale of comprehensive evaluation of mine environment, the evaluation weights of each factor are assigned. Using the analytic hierarchy process ( AHP ) and the entropy weight method to calculate the weight of the four mining areas respectively, and combining the characteristics of the analytic hierarchy process to measure the weight index with the characteristics of the entropy weight method to avoid the interference of human factors, the comprehensive weight index is obtained. Finally, the use of fuzzy comprehensive evaluation combined with the results of the previous comprehensive weight, comprehensive weight - fuzzy comprehensive evaluation results. The results show that the overall environment of Dequan Coal Mine is better ( grade II ), and the environmental condition is the second in the fourth mining area ; the overall environment of Heilapan Coal Mine is poor ( grade III ), and the environmental condition is the worst in the fourth mining area ; the overall environment of Xingwang Coal Mine is better ( grade II ), and the environmental condition is the best in the fourth mining area ; the overall environment of Yongxing Coal Mine is poor ( grade III ), and the environmental condition is the third in the fourth mining area.

( 3 ) According to the technical characteristics of mine environmental restoration and treatment, the restoration and treatment technology is divided into engineering treatment technology, ecological restoration technology and bioremediation technology, and the principles and functions of the three technologies are elaborated in detail. At the same time, the production status, natural geography, geological conditions and socio-economic conditions of the mining area and the comprehensive evaluation results of the ecological environment in the four research areas of Dequan Coal Mine, Heilapan Coal Mine, Xingwang Coal Mine and Yongxing Coal Mine are summarized. Based on this, the restoration and treatment measures and development and utilization prospects of the four research areas are proposed, which provides a reliable basis for the implementation of specific mine environmental restoration and treatment.

参考文献:

[1] 郭玉斌,高牧寒,杨义炜.山西省矿山环境恢复治理年度监测与分析[J].金属矿山,2020(8):204-208.

[2] 高明,李向全,王振兴,等.峰峰矿区主要矿山环境地质问题及防治对策[J].中国矿业,2020,29(S2):94-97.

[3] 周书东,王小霞,李廷芥.煤田开采诱发环境地质问题及防治对策[J].水土保持研究,2007(3):351-354.

[4] 张进德,郗富瑞.我国废弃矿山生态修复研究[J].生态学报,2020,40(21):7921-7930.

[5] 吕春枝,韩小焕,丁志强.新密市矿山地质环境现状及治理对策[J].中州煤炭,2010,(6):56-57.

[6] 杨博,陈建平,刁明光.北京矿山环境遥感监测与综合评价系统的设计[J].地质通报,2011,30(5):750-755.

[7] Li Y, Li H, Xu F. Spatiotemporal changes in desertified land in rare earth mining areas under different disturbance conditions[J]. Environmental Science and Pollution Research, 2021, 28(23): 30323-30334.

[8] Durães N, Portela L, Sousa S, et al. Environmental Impact Assessment in the Former Mining Area of Regoufe (Arouca, Portugal): Contributions to Future Remediation Measures[J]. International Journal of Environmental Research and Public Health, 2021, 18(3): 1180.

[9] Honscha L C, Campos A S, Tavella R A, et al. Bioassays for the evaluation of reclaimed opencast coal mining areas[J]. Environmental Science and Pollution Research, 2021, 28(21): 26664-26676.

[10] Khelifi F, Caporale A G, Hamed Y, et al. Bioaccessibility of potentially toxic metals in soil, sediments and tailings from a north Africa phosphate-mining area: Insight into human health risk assessment[J]. Journal of Environmental Management, 2021, 279: 111634.

[11]Md. Abu Bakar Siddique, Md. Kowsar Alam, Sayful Islam, et al. Apportionment of some chemical elements in soils around the coal mining area in northern Bangladesh and associated health risk assessment[J]. Environmental Nanotechnology, Monitoring & Management, 2020, 27(10): 100366.

[12] Liu Y, Gao T, Xia Y, et al. Using Zn isotopes to trace Zn sources and migration pathways in paddy soils around mining area[J]. Environmental Pollution, 2020, 267: 115616.

[13] 张树光.闭坑后矿区空气污染特征的研究[J].中国地质灾害与防治学报,2004(2):74-76+80.

[14] 陈培强,杨眉,朱晓君.湿地公园废水处理模式在陕北煤矿中的应用——以杭来湾湿地公园设计为例[C]//中国风景园林学会.中国风景园林学会2016年会论文集.中国广西南宁:中国建筑工业出版社.2016:341-345.

[15]贾锐鱼,李楠,所芳,等.我国煤矿区污水处理技术研究现状与发展[J].水处理技术,2014,40(9):8-12.

[16] 张义彬,曲家惠.世界遥感技术发展现状及其地质应用[J].国土资源遥感,1998(4):73-81.

[17] Antonio Cendrero, José Ramón Díaz de Terán, Daniel González, et al. Environmental diagnosis for planning and management in the high Andean region: The biosphere reserve of Pozuelos, Argentina[J]. Environmental Management,1993,17(5).

[18] G. Venkataraman, S. Pahala Kumar, D. S. Ratha, A. B. Inamdar, et al. Open cast mine monitoring and environmental impact studies through remote sensing - a case study from Goa, India[J]. Geocarto International,1997,12(2).

[19] 姚建.AHP法在县域生态环境质量评价中的应用[J].重庆环境科学,1998(02):13-16.

[20] Christian Fischer,Wolfgang Busch. Monitoring of Environmental Changes Caused by Hard Coal Mining[C].Remote sensing for environmental monitoring, GIS applications, and geology,2002:64-72.

[21] 王海庆,陈玲.山东省济宁市煤矿矿集区地面沉陷现状遥感调查[J].中国地质灾害与防治学报,2011,22(1):87-93.

[22] 贺伟.基于遥感和GIS的矿山环境评价体系的构建与研究[D].北京:中国地质大学,2012.

[23] Li, Z. Y., Ma, Z. W., et al. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment[J]. Science of the Total Environment,2013,90(8).

[24] Edraki, M., Baumgartl, et al. Designing mine tailings for better environmental,social and economic outcomes: a review of alternative approaches[J].Journal of Cleaner Production,2014,79(4).

[25] Marrugo-Negrete, J., Pinedo-Hernandez, et al. Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinu River Basin, Colombia[J]. Environmental Research,2017,21(1).

[26] Ali, H., Khan, E., et al. Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation[J].Journal of Chemistry, 2019,(3).

[27] Zhong, X., Chen, et al. Factors influencing heavy metal availability and risk assessment of soils at typical metal mines in Eastern China[J]. Journal of Hazardous Materials,2020,5(10).

[28] 张琳,李影,李娟.国外棕地价值评估的方法与实践综述[J].中国人口•资源与环境,2012,22(4):131-136.

[29] Hans-Ulrich Wetzel,Hermann Kaufmann,Aman Sarnagoev,et al.Potential of Satellite Remote Sensing and GIS for Landslide Hazard Assessment in Southern Kyrgyzstan (Central Asia)[J].Natural Hazards,2005,35(3):395-416.

[30]Salvati, Luca. Exurban Development and Landscape Diversification in a Mediterranean Suburban Area[J].Scottish Geographical Journal, 2014,130(1):22-34.

[31] Kavoura K, Kordouli M, Nikolakopoulos K, et al. Subsurface geological modeling using GIS and Remote Sensing data. A case study from Platanos landslide, Western Greece[C]// Second International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2014). 2014.

[32] 叶仙云.澳大利亚的矿山生态环境治理[J].浙江国土资源,2003(02):48-51.

[33] Li Wang, Buitenwerf Robert, Chequín Renata Nicora, et al.Complex causes and consequences of rangeland greening in South America-multiple interacting natural and anthropogenic drivers and simultaneous ecosystem degradation and recovery trends[J]. Geography and Sustainability,2020,1(4).

[34] Patel K F, Fernandez I J, Nelson S J, et al. Contrasting stream nitrate and sulfate response to recovery from experimental watershed acidification[J]. Biogeochemistry, 2020, 151(2): 127-138.

[35] Vilas D, Coll M, Corrales X, et al. The effects of marine protected areas on ecosystem recovery and fisheries using a comparative modelling approach[J]. Aquatic Conservation: Marine and Freshwater Ecosystems, 2020, 30(10): 1885-1901.

[36] 郝玉芬.山区型采煤废弃地生态修复及其生态服务研究[D].北京:中国矿业大学.2011.

[37] 廖丽娜. 地区发展模式下农村社区居民防灾减灾能力建设研究[D].成都:西南石油大学, 2018.

[38] 张涪平.藏中拉屋铜矿区生态恢复研究[D].武汉:华中农业大学.2012.

[39] 张成梁,B.Larry Li.美国煤矿废弃地的生态修复[J].生态学报,2011,31(01):276-285.

[40] 山寺喜成.自然生态环境修复的理念与实践技术[M].北京:中国建筑工业出社.2014:23-28.

[41] Sophie L. Cross,Philip W. Bateman, Adam T. Cross. Restoration goals: Why are fauna still overlooked in the process of recovering functioning ecosystems and what can be done about it?[J]. Ecological Management & Restoration,2020,21(1).

[42] 高怀军.矿业城市采矿废弃地和谐生态修复及再利用研究[D].天津:天津大学.2015.

[43] 朱紫薇.生态恢复理念下废弃矿山景观重塑设计问题研究[D].秦皇岛:燕山大学.2017.

[44] 张进德,郗富瑞.我国废弃矿山生态修复研究[J].生态学报,2020,40(21):7921-7930.

[45] 范德芹,邱玥,孙文彬,赵学胜,麦霞梅,胡颖文.基于遥感生态指数的神府矿区生态环境评价[J].测绘通报,2021(07):23-28

[46] 潘正华. 基于改进遥感生态指数的西北干旱荒漠区东部煤炭开采生态影响评价研究[D].北京:中国地质大学(北京),2020.

[47]马超,崔珍珍,李婷婷,彭杨钊.中国“平原-山地”地形过渡带NDVI时空变异与气候响应[J/OL].生态学报,2023(05):1-17[2022-12-03].

[48]呼海涛,畅易飞,王凯博.2000-2020年陕西省植被覆盖时空变化多尺度分析[J/OL].水土保持研究:1-8[2022-12-03].

[49]任玉霞,郭铁明,XU Xiujie,LI Guangming,TANG Jian,NAN Xueli,JIA Jiangang.Effect of Hot-Rolled Oxide Scale on Dry/Wet Cyclic Corrosion Behavior of Q370qNH Steel in Simulated Industrial Atmosphere Environment[J].Journal of Wuhan University of Technology(Materials Science),2022,37(06):1216-1227.

[50]徐涵秋.城市遥感生态指数的创建及其应用[J].生态学报,2013,33(24):7853-7862.

[51]康帅直,穆琪,赵永华,韩磊,刘金宝,赵明,张鹏.黄土高原神府资源开采区生态环境质量时空格局特征[J/OL].生态学报:1-12[2022-12-03].

[52] 宋蕾.矿产开发生态补偿理论与计征模式研究[D].北京:中国地质大学,2009.

[53] 姜阳阳.河南省煤炭资源开发生态补偿标准研究[D].郑州:华北水利水电大学,2019.

[54] 卢春江.漳州市矿山生态环境修复治理研究[D].福州:福建农林大学,2018.

[55] 李学渊.基于RS/GIS的矿山地质环境动态监测与评价信息系统[D].北京:中国矿业大学,2015.

[56] 惠甜甜.新街矿区马泰壕煤矿矿山地质环境综合评价[D].西安:西安科技大学,2021.

[57] 韩伯棠.管理运筹学(第四版)[D].北京:高等教育出版社,2016.

[58] 向雅丽. 基于熵权法和灰色关联分析法的区域柑橘产业可持续发展评价研究[D].长沙:湖南农业大学,2017.

[59] 霍童. 基于VSD模型和层次分析法-熵权法的生态脆弱性时空变化评价及相关分析[D].苏州:苏州科技大学,2021.

[60] 张楚楚,王鹏,熊平生,张玉.基于PSR模型—熵权法的土地生态安全时序评价——以衡阳市为例[J].衡阳师范学院学报,2020,41(03):111-116.

[61] 高成虎.榆神矿区某煤矿矿山地质环境影响评估与恢复治理方案研究[D].西安:长安大学,2018.

[62] 刘宏磊.矿山环境修复治理和开发利用模式的理论与实践研究[D].北京:中国矿业大学,2020.

[63] 李远航.武安市白沙村矿山生态地质环境综合治理模式研究[D].北京:中国地质大学,2020.

[64] 李磊.邢台地区矿山地质环境综合评价与治理恢复研究[D].石家庄:石家庄经济学院,2013.

[65] 武强,李松营.闭坑矿山的正负生态环境效应与对策[J].煤炭学报,2018,43(01):21-32.

[66] 夏明强,潘磊,郭富强.地质灾害治理及环境修复成果概述[J].煤炭技术,2020,39(02):92-94.

中图分类号:

 P237    

开放日期:

 2023-01-13    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式