- 无标题文档
查看论文信息

论文中文题名:

 单轴压缩作用下冻融砂岩岩样破坏过程的细观结构损伤特性研究    

姓名:

 蔺江昊    

学号:

 19204209060    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085213    

学科名称:

 工学 - 工程 - 建筑与土木工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 建筑与土木工程    

研究方向:

 岩土工程    

第一导师姓名:

 刘慧    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-14    

论文答辩日期:

 2022-05-28    

论文外文题名:

 Study on meso-structural damage characteristics of freeze-thawed sandstone samples under uniaxial compression    

论文中文关键词:

 冻融循环 ; 砂岩 ; 单轴压缩 ; 实时CT ; 细观损伤    

论文外文关键词:

 Freeze-thaw cycle ; Sandstone ; Uniaxial compression ; Real time CT ; Meso damage    

论文中文摘要:

随着“一带一路”战略的实施,在我国西部地区遇到越来越多寒区岩石工程问题。受寒区昼夜小周期和季节大周期交替循环作用,岩石初始细观损伤不断加剧,进而岩石力学性能劣化,引发寒区岩石工程灾害。因此探讨冻融和荷载共同作用下,砂岩细观结构损伤特性研究对大量兴起的寒区工程建设具有重要意义。本文以冻融环境下的砂岩为研究对象,通过开展单轴压缩作用下的CT实时扫描试验,采用数字图像处理技术,基于数字体相关法,获得砂岩内部精确孔裂隙结构数据,定量分析冻融砂岩单轴压缩过程中细观结构损伤特性。主要完成的工作及结论有:

(1)完成了冻融砂岩在单轴压缩荷载作用下的细观结构演化的CT实时扫描试验,获得了不同冻融循环次数下岩样各个破坏阶段各扫描层位的CT数据和CT图像,从而对冻融砂岩单轴压缩过程中细观结构精准识别提供可行有效方法。

(2)分别使用了高斯滤波,中值滤波,各向异性扩散滤波及非局部均值滤波法对CT图像进行降噪处理,结果表明非局部均值滤波能够去除噪声并保护加载过程中冻融岩样CT图像的细节特征,是冻融砂岩CT图像降噪的有效方法。

(3)基于岩样孔隙率,运用反推法,结合孔隙面积-阈值曲线拐点交互式阈值分割法,得到了加载前和加载过程中岩样CT图像的最佳分割阈值,完成了冻融岩样CT图像分割,为定量分析单轴压缩下冻融岩样细观损伤提供了基础。

(4)在对试验所得冻融砂岩加载过程中不同扫描层位CT图像降噪、分割、三维重建基础上,获得了冻融砂岩加载过程的各扫描层面细观结构损伤的二维CT图像及三维裂隙图像。分析表明:冻融循环作用下岩样破坏由受剪应力破坏产生单一贯通剪切面,逐渐变为受拉应力及剪应力组合破坏,且冻融作用导致岩样破坏时,剪切及张拉破坏面数量不断增多;在单轴压缩过程中岩样内部孔裂隙体积呈现出先缓慢减小,再缓慢增大,最后急剧增大的变化规律。变化过程对应着岩样受荷载作用发生的孔隙裂隙压密阶段、弹性变形阶段及峰值破坏阶段;随着冻融循环次数的增加,砂岩内部孔隙及裂纹等损伤扩展方向由顶部和底部两端向中间扩展,破坏模式由脆性破坏转变为延性破坏;在单轴压缩过程中岩样内部产生大量贯通性连接剪切裂纹,破坏后孔隙率大幅上升。其中经历低次冻融循环的砂岩,破坏后内部孔裂隙结构以复杂的小孔隙为主,裂隙占比较低。而经历高次冻融循环砂岩,破坏后简单裂纹的扩展占主导地位,孔隙结构占比较少。

(5)在对三维重构表征单元体定量分析的基础上,运用三维孔喉结构表征冻融砂岩内部孔隙与喉道间的数量关系及连通特征。从三维细观尺度探讨冻融砂岩受荷过程中细观结构损伤演化规律。结果表明:受冻融循环作用影响,在岩样加载过程中,小孔隙占比减小,中孔大孔占比增大,且岩样内部喉道数目与渗透率密切相关,渗透率大小主要由内部喉道数量决定。由于冻融循环作用改变了砂岩内部初始细观损伤结构,单轴压缩荷载作用是的岩石矿物颗粒进一步滑移错动,孔隙萌生、扩展,损伤区域逐步连通,喉道发生合并及扩容,从而引起裂隙体积形状改变,最终导致破坏模式的改变。

(6)基于数字体相关法对冻融砂岩加载过程的位移场和应变场进行了分析。分析结果表明:冻融循环作用下岩样的损伤是由表及里的渐进过程,受冻融循环作用影响,岩样加载过程中内部位移和应变范围不断扩大,大小不断增长。其中,破坏前和破坏后位移场与应变场分布图形中,高位移和应变分布区域形状与岩样破坏时裂纹形态一致。因此,本文提出的基于CT图像的数字体相关法能够对冻融岩石在单轴压缩荷载作用下的破坏进行预测。

论文外文摘要:

With the implementation of the "One Belt, One Road" strategy, more and more rock engineering problems in cold regions have been encountered in western my country. Affected by the alternating cycles of small day and night cycles and large seasonal cycles in cold regions, the initial fine-grained damage of rocks continues to intensify, and then the mechanical properties of rocks deteriorate, causing rock engineering disasters in cold regions. Therefore, it is of great significance to study the micro-damage evolution characteristics of sandstone under the combined action of freeze-thaw and load for the construction of a large number of cold regions. In this paper, taking the sandstone under the freezing and thawing environment as the research object, by carrying out the real-time CT scanning test under the action of uniaxial compression, using the digital image processing technology, based on the digital volume correlation method, the accurate pore (crack) structure data inside the sandstone is obtained, and the quantitative data is obtained. Analysis of structural damage characteristics of frozen-thawed sandstone during uniaxial compression. The main completed work and conclusions are:

(1) The CT real-time scanning test of the structural evolution of the frozen-thawed sandstone under the action of uniaxial compressive load was completed, and the CT data and CT images of each scanning horizon of the rock sample at each failure stage under different freeze-thaw cycles were obtained. Therefore, it provides a feasible and effective method for the accurate identification of the mesostructure of the frozen-thawed sandstone during uniaxial compression.

(2) Gaussian filtering, median filtering, anisotropic diffusion filtering and non-local mean filtering were used to denoise CT images respectively. The results show that non-local mean filtering can remove noise and protect frozen and thawed rock samples during loading. The detailed features of CT images are an effective method for noise reduction of frozen-thawed sandstone CT images.

(3) Based on the porosity of the rock sample, using the inverse method, combined with the pore area-threshold curve inflection point interactive threshold segmentation method, the optimal segmentation threshold of the CT image of the rock sample before and during the loading process was obtained, and the frozen-thawed rock was completed. It provides a basis for quantitative analysis of microscopic damage of frozen-thawed rock samples under uniaxial compression.

(4) On the basis of noise reduction, segmentation and 3D reconstruction of CT images of different scanning horizons during the loading process of the frozen-thawed sandstone obtained from the experiment, the two-dimensional CT images of the meso-structural damage of each scanning horizon during the loading process of the frozen-thawed sandstone were obtained. 3D fissure image. The analysis shows that under the action of freeze-thaw cycles, the failure of the rock sample is from shear stress failure to produce a single through shear plane, which gradually becomes the combined failure of tensile stress and shear stress. The number of failure surfaces keeps increasing; in the process of uniaxial compression, the volume of pores (cracks) inside the rock sample firstly decreases slowly, then increases slowly, and finally increases sharply. The change process corresponds to the pore and fissure compaction stage, elastic deformation stage and peak damage of the rock sample under load; with the increase of the number of freeze-thaw cycles, the damage propagation direction of pores and cracks in the sandstone is from the top and bottom ends to the middle. expansion, the failure mode changes from brittle failure to ductile failure. During the uniaxial compression process, a large number of through-connection shear cracks are generated inside the rock sample, and the porosity increases significantly after the failure. Among them, the sandstone that has undergone low-order freeze-thaw cycles, the internal pore and fissure structure after failure is dominated by complex small pores, and the proportion of cracks is low, while the sandstone that has experienced high-order freeze-thaw cycles, the expansion of simple cracks after failure dominates, and the pore structure less proportion.

(5) On the basis of the quantitative analysis of the three-dimensional reconstruction of the characterization unit, the three-dimensional pore-throat structure is used to characterize the quantitative relationship and connectivity between the pores and throats in the frozen-thawed sandstone. From the three-dimensional meso-scale, the evolution law of fine-tunnel damage structure during the loading process of frozen-thawed sandstone is discussed. The results show that: under the influence of freeze-thaw cycles, during the loading process of rock samples, the proportion of small pores decreases, while the proportion of mesopores and large pores increases, and the number of internal throats of the rock sample is closely related to the permeability, and the permeability is mainly Determined by the number of internal throats. Because the freeze-thaw cycle changes the initial meso-damage structure inside the sandstone, the uniaxial compressive load causes the rock mineral particles to further slip and dislocate, pores are initiated and expanded, the damaged area is gradually connected, and the throat merges and expands, resulting in The fracture volume shape changes, eventually leading to a change in the failure mode.

(6) Based on the digital volume correlation method, the displacement field and strain field of the frozen-thawed sandstone loading process are analyzed. The analysis results show that the damage of the rock sample under the action of freeze-thaw cycle is a gradual process from the surface to the inside. Under the influence of the freeze-thaw cycle, the internal displacement and strain range and the size of the rock sample continue to expand during the loading process. Among them, the shape of the high displacement and strain distribution areas in the distribution graph of the displacement field and strain field before and after the failure is consistent with the crack shape when the rock sample is damaged. Therefore, the CT image-based digital volume correlation method proposed in this paper can predict the failure of frozen-thawed rocks under uniaxial compressive loading.

参考文献:

[1]远明,张明义,李双洋.寒区工程理论与应用[M].北京:科学出版社,2009.

[2]马巍,牛富俊,穆彦虎.青藏高原重大冻土工程的基础研究[J].地球科学进展,2012,27(11):1185-1191.

[3]陈仁升,康尔泗,吴立宗,等.中国寒区分布探讨[J].冰川冻土,2005,27(4):469-475.

[4]魏星星,郑波,王仁杰.季节性冻土隧道冻害机理分析及防冻探索[J].现代隧道技术,2018,55(02): 44-50.

[5]陈卫忠,谭贤君,于洪丹,等.低温及冻融环境下岩体热,水,力特性研究进展与思考[J].岩石力学与程学报,2011,30(7):1318-1336.

[6]Phillips M,Wolter A,Lüthi R,et al.Rock slope failure in a recently deglaciated permafrost rock wall at Piz Kesch (Eastern Swiss Alps),February 2014[J].Earth Surface Processes and Landforms,2017,42(3): 426-438.

[7]Pudasaini S P,Krautblatter M .A two‐phase mechanical model for rock‐ice avalanches[J].Journal of Geophysical Research Earth Surface,2015,119(10):2272-2290.

[8]Badeli S,Carter A,Doré G.Complex modulus and fatigue analysis of asphalt mix after daily rapid freeze-thaw cycles[J].Journal of Materials in Civil Engineering,2018,30(4): 04018056.

[9]李宁,程国栋,谢定义.西部大开发中的岩土力学问题[J].岩土工程学报,2001,23(3):268-272.

[10]谢和平,陈忠辉.岩石力学[M].北京:科学出版社,2004.

[11]Luo X,Jiang N,Zuo C,et al.Damage Characteristics of Altered and Unaltered Diabases Subjected to Extremely Cold Freeze–Thaw Cycles[J].Rock Mechanics & Rock Engineering,2014,47(04):1997-2004.

[12]Prick A .Dilatometrical behaviour of porous calcareous rock samples subjected to freeze-thaw cycles[J].Catena,1995,25(1):7-20.

[13]Chen T C,Yeung M R,Mori N .Effect of water saturation on deterioration of welded tuff due to freeze-thaw action[J].Cold Regions Science and Technology,2004,38(2/3):127-136.

[14]Roa L D,Lopez F,Esteban F J,et al.Ultrasonic study of alteration processes in granites caused by freezing and thawing[C]// IEEE Ultrasonics Symposium.IEEE,2005:415-418.

[15]Khanlari G,Sahamieh R Z,Abdilor Y .The effect of freeze–thaw cycles on physical and mechanical properties of Upper Red Formation sandstones,central part of Iran[J].Arabian Journal of Geosciences,2015,8(8):5991-6001.

[16]Park J,Hyun C U,Park H D.Changes in microstructure and physical properties of rocks

caused by artificial freeze–thaw action[J].Bulletin of Engineering Geology and the Environment,2015,74(02): 555-565.

[17]Kodama J ,Goto T,Fujii Y,et al.The effects of water content,temperature and loading rate on strength and failure process of frozen rocks[J].International Journal of Rock Mechanics & Mining Sciences,2013,62:1-13.

[18]Tan X,Chen W,Yang J,et al.Laboratory investigations on the mechanical properties degradation of granite under freeze–thaw cycles[J].Cold Regions Science & Technology,2011,68(3):130-138.

[19]张慧梅,杨更社.冻融岩石损伤劣化及力学特性试验研究[J].煤炭学报,2013,38(10):1756-1762.

[20]张慧梅,谢祥妙,彭川,等.三向应力状态下冻融岩石损伤本构模型[J].岩土工程学报,2017,39(08):1444-1452.

[21]闻磊,李夕兵,吴秋红,等.冻融循环作用下花岗斑岩动载强度研究[J].岩石力学与工程学报,2015,34(07):1297-1306.

[22]王鹏,许金余,方新宇,等.红砂岩吸水软化及冻融循环力学特性劣化[J].岩土力学,2018,39(06):2065-2072.

[23]俞缙,张欣,蔡燕燕,等.水化学与冻融循环共同作用下砂岩细观损伤与力学性能劣化试验研究[J].岩土力学,2019,40(02):455-464.

[24]俞缙,傅国锋,陈旭,等.冻融循环后砂岩三轴卸围压力学特性试验研究[J].岩石力学与工程学报,2015,34(10):2001-2009.

[25]刘泉声,黄诗冰,康永水,等.岩体冻融疲劳损伤模型与评价指标研究[J].岩石力学与工程学报,2015,34(6): 1116-1126.

[26]徐光苗.寒区岩体低温、 冻融损伤力学特性及多场耦合研究[D].中国科学院武汉岩土力学研究所,2006.

[27]Exadaktylos G E.Freezing – Thawing Model for Soils and Rocks[J].Journal of Materials in Civil Engineering,2006,18(2):241-249.

[28]Altindag.R,Alyildiz I.S,Onargan.T.Mechanical property degradation of ignimbrite subjectedto recurrent freeze-thaw cycles[J].International Journal of Rock Mechanics & MiningSciences,2004,41: 1023–1028.

[29]张慧梅,杨更社.冻融与荷载耦合作用下岩石损伤模型的研究[J].岩石力学与工程学报,2010,29(3): 471-476.

[30]贾海梁,刘清秉,项伟,等.冻融循环作用下饱和砂岩损伤扩展模型研究[J].岩石力学与工程学报,2013,32(S2): 3049-3055.

[31]许玉娟,周科平,李杰林,等.冻融岩石核磁共振检测及冻融损伤机制分析[J].岩土力学,2012,33(10): 3001-3005.

[32]李新平,路亚妮,王仰君.冻融荷载耦合作用下单裂隙岩体损伤模型研究[J].岩石力学与工程学报,2013,32(11): 2308-2315.

[33]阎锡东,刘红岩,邢闯锋,等.冻融循环条件下岩石弹性模量变化规律研究[J].岩土力学,2015,36(8): 2315-2322.

[34]袁小清,刘红岩,刘京平.冻融荷载耦合作用下节理岩体损伤本构模型[J].岩石力学与工程学报,2015,34(8): 1602-1611.

[35]Yamabe T,Neaupane K M.Determination of some thermo mechanical properties of Sirahama sandstone under subzero temperature condition[J].International Journal of Rock Mcechanics and Mining Science,2001,38(7): 1029-1034.

[36]Park C,Synn,J H,Shin D S.Experiment study on the thermal characteristic of rock at low temperatures.lnternational Journal of rock at low temeratures [J].International Journal of Rock Mechanics&Mining Science,2004,41 (S) :81-86.

[37]Takarli M,Prince W,Siddique R.Damage in granite under heating/cooling cycles and water freeze-thaw condition[J].International Journal of Rock Mechanics and Mining Sciences,2008,45(7):1164-1175.

[38]Javier M M,David B,Miguel G H,et al.Non-linear decay of building stones during freeze-thaw weathering processes[J].Construction and Building Materials,2013,38:443-454.

[39]Fukud A M.Rock weathering by freezing-thawing cycles[J].Low Temperature Science,Series A,1974,32: 243-249.

[40]Nicholson D T,Nicholson F H.Physical Deterioration of Sedimentary Rocks Subjected to Experimental Freeze-thaw Weathering [J].Earth Surface Processes and Landforms,2000,25(12):1295-1307.

[41]Watanabe K.Amount of unfrozen water in frozen porous media saturated with solution[J].Cold Regions Science and Technology,2002,34(2): 103-110.

[42]Fatih B.Predicting mechanical strength loss of natural stones after freeze-thaw in cold regions[J].Cold Regions Science and Technology 2012,83-84.98-102.

[43]Fener M,Ince I.Effects of the freeze-thaw (F-T) cycle on the andesitic rocks (Sille-Kony/Turkey) used in construction building[J].Journal of African Earth Sciences,2015,109: 96–106.

[44]Khanlari G,Abdilor Y.Influence of wet–dry,freeze–thaw,and heat–cool cycles on the physical and mechanical properties of Upper Red sandstones in central Iran[J].Bulletin of Engineering Geology & the Environment,2015,74(4):1287-1300.

[45]谭贤君,陈卫忠,贾善坡,等.含相变低温岩体水热耦合模型研究[J].岩石力学与工程学报,2008,27(7): 1455-1461.

[46]刘泉声,康永水,刘小燕.冻结岩体单裂隙应力场分析及热力耦合模拟[J].岩石力学与工程学报,2011,30(2): 218-223.

[47]刘慧,杨更社,任建喜.基于数字图像处理的冻融页岩温度场的数值分析方法[J].岩石力学与工程学报,2007,26(8): 1678-1683.

[48]乔国文,王运生,储飞,等.冻融风化边坡岩体破坏机理研究.工程地质学报,2015,23(3):971-978.

[49]杨更社,谢定义,张长庆,等.岩石损伤特性的 CT 识别[J].岩石力学与工程学报,1996,15(1):48-54.

[50]汪斌,朱杰兵,严鹏,等.大理岩损伤强度的识别及基于损伤控制的参数演化规律[J].岩石力学与工程学报,2012,31(S2): 3967-3973.

[51]王章琼,晏鄂川.物质组构特征对片岩冻融损伤劣化的影响.岩土工程学报,2015,37(S2):86-90.

[52]赵斌,王芝银,伍锦鹏.矿物成分和细观结构与岩石材料力学性质的关系.煤田地质与勘探,2013,41(3): 59-63.

[53]李杰林,周科平,张亚民,等.基于核磁共振技术的岩石孔隙结构冻融损伤试验研究.岩石力学与工程学报,2012,31(6): 1208-1214.

[54]林战举,牛富俊,刘华,等.循环冻融对冻土路基护坡块石物理力学特性的影响[J].岩土力学,2011,32(5): 1369-1376.

[55]Kawakata H,Cho A,Yanagidani T,et al.The observations of faulting in westerly granite under triaxial compression by X-ray CT scan[J].International Journal of Rock Mechanics & Mining Sciences,1997,34(3-4):151~162.

[56]Kawakata H,Cho A,Kiyama T,et al.Three-dimensional observations of faulting process in Westerly granite under uniaxial and triaxial conditions by X-ray CT scan[J].Tectonophysics,1999,313(3):293~305.

[57]Verhelst,F.Vervoort,A.Bosscher,K.U,et al.X-ray computerized tomography,determination of heterogeneities in rock samples[A].SakuraiedS.Proceedings of the 8Th International Congress on Rock Mechanics.[C].Rotterdam:AABalkema,1995.105~108.

[58]Kawakata H,Cho A,Yanagidani T,et al.The observations of faulting in westerly granite under triaxial compression by X-ray CT scan[J].International Journal of Rock Mechanics & Mining Sciences,1997,34(3-4):151.e1–151.e12.

[59]De Kock T,Boone M A,De Schryver T,et al.A Pore-Scale Study of Fracture Dynamics in Rock Using X-ray Micro-CT Under Ambient Freeze-Thaw Cycling.[J].Environmental Science & Technology,2015,49(05):2867-2874.

[60]Han F,Busch A,Krooss B M,et al.Experimental Study on Fluid Transport Processes in the Cleat and Matrix Systems of Coal[J].Energy & Fuels,,2010,24(12):6653–6661.

[61]Han F,Busch A,Wageningen N V,et al.Experimental study of gas and water transport processes in the inter-cleat (matrix) system of coal: Anthracite from Qinshui Basin,China[J].international journal of coal geology,2010,81(2):128-138.

[62]Viljoen J,Campbell Q,Le Roux M,et al.An Analysis of the slow compression breakage of coal using microfocus X-Ray computed tomography[J].Coal Preparation,2015,35(1):1–13

[63]Viljoen J,Campbell Q,Le Roux M,et al.The qualification of coal degradation with the aid of micro-focus computed tomography[J].South African Journal of Science,2015,111(9/10).

[64]J.Park,CU Hyun,HD Park.Changes in microstructure and physical properties of rocks caused by artificial freeze–thaw action,Bulletin of Engineering Geology and the Environment,2015,74(2):555-565.

[65]任建喜,惠兴田.裂隙岩石单轴压缩损伤扩展细观机理 CT 分析初探[J].岩土力学,2005,26(增刊1): 48-52

[66]刘慧,杨更社,叶万军,等.基于CT 图像直方图技术的冻结岩石未冻水含量及损伤特性分析[J].冰川冻土,2015,37(6): 1591-1598

[67]刘增利,李洪升,朱元林.冻土单轴压缩损伤特征与细观损伤测试.大连理工大学学报,

[68]赵淑萍,马巍,郑剑锋,等.不同温度条件下冻结兰州黄土单轴试验的 CT 实时动态监测[J].2010,31(S2):92-97.

[69]孙星亮,汪稔,胡明鉴.冻土三轴剪切过程中细观损伤演化CT动态试验.岩土力学,2005,26(8): 1298-1311.

[70]杨鸿锐,刘平,孙博,等.冻融循环对麦积山石窟砂砾岩微观结构损伤机制研究[J].岩石力学与工程学报,2021,40(3):545-555.

[71]王登科,曾凡超,王建国,魏建平,蒋志刚,王小兵,张平,于充.显微工业CT的受载煤样裂隙动态演化特征与分形规律研究[J].岩石力学与工程学报,2020,39(06):1165-1174.

[72] Mandelbrot B B.Fractals–Form,Chance and Dimension[M].San Francisco:W.H.Freeman,1977.

[73]谢和平.分形几何及其在岩土力学中的应用[J].岩土工程学报,1992,14(1):14-24.

[74]谢和平.岩石类材料损伤演化的分形特征[J].岩石力学与工程学报,1991,10(1):50-61.

[75]谢和平,周宏伟.基于分形理论的岩石力学行为研究[J].中国科学基金,19-98,15(4):247-252.

[76]腾俊洋,唐建新,王进博,等.层状复合岩体损伤演化规律及分形特征[J].岩石力学与工程学报,2018,37(S1): 3263-3278.

[77]彭瑞东,杨彦从,鞠杨,等.基于灰度CT图像的岩石孔隙分形维数计算[J].科学通报,2011,56(26):2256-2266.

[78]Bu H,Ju Y,Tan J,et al.Fractal characteristics of pores in non-marine shales from the Huainan coalfield,eastern China[J].Journal of Natural Gas Science and Engineering,2015,24(3):166–177.

[79]Fu H,Tang D,Xu T,et al.Characteristics of pore structure and fractal dimension of low-rank coal:A case study of lower Jurassic Xishanyao coal in the southern Junggar basin,NW China[J].Fuel,2017,193(11):254–264.

[80]Zhang K,Lai J,Bai G,et al.Comparison of fractal models using NMR and CT analysis in low permeability sandstones[J].Marine and Petroleum Geology,2020,112:104069.

[81]Yang H W,Lourenço S D N,Baudet B A.3D fractal analysis of multi-scale morphology of sand particles with μCT and interferometer[J].Géotechnique,2022,72(1): 20-33.

[82]Fatt I.The network model of porous media I.Capillary pressure characteristics [J].Trans.AIME,1956,207(1): 144-159.

[83]王克文,孙建孟,关继腾,等.聚合物驱后微观剩余油分布的网络模型模拟[J].中国石油大学学报,2006,30(1):72-76.

[84]侯健,高达,李振泉,等.储层微观参数对宏观参数影响的网络模拟研究计算力学学报,2011,28(1):78-83

[85]林承焰,王杨,杨山,等.基于CT的数字岩心三维建模[J].吉林大学学报:地球科学版,2018,48(1):307-317.

[86]Sheppard A.P.,Sok R.M.and Averdunk H.Improved pore network extraction methods[C].Proceedings of International Symposium of the Society of Core Analysts,Toronto,Canada,2005.

[87]Bay B K,Smith T S,Fyhrie D P,Saad M Digital volume correlation: Three-dimensionalstrain mapping using X-ray tomography Experimental Mechanics,1999,Vol.39(3),pp.217-226.

[88]毛灵涛,袁则循,连秀云,等.基于CT数字体相关法测量红砂岩单轴压缩内部三维应变场[J].岩石力学与工程学报,2015,000(001):21-30.

[89]Gonzalez J,Lambros J.A parametric study on the influence of internal speckle patterning for digital volume correlation in X-ray tomography applications[J].Experimental Techniques,2016,40(5): 1447-1459.

[90]Abdallah Y,Sulem J,Bornert M,et al.Compaction Banding in High‐Porosity Carbonate Rocks: 1.Experimental Observations[J].Journal of Geophysical Research: Solid Earth,2021,126(1): e2020JB020538.

[91]王宇,李晓.岩体细观结构力学工业CT技术与应用[M].北京:冶金工业出版社, 2021.

[92]Bear J.Dynamics of fluids in porous media[M].Courier Corporation,1988.

[93]Silin D,Patzek T.Pore space morphology analysis using maximal inscribed spheres[J].Physica A,2006,371(2):336-360.

中图分类号:

 TU458    

开放日期:

 2022-06-14    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式