- 无标题文档
查看论文信息

论文中文题名:

 脱硫功能微生物的定向驯化及抑制高硫煤氧化自燃特性研究    

姓名:

 葛龙    

学号:

 20220226132    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085224    

学科名称:

 工学 - 工程 - 安全工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 煤火灾害防治    

第一导师姓名:

 易欣    

第一导师单位:

 西安科技大学    

第二导师姓名:

 邓军    

论文提交日期:

 2023-06-20    

论文答辩日期:

 2023-06-07    

论文外文题名:

 Orientation domestication of desulfurizing microorganisms and inhibition of oxidative spontaneous combustion in high sulfur coal    

论文中文关键词:

 煤自燃 ; 高硫煤 ; 微生物 ; 氧化特性    

论文外文关键词:

 Coal spontaneous combustion ; High-sulfur coal ; Oxidation characteristic ; Microorganism    

论文中文摘要:

       我国的能源结构以煤炭为主,其中部分地区煤质较差,属高硫煤。随着我国煤炭生产建设向西部转移,煤层开采向深部拓展,优质煤炭资源的消费利用,导致我国高硫煤的使用占比增加。高硫煤中硫的赋存与煤自燃有着直接联系,其中有机硫中的硫醇和无机硫中的黄铁矿硫在常温下即可氧化释放反应热,诱发高硫煤自燃,严重影响煤矿生产安全和可持续发展。因此抑制高硫煤氧化自燃的研究,对煤炭资源利用具有重要意义。根据煤炭领域有关生物脱硫的研究可以发现,微生物能高效地脱除煤中部分硫和破坏煤中官能团等微观结构,这些变化与煤氧化自燃特性紧密相关。

       本研究从高硫煤中赋存的硫出发,利用生物方法脱去部分硫以及利用微生物特有的生命活动降解煤中部分活性官能团,来减弱煤氧化强度的绿色阻燃方法,对于高硫煤的自燃防治有重要的指导意义和应用前景。本文以营盘壕煤、漆树湾煤和龙凤煤三种煤样作为研究对象,选用生长环境为中性、对煤中全硫具有脱除效果的大肠杆菌和黄孢原毛平革菌,定向驯化后分别接种到三种煤样中制备微生物处理煤样,采用X射线光电子能谱实验(XPS)、傅里叶变换红外实验(FTIR)和热重实验(TGA),系统地分析研究了微生物对高硫煤微观结构及氧化特性的影响规律,取得研究成果如下:

    (1)使用三种等比混合的煤粉对两种复壮纯化后的微生物进行三代定向驯化,其生长曲线表明,驯化后菌株对数期OD值增加,最大增长率为17%;OD值斜率增大,最大增长率为80%,说明驯化菌株的生长活力更高、对含煤环境的适应能力更好。

    (2)微生物对煤表面元素形态造成不同的影响。两种微生物具有脱去煤中硫的能力,脱除率随着硫含量的增大而增大。两种微生物处理后对不同硫含量煤的影响并不完全相同,如大肠杆菌会使高硫煤中的亚砜含量降低,黄孢原毛平革菌会使所有煤中亚砜含量增加。两种微生物都会使煤中芳碳多数降低,无机硫中的硫铁矿和硫化物多数减少,噻吩含量略有增加。

    (3)微生物能减少煤表面分子中活性官能团的含量,但不会改变官能团的种类。微生物会使煤中氢键中OH-OR氢键和OH-N氢键大幅度下降,最大降低率为100%;脂肪烃中-CH含量显著降低,最大降低率为100%,-CH2含量有一定程度的升高,最大增长率为101%,芳香烃中三个氢原子取代苯环含量下降,最大降低率为61%。这说明微生物对煤芳香烃的变化影响较小,主要对煤中侧链造成影响。部分官能团含量的变化因为硫含量的不同而有了区分:两种高硫煤中C-O含量明显减少,表明两种微生物会对高硫煤中的醚键具有破坏作用。

    (4)经微生物处理后,高硫煤在两个阶段的机理函数未发生改变,着火点温度向高温方向移动,最大偏移温度为6.24℃,表观活化能增大,最大增长率为54%。这表明两种微生物能有效抑制高硫煤在受热分解阶段和燃烧阶段的反应。

       因此,通过本文研究,可以发现两种微生物能对高硫煤的物理化学特性、官能团等微观结构造成影响,表现为氧化性质改变,稳定性也相应的提高,最终两种微生物有效的抑制了高硫煤的氧化活性。本文针对高硫煤所研究的生物阻化方法绿色环保、无污染,对于煤矿的安全生产和高硫煤的储存利用有重要意义。

论文外文摘要:

      Our country's energy structure consists mainly of coal, the coal quality in some areas is poor, belong to high sulfur coal. With the coal production and construction shifting to the west, coal seam mining is expanding to the deep, and the consumption and utilization of high-quality coal resources have led to the increase of the proportion of high-sulfur coal in our country. The occurrence of sulfur in high-sulfur coal is directly related to coal spontaneous combustion, in which mercaptan in organic sulfur and pyrite sulfur in inorganic sulfur can be oxidized at room temperature to produce reaction heat, inducing high-sulfur coal spontaneous combustion, which seriously affects the safety and sustainable development of coal mine production. Therefore, it is of great significance for the utilization of coal resources to study the inhibition of oxidation spontaneous combustion of high sulfur coal. According to the research on biological desulfurization in coal field, it can be found that microorganisms can efficiently remove part of sulfur in coal and destroy functional groups and other microstructures in coal, and these changes are closely related to the oxidation and spontaneous combustion characteristics of coal.

      Based on the sulfur existing in high-sulfur coal, this study uses biological methods to remove part of the sulfur and uses the unique life activities of microorganisms to degrade part of the active functional groups of coal to reduce the oxidation intensity of coal. The green flame retardant method has important guiding significance and application prospect for the prevention and control of spontaneous combustion of high-sulfur coal. In this paper, three coal samples from Yingpanhao coal, Suaishuwan coal and Longfeng coal were selected as research objects. Escherichia coli and P. flavoris, which had neutral growth environment and had the effect of removing total sulfur in coal, were selected and inoculated into three coal samples after orientation acclimation to prepare microbial treated coal samples. X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) and thermogravimetric (TGA) experiments were used to systematically analyze and study the influence of microorganisms on the microstructure and oxidation characteristics of high-sulfur coal. The research results are as follows:

      (1)Three generations of directional domestication was carried out on the two kinds of rejuvenated and purified microorganisms using three kinds of equal ratio mixed experimental coal powder. The growth curve showed that the OD value of the strain increased in logarithmic stage, with a maximum growth rate of 17%, and the slope of OD value increased, with a maximum growth rate of 80%. It was concluded that the strain had higher growth vigor and better adaptability to the coal-bearing environment after domestication.

      (2)Microorganisms have different effects on the morphology of coal surface elements. The two microorganisms have the ability to remove sulfur from coal, and the removal rate increases with the increase of sulfur content. The effects of the two microorganisms on the coal with different sulfur content are not completely the same. Escherichia coli can reduce the content of sulfoxide in the high-sulfur coal, while P. chrysospora can increase the content of sulfoxide in all coals. Both kinds of microorganisms will reduce the aryl carbon in coal, reduce the pyrite and sulfide in inorganic sulfur, and slightly increase the content of thiophene.

      (3)Microorganisms can reduce the content of active functional groups in coal surface molecules, but do not change the types of functional groups. Microorganisms can greatly reduce the OH-OR hydrogen bond and OH-N hydrogen bond in coal, and the maximum reduction rate is 100%. The content of -CH in aliphatic hydrocarbon decreased significantly, and the maximum reduction rate was 100%. The content of -CH2 increased to a certain extent, and the maximum growth rate was 101%. The content of benzene ring replaced by three hydrogen atoms in aromatic hydrocarbon decreased, and the maximum reduction rate was 61%. This indicates that microorganisms have little influence on the change of coal aromatic hydrocarbons, and mainly affect the middle side chain of coal. The changes in the content of some functional groups are distinguished by the difference in sulfur content: the C-O content in the two kinds of high-sulfur coal is significantly reduced, indicating that the two kinds of microorganisms can destroy the ether bond in the high-sulfur coal.

      (4)After microbial treatment, the mechanism function of high-sulfur coal in the two stages did not change, the ignition point temperature moved to high temperature, the maximum deviation temperature was 6.24℃, the apparent activation energy increased, and the maximum growth rate was 54%. This indicates that the two microorganisms can effectively inhibit the reaction of high-sulfur coal in the thermal decomposition stage and high temperature combustion stage, without changing the reaction path.

       Therefore, through this study, it can be found that two kinds of microorganisms can affect the physical and chemical properties, functional groups and other microstructure of high-sulfur coal, which is manifested in the change of oxidation properties and the corresponding improvement of stability. Finally, the two kinds of microorganisms effectively inhibit the oxidation activity of high-sulfur coal. In this paper, the bioretarding method for high sulfur coal is green and pollution-free, which is of great significance for the safe production of coal mine and the storage and utilization of high sulfur coal.

参考文献:

[1] 李金克.中国煤炭资源战略储备及其调控机制研究[M].北京经济管理出版社,2012.

[2] 林伯强,魏巍贤,李丕东.中国长期煤炭需求:影响与政策选择[J].经济研究,2007(02):48-58.

[3] 谢和平,吴立新,郑德志.2025年中国能源消费及煤炭需求预测[J].煤炭学报,2019,44(07):1949-1960.

[4] 谢和平,王金华,王国,等.煤炭革命新理念与煤炭科技发展构想[J].煤炭学报,2018,43(05):1187-1197.

[5] 王素珍.一种中硫煤在加氢热解过程中硫的脱出规律和脱出过程的动力学研究[D].太原理工大学,2009.

[6] 任德贻,赵峰华,代世峰,等.煤的微量元素地球化学[M].北京:科学出版社,2006.

[7] 张卫国,朱勇.我国高硫煤资源研究[J].广州化工,2014,42(02):24-25.

[8] 饶竹.中高含硫量煤中硫的形态分析[J].岩矿测试.2011.9.

[9] 黄鸿剑.黄铁矿硫对煤自燃特性参数影响的实验研究[D].西安科技大学,2013.

[10] 徐长富,张勋,张帅.高硫煤层自然发火防治技术综述[J].中国矿业,2019,28(08):165-169.

[11] 蔡康旭,袁强,欧阳冬华,等.高硫煤自燃及其预报方法[J].矿业工程研究,2009,24(03):41-44.

[12] 杨胜强.氢氧化钙对高硫煤的阻化实验及机理分析[J].中国矿业大学学报,1996(04):68-72.

[13] 文虎,张福勇,金永飞,等.硫对煤自燃特性参数影响的实验研究[J].煤矿安全,2011,42(10):5-7.

[14] 王亚超,魏子淇,王彩萍,等.黄铁矿对煤氧化表面官能团的影响[J].西安科技大学学报,2018,38(04):585-591.

[15] 陈迪.高硫煤废弃矿井微生物群落演替规律及铁硫代谢基因的功能预测[D].中国矿业大学,2020.

[16] 丁超.褐煤微生物成气的影响因素及菌群与代谢的相关性研究[D].山西大学,2020.

[17] 赵伟仲.煤层本源菌制取生物甲烷的实验研究[D].河南理工大学,2019.

[18] 张杰芳,桑树勋,王文峰.贵州高硫煤的微生物浮选脱硫实验研究[J].科学技术与工程,2015,15(14):16-23.

[19] Ye J P, Zhang P Y, Zhang G M, et al.Biodesulfurization of high sulfur fat coal with indigenous and exotic microorganisms[J].Journal of Cleaner Production,2018(197):562-570.

[20] Yin Z W, Feng S S, Tong Y J, et al. Adaptive mechanism of Acidithiobacillus thiooxidans CCTCC M 2012104 under stress during bioleaching of low grade chalcopyrite based on physiological and comparative transcriptomic analysis[J].Journal of Industrial Microbiology & Biotechnology,2019(46):1643-1656.

[21] 臧静坤,程伟.煤炭微生物脱硫研究进展[J].洁净煤技术,2020,26(S1):26-34.

[22] Acharya C,Kar R N,Sukla L B.Bacterial removal of sulphur from three different coals[J].Fuel, 2001,80(15):2207-2216.

[23] 邓军,徐精彩,陈晓坤.煤自燃机理及预测理论研究进展[J].辽宁工程技术大学学报,2003(04):455-459.

[24] Humphreys D.The Spontaneous Heating of Coal and Its Relation to Petrography Composition [D].The University of Queensland,1976.

[25] Tevrucht M L E,Griffiths P R.Activation Energy of Air-oxidized Bituminous Coals[J].Energy & Fuel,1989,3(4): 522-527.

[26] 李增华.煤炭自燃的自由基反应机理[J].中国矿业大学学报,1996(03):111-114.

[27] Lopez D.Effect of low-temperature oxidation of coal on thdrogentransfer capability[J].Fuel,1998,77(14):1623-1628.

[28] Wang H.Theoretical analysis of reaction regimes in low-temperature oxidation of coal[J].Fuel,1999,78(9),1073-1081.

[29] Gouws MJ,Gibbon GJ,Wade L, et al.Adiabatic to Estalish the Spontaneous Combustion Propensity of Coal[J].Mnining Sci. Technol,1991,13(3): 417-422.

[30] Singh R N, Shonhaxdt JA,Texezopoulos N.A New Dimension to Studies of Sponta-neous Combustion of Coal[J].Mineral Resources Engineering,2002,11 (2):147-163.

[31] 徐精彩,薛韩玲,文虎,等.煤氧复合热效应的影响因素分析[J].中国安全科学学报,2001(02):34-39.

[32] 徐精彩.煤自燃危险区域判定理论[M].北京:煤炭工业出版社.

[33] 葛岭梅,薛韩玲,徐精彩,等.对煤分子中活性基团氧化机理的分析[J].煤炭转化,2001(03):23-28.

[34] 唐跃刚,任德贻,郑建中,等.煤中黄铁矿的磁性及其机理研究[J].科学通报,1995(16):1483-1486.

[35] Kortenski Jordan,Kostova lrena.Occurrencre and morphology of pyrite in Bulgarian coals[J].Inter.J.Coal Geol.1996,29(1):273-290.

[36] 路迈西,刘文礼.高硫煤中硫的分布和燃前脱硫可行性的研究[J].煤炭科学技术,1999(02):46-49+4.

[37] 惠泽帅.内蒙古煤中元素含量及赋存状态研究[D].中国地质大学(北京),2019.

[38] 解盼盼.黔西桂中晚二叠世煤中矿物质赋存分布与富集机理[D].中国矿业大学(北京),2019.

[39] 赵月圆.云南干河特高有机硫煤微量元素赋存状态及纳米矿物特征[D].太原理工大学,2017.

[40] 张兰君.有机硫对煤自燃特性影响研究[D].中国矿业大学,2016.

[41] R.N.辛格,S.德米尔比莱克,余明高.硫和铁的含量对煤炭自燃的影响[J].煤炭工程师,1991(02):57-62.

[42] 王建利,苏宏刚,李军岐,等.硫含量对煤自燃特性及极限参数的影响[J].煤矿安全,2020,51(06):43-48.

[43] 司卫彬,王德明.硫对长焰煤自燃过程影响的试验研究[J].煤炭科学技术,2020,48(05):103-107.

[44] Rudolf W. Oxidation of pyrites by microorganisms and their usefor making mineral phosphates available[J].Soil Science, 1922, 14:135-147.

[45] Rudolf W, Helbronner A. Oxidation of zinc sulfides by microorganism[J]. Soil Science, 1922,14:459-464.

[46] Clomer A R, Hinkle M E. The role of microorganisms in acid mine drainage:a preliminary report[J]. Science, 194,106:253-256.

[47] 徐毅,钟慧芳,蔡文六.微生物法脱除煤中黄铁矿硫[J].微生物报,1990,30(2):134-140.

[48] Kelly D P, Wood A P. Reclassification of some species of thiobacillus to the newly designated genera acidithi-obacillus gen. nov., halothiobacillus gen. nov. and Thermithiobacillus gen. nov.[J]. International journal of systematic and evolutionary microbiology,2000,50(2):511-516.

[49] 王瑞,刘自勇,王琪,等.CO2辅助好氧菌煤炭脱硫工艺的实验[J].化工进展,2021,40(01):526-533.

[50] Acharya C, Kar R N, Sukla L B. Bacterial removal of sulphur from three different coals[J].Fuel,2001,80(15):2207-2216.

[51] 张明旭,孙剑峰.球红假单胞菌用于煤炭生物浸出脱硫的研究[J].选煤技术,2009(04):6-11.

[52] Kiani M H, Ahmadi A, Zilouei H. Biological removal of sulphur and ash from fine-grained high pyritic sulphur coals using a mixed culture of mesophilic microorganisms[J].Fuel, 2014,131:89-95.

[53] Kumar A, Singh A K, Singh P K, et al. Desulfurization of gral lignite of rajasthan (western india) using burkholderia sp.gr 802[J]. International Journal of Coal Preparation and Utilization,2019:1-17.

[54] 孙剑峰,张明旭,刘小燕.利用大肠杆菌脱除煤中硫的研究[J].煤炭加工与综合利用,2007(01):52-53+57.

[55] 胡婷婷,张梦君,朱振宇,等.不同有机硫代谢途径菌株的煤炭脱硫对比研究[J].能源与环境,2018(02):2-4+6.

[56] 邓欣逸,薛勇,黄强.嗜酸氧化亚铁硫杆菌对典型川煤全硫脱除的实验研究[J].洁净煤技术,2012,18(01):38-41+48.

[57] 张东晨.煤炭微生物脱硫技术的研究与发展[J].洁净煤技术,2005(02):50-54+65.

[58] Rohwerder T, Gehrke T, Kinzler K, et al. Bioleaching review part A. Applied micro-biology and biotech-nology.2003 Dec;63(3):239-48.

[59] Gonsalvesh L, Marinov S P, Stefanova M, et al. Organic sulphur alterations in biodesulphurized low rank coals[J].Fuel,2012,97:489-503.

[60] Nidhi G, Roychoudhury P K, Deb J K. Biotechnology of desulfurization of diesel:prospects and challenges[J].Applied microbiology and biotechnology,2005,66(4):356-66.

[61] 徐杰,刘向荣,杜志鹏,等.两种微生物对山西高硫煤脱硫的最优工艺条件[J].煤炭转化,2019,42(02):90-96.

[62] 焦东伟,胡廷学,金会心,等.高硫煤脱硫技术及展望[J].能源工程,2010(04):55-58.

[63] 邓恩建.微生物在煤炭生物脱硫中的应用研究[D].湖南大学,2006.

[64] 陈腾水,徐忠辉,刘菊,等.晋县凹陷未熟蒸发岩沉积物中C_(22)-C_(27)甾烯和C_(24)-C_(30)四环萜烷的检出[J].地球化学,2009,38(03):289-298.

[65] 张悦秋,谢广元,李国洲.氧化硫硫杆菌氮代谢及其对煤炭脱硫影响的研究[J].洁净煤技术,2007(04):32-34.

[66] 胡瑜,毕银丽,赵斌.硫杆菌的分离鉴定及其对煤矿废弃物的氧化脱硫特性[J].应用与环境生物学报,2007(01):116-120.

[67] 刘玉娇,杨新萍,张德伟,等.pH、接种量及固形物含量对氧化亚铁硫杆菌LX5煤炭生物脱硫的影响[J].环境工程学报,2013,7(02):759-764.

[68] Srabani Mishra, Ata Akcil, Sandeep Panda, et al. Bi-odesulphurization of Turkish lignite by Leptospirillum ferriphilum:Effect of ferrous iron,Span-80 and ultra-sonication[J]. Hydrometallurgy,2018,176:166-175.

[69] 徐杰,刘向荣,甄学乐,等.响应面法优化束红球菌对DBT的脱硫条件[J].现代化工,2020,40(06):72-77.

[70] 张通,吴琼,刘柯澜,等.微杆菌对乌海高硫煤中有机硫脱除的研究[J].煤炭学报,2009,34(07):957-960.

[71] 费嫦,桂芳,李争鸣等.医学微生物实验室四种菌种保存方法的比较[J].医学理论与实践,2017,30(12):1827-1829.

[72] 张金龙,郭红光,王凯等.煤生物转化的预处理技术研究进展[J].煤炭技术,2016,35(11):317-319.

[73] Huang Z , Liers C ,Ullrich R , et al. Depolymerization and solubilization of chemically pretreated powder river basin subbituminous coal by manganese peroxidase (MnP) from Bjerkandera adusta[J].Fuel,2013,112(oct.):295-301.

[74] 葛涛,张明旭,马祥梅.新阳炼焦煤结构的FTIR和XPS谱学表征[J].光谱学与光谱分析,2017,37(08):2406-2411.

[75] 贾奕柠. Fe基单原子催化剂的MOF热解制备及其微观机理研究[D].华东师范大学,2022.

[76] 刘富生. 稀土氧化物复合氧化铪高温红外辐射涂层的制备与研究[D].武汉理工大学,2020.

[77] 张蕾,陈吉浩,张磊等.不同种类粉煤灰的XPS分析[J].煤炭技术,2018,37(11):344-347.

[78] 李梅,杨俊和,张启锋等.用XPS研究新西兰高硫煤热解过程中氮、硫官能团的转变规律[J].燃料化学学报,2013,41(11):1287-1293.

[79] 贺琼琼,苗真勇,万克记,等.X射线光电子能谱对褐煤中碳氧形态的研究[J].煤炭技术,2016,35(01):298-300.

[80] 马玲玲,秦志宏,张露等.煤有机硫分析中XPS分峰拟合方法及参数设置[J].燃料化学学报,2014,42(03):277-283.

[81] 葛涛,马祥梅.炼焦煤中碳、氧、氮、硫赋存特征的XPS研究[J].煤炭技术,2018,37(03):293-295.

[82] 相建华,曾凡桂,李彬等.成庄无烟煤大分子结构模型及其分子模拟[J].燃料化学学报,2013,41(04):391-399.

[83] 杨志远,周安宁,张泓,等.神府煤不同密度级组分光催化氧化的XPS研究[J].中国矿业大学学报,2010,39(01):98-103.

[84] 张嬿妮.煤氧化自燃微观特征及其宏观表征研究[D].西安科技大学,2012.

[85] 翁诗甫.傅里叶变换红外光谱分析.第2版[M].化学工业出版社, 2010.

[86] 王德明.煤氧化动力学理论及应用[M].北京:科学出版社,2012.

[87] 杨锴.热损伤作用对煤结构及其自燃氧化特性影响的研究[D].中国矿业大学,2021.

[88] 戚绪尧.煤中活性基团的氧化及自反应过程[J].煤炭学报,2011,36(12):2133-2134.

[89] 白祖锦.离子液体抑制褐煤低温氧化的微观特性研究[D].西安科技大学,2018.

中图分类号:

 TD752.2    

开放日期:

 2023-06-20    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式