论文中文题名: |
基于图-谱信息的水稻品质遥感监测研究
|
姓名: |
张杰
|
学号: |
20210226072
|
保密级别: |
保密(1年后开放)
|
论文语种: |
chi
|
学科代码: |
085700
|
学科名称: |
工学 - 资源与环境
|
学生类型: |
硕士
|
学位级别: |
工程硕士
|
学位年度: |
2023
|
培养单位: |
西安科技大学
|
院系: |
测绘科学与技术学院
|
专业: |
测绘工程
|
研究方向: |
高光谱遥感
|
第一导师姓名: |
竞霞
|
第一导师单位: |
西安科技大学
|
第二导师姓名: |
宋晓宇
|
论文提交日期: |
2023-06-16
|
论文答辩日期: |
2023-06-02
|
论文外文题名: |
Research on remote sensing monitoring of rice quality based on graph-spectrum information
|
论文中文关键词: |
水稻 ; 无人机 ; 高光谱遥感 ; 长势参数 ; 纹理特征 ; 籽粒蛋白含量
|
论文外文关键词: |
Rice ; UAV ; Hyperspectral Remote Sensing ; Growth Parameters ; Texture Characteristics ; Grain Protein Content
|
论文中文摘要: |
︿
水稻作为世界三大作物之一,有着广泛的种植分布和种植历史。在农业智能化发展的新要求下,对水稻生长全周期精细化监测是精准农业的重要环节。本研究基于中国广东省广州市两年水稻氮肥梯度试验,获取了水稻长势参数及品质参数等农学指标,借助遥感技术,分别获取了水稻关键生育期地面非成像冠层高光谱数据、无人机尺度高光谱影像和多光谱影像,将传统农学采样与遥感技术相结合,定量探究了水稻长势参数与冠层光谱间的关系,构建了基于光谱信息的水稻关键生育期多种长势参数的估算模型,得到了长势参数最优估算结果,在此基础上,耦合冠层结构信息、色素信息及空间纹理信息,探究了多源因素与水稻收获后籽粒蛋白含量间的关系,建立了具有一定农学机理的水稻籽粒蛋白含量早期估算模型。研究的内容及主要结论如下:
(1)探究了水稻不同生育期及不同氮素梯度下叶片氮素含量(LNC)、植株氮素积累量(PNA)、相对叶绿素含量(SPAD)、叶面积指数(LAI)、植株地上生物量(AGB)五种长势参数的变化及分布情况,以及不同生育期及不同氮素梯度下,水稻地面冠层光谱及无人机冠层光谱的变化特征。结果显示:水稻各长势参数在不同生育期分布及变化情况存在一定差异,LNC及SPAD在水稻生长初期均处于较高水平,随着生育期推进,LNC逐渐减少,SPAD有一定减少但整体趋于平稳,PNA、LAI、AGB则随着生育期的推进迅速增大。不同氮素等级下大多数长势参数值随着氮素等级的增加而增加,但在过量施氮时存在一定的饱和现象。由地面及无人机平台获取的冠层光谱在同氮素等级下各生育期反射率具有较好的一致性,但在部分时期由于数据获取条件不同而导致光谱存在一定差异,不同氮素等级冠层光谱在近红外区域表现出较为明显的随氮素等级增加反射率也增加的规律。
(2)基于地面冠层光谱及无人机冠层高光谱影像,构建了两波段任意组合光谱指数DVI(λ1,λ2) 、NDVI(λ1,λ2) 和三波段任意组合光谱指数EVI(λ1,λ2,λ3) 、PSRI(λ1,λ2,λ3) ,在二维和三维分布上采用相关系数对长势参数敏感的光谱指数进行了筛选,以多元逐步回归进行二次筛选并构建水稻关键生育期长势参数估算模型,对非成像光谱和成像光谱的长势监测能力进行对比。结果显示:最优原始光谱及最优光谱指数组合的方式能有效完成多种长势参数的估算,基于无人机冠层高光谱影像的估算模型较基于地面冠层光谱的估算模型估算效果更好。分蘖期LNC、PNA、SPAD、LAI、AGB估算模型的决定系数R2(均方根误差RMSE)分别达到0.592(0.177)、0.789(0.200)、0.865(0.647)、0.732(0.080)、0.743(6.940),分化期估算模型R2(RMSE)分别达到0.675(0.195)、0.783(0.704)、0.916(0.958)、0.783(0.410)、0.771(29.211),抽穗期估算模型R2(RMSE)分别达到0.817(0.177)、0.806(1.849)、0.840(1.382)、0.751(0.747)、0.611(111.681)。
(3)水稻籽粒蛋白含量受多源因素影响,高光谱影像兼顾空间和光谱信息,构建多源参数数据集(长势信息、结构信息、色素信息、空间纹理信息),以此为基础分别构建单参数形式、不同类型参数集和多参数集组合形式的籽粒蛋白含量估算模型。结果显示:以多种线性函数形式构建的籽粒蛋白含量单参数估算模型,各时期估算精度R2达到0.8左右;以偏最小二乘方法构建的基于不同参数集及多参数集组合的籽粒蛋白含量估算模型,能够有效提升估算精度,实现水稻籽粒蛋白含量的早期估算。分蘖期时,估算结果的R2达到0.885,RMSE为0.303;分化期时,估算结果在2019年和2020年R2分别达到0.905、0.880,RMSE为0.283、0.235;抽穗期时,估算结果的R2达到0.941,RMSE为0.217。
﹀
|
论文外文摘要: |
︿
Rice, one of the world's three major crops, has a long history of planting and cultivation. In the era of intelligent agricultural development, precision agriculture demands fine monitoring of the entire rice growth cycle. This study conducted a two-year rice nitrogen fertilizer gradient experiment in Guangzhou City, Guangdong Province, China, to obtain agronomic indicators such as rice growth and quality parameters. During the critical period of rice, remote sensing technology was employed to acquire crop canopy hyperspectral data, unmanned aerial multispectral images, and hyperspectral images. The relationship between rice growth parameters and canopy spectra was quantitatively investigated by combining traditional agronomic sampling with remote sensing technology. The study constructed an early estimation model of rice grain protein content with specific agronomic mechanisms using canopy structure information, pigment information, and spatial texture information. The results provide valuable insights into the relationship between multi-source factors and post-harvest rice grain protein content. The contents and main results of the study are as follows:
(1)The changes and distributions of five growth parameters, leaf nitrogen content (LNC), plant nitrogen accumulation (PNA), relative chlorophyll content (SPAD), leaf area index (LAI) and aboveground biomass (AGB), as well as ground canopy spectra and unmanned canopy spectra of rice at different growth stages and nitrogen gradients were investigated. The results showed that there were some differences in the distributions and changes of various growth parameters at different rich growth stages. LNC and SPAD were at high levels at the start of rice growth. LNC gradually decreased as the fertility stage progressed, SPAD reduced somewhat but stabilized overall, and PNA, LAI, and AGB increased rapidly as the growth stage continued. The values of most growth parameters grew as the nitrogen levels rose, but there was a specific saturation phenomenon when too much nitrogen was used. Although there were some differences in the spectra at some points due to the different acquisition conditions, the canopy spectra of varying nitrogen levels showed a more pronounced pattern of increasing reflectance with increasing nitrogen levels in the NIR region. The canopy spectra obtained from the ground and UAV platforms showed good consistency in reflectance at all fertility stages under the same nitrogen level.
(2) Based on ground canopy spectra and UAV canopy spectra, two-band arbitrary combination spectral indices DVI(λ1,λ2) 、NDVI(λ1,λ2) and three-band arbitrary combination spectral indices EVI(λ1,λ2,λ3) 、PSRI(λ1,λ2,λ3) were constructed. The sensitive spectral indices of growth parameters in two- and three-dimensional distributions were screened using correlation coefficients. The model for estimating rice growth parameters at critical stages was constructed using multivariate stepwise regression. The findings demonstrated that the best raw spectra and spectral indices could be combined to predict various growth parameters accurately and that the estimation model based on UAV canopy spectra was superior to that found on ground canopy spectra. The coefficients of determination (R2) and root mean square error (RMSE) of the estimation models for LNC, PNA, SPAD, LAI and AGB at the tillering stage were 0.592 (0.177), 0.789 (0.200), 0.865 (0.647), 0.732 (0.080) and 0.743 (6.940), respectively. The R2 (RMSE) of the estimation models for the panicle initiation stage were 0. 675 (0.195), 0.783 (0.704), 0.916 (0.958), 0.783 (0.410) and 0.771 (29.211), respectively, and the estimated model R2 (RMSE) for the heading stage reached 0.817 (0.177), 0.806 (1.849), 0.840 (1.382) and 0.751 (0.747) and 0.611 (111.681), respectively.
(3) Multiple source factors influence the grain protein content of rice. Hyperspectral images use both spatial and spectral information to construct multi-source parameter data sets (growth information, structure information, pigment information, spatial texture information), from which grain protein content estimation models in the form of a single parameter, different types of parameter sets, and multi-parameter set combinations are developed. Results indicated that the single-parameter estimation model of rice grain protein content constructed in the form of multiple linear functions achieved an estimation accuracy of R2 of approximately 0.80 in each period; the estimation model based on different parameter sets and a combination of multi-parameter sets constructed by partial least squares method could effectively improve the estimation accuracy and accomplish the early estimation of rice seed protein content. In the tillering stage, the R2 of the estimation results reached 0.885, and the RMSE was 0.303. In the panicle initiation stage in 2019 and 2020, the R2 of the estimation results reached 0.905 and 0.880, and the RMSE was 0.283 and 0.235, respectively. Finally, in the heading stage, the R2 of the estimation results reached 0.941, and the RMSE was 0.217.
﹀
|
参考文献: |
︿
[1] 赵凌,赵春芳,周丽慧,等.中国水稻生产现状与发展趋势[J].江苏农业科学,2015,43(10):105-107. [2] Yan S, Wang X, Huang J, et al. Study on the method and model of rice quality monitoring based on hyperspectral data[C]//2016 Fifth International Conference on Agro-Geoinformatics (Agro-Geoinformatics). IEEE, 2016: 1-4. [3] 林维潘,李怀民,倪军,等.基于便携式三波段作物生长监测仪的水稻长势监测[J].农业工程学报,2020,36(20):203-208. [4] 张晗,赵小敏,郭熙,等.基于冠层高光谱信息的水稻生长监测应用研究进展[J].江苏农业科学,2018,46(12):1-9. [5] 翟鹏程,张永彬,宇林军.基于MODIS数据的小麦生物量估算模型研究[J].测绘与空间地理信息,2017,40(07):37-40. [6] 王海君,许捍卫,金文韬.基于Landsat的小麦估产模型及其应用[J].地理空间信息,2016,14(12):45-47+8. [7] 黄林生,江静,黄文江,等.Sentinel-2影像和BP神经网络结合的小麦条锈病监测方法[J].农业工程学报,2019,35(17):178-185. [8] Gausman H W, Allen W A, Cardenas R, et al. Relation of Light Reflectance to Histological and Physical Evaluations of Cotton Leaf Maturity[J]. Applied Optics, 1970, 9(3):545. [9] Goel P K, Prasher S O, Landry J A, et al. Estimation of crop biophysical parameters through airborne and field hyperspectral remote sensing[J]. Transactions of the ASAE, 2003, 46(4): 1235. [10] 赵小敏,孙小香,王芳东,等.水稻高光谱遥感监测研究综述[J].江西农业大学学报,2019,41(01):1-12. [11] Marshall M, Thenkabail P, Biggs T, et al. Hyperspectral narrowband and multispectral broadband indices for remote sensing of crop evapotranspiration and its components (transpiration and soil evaporation)[J]. Agricultural and forest meteorology, 2016, 218: 122-134. [12] Curran P J, Dungan J L, Macler B A, et al. Reflectance spectroscopy of fresh whole leaves for the estimation of chemical concentration[J]. Remote Sensing of Environment, 1992, 39(2): 153-166. [13] Kawamura K, Ikeura H, Phongchanmaixay S, et al. Canopy hyperspectral sensing of paddy fields at the booting stage and PLS regression can assess grain yield[J]. Remote Sensing, 2018, 10(8): 1249. [14] 杨小兵,杨晨,任重,等.基于决策树算法的安徽省油菜产量气象限制因子分析及预测模型研究[J].湖北农业科学,2020,59(16):158-160+180. [15] 殷紫. 不同生育期冬小麦生理生化参数高光谱估测研究[D].西北农林科技大学,2016. [16] 赵英时. 遥感应用分析原理与方法[M]. 科学出版社, 2003. [17] 史舟,梁宗正,杨媛媛,等.农业遥感研究现状与展望[J].农业机械学报,2015,46(02):247-260. [18] 金伟,葛宏立,杜华强,等.无人机遥感发展与应用概况[J].遥感信息,2009,No.101(01):88-92. [19] 王娇娇,宋晓宇,梅新,等.基于高斯回归分析的水稻氮素敏感波段筛选及含量估算[J].光谱学与光谱分析,2021,41(06):1722-1729. [20] Fenghua Y, Tongyu X, Wen D, et al. Radiative transfer models (RTMs) for field phenotyping inversion of rice based on UAV hyperspectral remote sensing[J]. International Journal of Agricultural and Biological Engineering, 2017, 10(4): 150-157. [21] Zhu W, Sun Z, Huang Y, et al. Improving field-scale wheat LAI retrieval based on UAV remote-sensing observations and optimized VI-LUTs[J]. Remote Sensing, 2019, 11(20): 2456. [22] Song X, Yang G, Xu X, et al. Winter Wheat Nitrogen Estimation Based on Ground-Level and UAV-Mounted Sensors[J]. Sensors, 2022, 22(2): 549. [23] Garcia-Garcia D, la Rosa X R, Bedoya D G, et al. Linear mixed model analysis of NDVI-based canopy coverage, extracted from sequential UAV multispectral imagery of an open field tomato irrigation experiment[J]. Computers and Electronics in Agriculture, 2021, 189: 106399. [24] Li Z, Zhao Y, Taylor J, et al. Comparison and transferability of thermal, temporal and phenological-based in-season predictions of above-ground biomass in wheat crops from proximal crop reflectance data[J]. Remote Sensing of Environment, 2022, 273: 112967. [25] 吴炳方,张峰,刘成林,等.农作物长势综合遥感监测方法[J].遥感学报,2004(06):498-514. [26] Seelan S K, Laguette S, Casady G M, et al. Remote sensing applications for precision agriculture: A learning community approach[J]. Remote sensing of environment, 2003, 88(1-2): 157-169. [27] 姚霞,刘勇,王妮,等.基于无人机遥感的小麦氮素营养和生长监测[C].中国作物学会学术年会.2014. [28] Ke L I U, ZHOU Q, WU W, et al. Estimating the crop leaf area index using hyperspectral remote sensing[J]. Journal of integrative agriculture, 2016, 15(2): 475-491. [29] Yuan L, Zhang H, Zhang Y, et al. Feasibility assessment of multi-spectral satellite sensors in monitoring and discriminating wheat diseases and insects[J]. Optik, 2017, 131: 598-608. [30] 竞霞,邹琴,白宗璠,等.基于反射光谱和叶绿素荧光数据的作物病害遥感监测研究进展[J].作物学报,2021,47(11):2067-2079. [31] Zheng J, Song X, Yang G, et al. Remote sensing monitoring of rice and wheat canopy nitrogen: A review[J]. Remote Sensing, 2022, 14(22): 5712. [32] Haboudane D, Miller J R, Pattey E, et al. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture[J]. Remote sensing of environment, 2004, 90(3): 337-352. [33] Strachan I B, Pattey E, Boisvert J B. Impact of nitrogen and environmental conditions on corn as detected by hyperspectral reflectance[J]. Remote Sensing of environment, 2002, 80(2): 213-224. [34] Peron-Danaher R, Russell B, Cotrozzi L, et al. Incorporating multi-scale, spectrally detected nitrogen concentrations into assessing nitrogen use efficiency for winter wheat breeding populations[J]. Remote Sensing, 2021, 13(19): 3991. [35] Jiang X, Zhen J, Miao J, et al. Newly-developed three-band hyperspectral vegetation index for estimating leaf relative chlorophyll content of mangrove under different severities of pest and disease[J]. Ecological Indicators, 2022, 140: 108978. [36] 熊鹰,刘波,岳跃民.基于ASD和FISS的植被叶片氮素含量反演研究[J].生态环境学报,2013,22(04):582-587. [37] 李鑫格,项方林,吴思雨,等.基于植被指数时序动态的冬小麦氮素营养诊断方法[J].麦类作物学报,2022,42(01):109-119. [38] 王娇娇,徐波,王聪聪,等.作物长势监测仪数据采集与分析系统设计及应用[J].智慧农业,2019,1(04):91-104. [39] 武彬. 作物冠层叶绿素含量垂直分布遥感监测方法研究[D].中国科学院大学(中国科学院空天信息创新研究院),2021. [40] 王人潮,陈铭臻,蒋亨显.水稻遥感估产的农学机理研究——Ⅰ.不同氮素水平的水稻光谱特征及其敏感波段的选择[J].浙江农业大学学报,1993(S1):9-16. [41] 张金恒,王珂,王人潮,等.水稻叶片反射光谱诊断氮素营养敏感波段的研究[J].浙江大学学报(农业与生命科学版),2004(03):106-112. [42] DA Sims, Gamon J A. Estimation of vegetation water content and photosynthetic tissue area from spectral reflectance: a comparison of indices based on liquid water and chlorophyll absorption features[J]. Remote Sensing of Environment, 2003, 84(4):526-537. [43] 何小安,李存军,周静平,等.冬小麦生育前期LAI高光谱反演研究[J].中国农业信息,2019,31(06):35-46. [44] Bannari A, Khurshid K S, Staenz K, et al. A comparison of hyperspectral chlorophyll indices for wheat crop chlorophyll content estimation using laboratory reflectance measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(10): 3063-3074. [45] Yao X, Zhu Y, Tian Y C, et al. Exploring hyperspectral bands and estimation indices for leaf nitrogen accumulation in wheat[J]. International Journal of Applied Earth Observation and Geoinformation, 2010, 12(2): 89-100. [46] 姚霞,朱艳,冯伟,等.监测小麦叶片氮积累量的新高光谱特征波段及比值植被指数[J].光谱学与光谱分析,2009,29(08):2191-2195. [47] Tan C, Du Y, Zhou J, et al. Analysis of Different Hyperspectral Variables for Diagnosing Leaf Nitrogen Accumulation in Wheat[J]. Frontiers in Plant Science, 2018, 9 [48] Song X, Feng W, He L, et al. Examining view angle effects on leaf N estimation in wheat using field reflectance spectroscopy[J]. Isprs Journal of Photogrammetry and Remote Sensing, 2016, 122, 57-67 [49] 颜丙囤,梁守真,王猛,等.花生叶绿素含量的高光谱遥感估算模型研究[J].江苏农业科学,2017,45(01):197-200. [50] 徐新刚,赵春江,王纪华,等. 基于可见光-近红外新光谱特征和最优组合原理的大麦叶片氮含量监测[J]. 红外与毫米波学报, 2013, 32, 351-358 [51] Feng W, Yao X, Zhu Y, et al. Monitoring leaf nitrogen status with hyperspectral reflectance in wheat[J]. European Journal of Agronomy, 2008, 28, 394-404 [52] Yao X, Huang Y, Shang G Y, Zhou C, Cheng T, Tian Y C, Cao W X and Zhu Y. 2015. Evaluation of Six Algorithms to Monitor Wheat Leaf Nitrogen Concentration. Remote Sensing, 7(11): 14939-14966 [53] 张春兰,杨贵军,李贺丽,等.基于随机森林算法的冬小麦叶面积指数遥感反演研究[J].中国农业科学,2018,51(05):855-867. [54] 潘月,曹宏鑫,齐家国,等.基于高光谱和数据挖掘的油菜植株含水率定量监测模型[J].江苏农业学报,2022,38(06):1550-1558. [55] Fu Y Y, Yang G J, Li Z H, Song X Y, Li Z H, Xu X G, Wang P and Zhao C J. 2020. Winter Wheat Nitrogen Status Estimation Using UAV-Based RGB Imagery and Gaussian Processes Regression. Remote Sensing, 12(22):3778 [56] Lenney M P, Woodcock C E, Collins J B, et al. The status of agricultural lands in Egypt: the use of multitemporal NDVI features derived from Landsat TM[J]. Remote sensing of environment, 1996, 56(1): 8-20. [57] 王长耀,林文鹏.基于MODISEVI的冬小麦产量遥感预测研究[J].农业工程学报,2005(10):90-94. [58] Son N T, Chen C F, Chen C R, et al. Prediction of rice crop yield using MODIS EVI− LAI data in the Mekong Delta, Vietnam[J]. International Journal of Remote Sensing, 2013, 34(20): 7275-7292. [59] 冯美臣,杨武德,张东彦,等.基于TM和MODIS数据的水旱地冬小麦面积提取和长势监测[J].农业工程学报,2009,25(03):103-109+313. [60] Magney T S, Eitel J U H, Vierling L A. Mapping wheat nitrogen uptake from RapidEye vegetation indices[J]. Precision Agriculture, 2017, 18: 429-451. [61] Huang S, Miao Y, Yuan F, et al. Potential of RapidEye and WorldView-2 satellite data for improving rice nitrogen status monitoring at different growth stages[J]. Remote Sensing, 2017, 9(3): 227. [62] Hedley J, Roelfsema C, Koetz B, et al. Capability of the Sentinel 2 mission for tropical coral reef mapping and coral bleaching detection[J]. Remote Sensing of Environment, 2012, 120(6): 145-155. [63] Choudhary K, Shi W, Dong Y, et al. Random Forest for rice yield mapping and prediction using Sentinel-2 data with Google Earth Engine[J]. Advances in Space Research, 2022, 70(8): 2443-2457. [64] 黄林生,江静,黄文江,等.Sentinel-2影像和BP神经网络结合的小麦条锈病监测方法[J].农业工程学报,2019,35(17):178-185. [65] 苏伟,侯宁,李琪,等.基于Sentinel-2遥感影像的玉米冠层叶面积指数反演[J].农业机械学报,2018,49(01):151-156. [66] LIU Z, Chao W, BI R, et al. Winter wheat yield estimation based on assimilated Sentinel-2 images with the CERES-Wheat model[J]. Journal of Integrative Agriculture, 2021, 20(7): 1958-1968. [67] Dong T, Liu J, Qian B, et al. Estimating crop biomass using leaf area index derived from Landsat 8 and Sentinel-2 data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 168: 236-250. [68] Delloye C, Weiss M, Defourny P. Retrieval of the canopy chlorophyll content from Sentinel-2 spectral bands to estimate nitrogen uptake in intensive winter wheat cropping systems[J]. Remote Sensing of Environment, 2018, 216: 245-261. [69] 李文杰,郭晓雷,杨玲波,等.基于GF-6卫星影像多特征优选的酿酒葡萄精准识别[J].农业工程学报,2020,36(18):165-173. [70] 何真,胡洁,蔡志文,等.协同多时相国产GF-1和GF-6卫星影像的艾草遥感识别[J].农业工程学报,2022,38(01):186-195. [71] 姚霞,刘小军,田永超,等.基于星载通道光谱指数与小麦冠层叶片氮素营养指标的定量关系[J].应用生态学报,2013,24(02):431-437. [72] 谭昌伟,杨昕,罗明,等.冬小麦返青期主要生长指标的HJ-1A/1B遥感影像监测[J].麦类作物学报,2015,35(09):1298-1305. [73] Croft H, Arabian J, Chen J M, et al. Mapping within-field leaf chlorophyll content in agricultural crops for nitrogen management using Landsat-8 imagery[J]. Precision Agriculture, 2020, 21: 856-880. [74] 田婷,张青,张海东.无人机遥感在作物监测中的应用研究进展[J].作物杂志,2020(05):1-8. [75] Sun J, Shi S, Gong W, et al. Evaluation of hyperspectral LiDAR for monitoring rice leaf nitrogen by comparison with multispectral LiDAR and passive spectrometer[J]. Scientific Reports, 2017, 7(1): 1-9. [76] Huang S, Miao Y, Yuan F, et al. In-season diagnosis of rice nitrogen status using proximal fluorescence canopy sensor at different growth stages[J]. Remote Sensing, 2019, 11(16): 1847. [77] Zhu H, Liu H, Xu Y, et al. UAV-based hyperspectral analysis and spectral indices constructing for quantitatively monitoring leaf nitrogen content of winter wheat[J]. Applied Optics, 2018, 57(27): 7722-7732. [78] Lu B, Dao P D, Liu J, et al. Recent advances of hyperspectral imaging technology and applications in agriculture[J]. Remote Sensing, 2020, 12(16): 2659. [79] 易兴松, 兰安军, 文锡梅,等. 基于 ASD 和 GaiaSky-mini 的农田土壤重金属污染监测[J]. 生态学杂志, 2018, 37(6): 1781-1788. [80] 王劼. 田野成像光谱仪中小麦叶绿素含量模型研究[D].中国科学技术大学,2011. [81] 万亮,岑海燕,朱姜蓬,等.基于纹理特征与植被指数融合的水稻含水量无人机遥感监测[J].智慧农业(中英文),2020,2(01):58-67. [82] 朱姜蓬,岑海燕,何立文,等.农情监测多旋翼无人机系统开发及性能评估[J].智慧农业,2019,1(01):43-52. [83] 肖武,陈佳乐,笪宏志,等.基于无人机影像的采煤沉陷区玉米生物量反演与分析[J].农业机械学报,2018,49(08):169-180. [84] 傅友强,钟旭华,黄农荣,等.基于无人机多光谱遥感的水稻冠层光谱特征和氮素营养关系研究[J].广东农业科学,2021,48(10):121-131. [85] ZHENG H B, MA J F, ZHOU M, LI D, YAO X, CAO W X, ZHU Y, CHENG T. Enhancing the nitrogen signals of rice canopies across critical growth stages through the integration of textural and spectral information from unmanned aerial vehicle (UAV) multispectral Imagery [J]. Remote Sensing, 2020,12(6): 957. [86] 金伟,葛宏立,杜华强,等.无人机遥感发展与应用概况[J].遥感信息,2009,No.101(01):88-92. [87] Deng L, Mao Z, Li X, et al. UAV-based multispectral remote sensing for precision agriculture: A comparison between different cameras[J]. ISPRS journal of photogrammetry and remote sensing, 2018, 146: 124-136. [88] 梁晋,刘仕元,王帅彬,等.基于无人机遥感的花生氮营养反演研究[J].中国油料作物学报,2020,42(06):1043-1050. [89] 徐旭,陈国庆,王良,等.基于敏感光谱波段图像特征的冬小麦LAI和地上部生物量监测[J].农业工程学报,2015,31(22):169-175. [90] 杭艳红,苏欢,于滋洋,等.结合无人机光谱与纹理特征和覆盖度的水稻叶面积指数估算[J].农业工程学报,2021,37(09):64-71. [91] Adão T, Hruška J, Pádua L, et al. Hyperspectral imaging: A review on UAV-based sensors, data processing and applications for agriculture and forestry[J]. Remote sensing, 2017, 9(11): 1110. [92] Bareth G, Aasen H, Bendig J, et al. Low-weight and UAV-based hyperspectral full-frame cameras for monitoring crops: Spectral comparison with portable spectroradiometer measurements[J]. Photogrammetrie Fernerkundung Geoinformation, 2015,69-79. [93] Aasen H, Burkart A, Bolten A, et al. Generating 3D hyperspectral information with lightweight UAV snapshot cameras for vegetation monitoring: From camera calibration to quality assurance[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 108: 245-259 [94] 高林,杨贵军,于海洋,等.基于无人机高光谱遥感的冬小麦叶面积指数反演[J].农业工程学报,2016,32(22):113-120. [95] Zhu H, Liu H, Xu Y, et al. UAV-based hyperspectral analysis and spectral indices constructing for quantitatively monitoring leaf nitrogen content of winter wheat[J]. Applied Optics, 2018, 57(27): 7722-7732. [96] 陶惠林,冯海宽,徐良骥,等.基于无人机高光谱遥感数据的冬小麦生物量估算[J].江苏农业学报,2020,36(05):1154-1162. [97] 于丰华. 基于无人机高光谱遥感的东北粳稻生长信息反演建模研究[D].沈阳农业大学,2017. [98] 王纪华,李存军,刘良云,等.作物品质遥感监测预报研究进展[J].中国农业科学,2008(09):2633-2640. [99] 薛利红,朱艳,张宪,等.利用冠层反射光谱预测小麦籽粒品质指标的研究[J].作物学报,2004,(10):1036-1041. [100] Yan S, Wang X, Huang J, et al. Study on the method and model of rice quality monitoring based on hyperspectral data[C]//2016 Fifth International Conference on Agro-Geoinformatics (Agro-Geoinformatics). IEEE, 2016: 1-4. [101] 仲晓春,何理,陈莹莹,等.基于高光谱的稻米品质估测模型的构建[J].扬州大学学报(农业与生命科学版),2012,33(02):34-38. [102] 谢莉莉,王福民,张垚,等.基于多生育期光谱变量的水稻直链淀粉含量监测[J].农业工程学报,2020,36(08):165-173. [103] Bagchi T B, Sharma S, Chattopadhyay K. Development of NIRS models to predict protein and amylose content of brown rice and proximate compositions of rice bran[J]. Food Chemistry, 2016, 191: 21-27. [104] Liu M B, Li X L, Liu Y, et al. Detection of crude protein, crude starch, and amylose for rice by hyperspectral reflectance[J]. Spectroscopy Letters, 2014, 47(2): 101-106. [105] Basnet B B, Apan A, Kelly R, et al. Relating satellite imagery with grain protein content[C]//Proceedings of the 2003 Spatial Sciences Institute biennial conference: spatial knowledge without boundaries (SSC2003). 2003. [106] 李存军. 区域性冬小麦籽粒蛋白含量遥感监测技术研究[D].浙江大学,2005. [107] 谭昌伟,王纪华,黄文江,等.基于TM和PLS的冬小麦籽粒蛋白质含量预测[J].农业工程学报,2011,27(03):388-392. [108] Capolupo A, Kooistra L, Berendonk C, et al. Estimating plant traits of grasslands from UAV-acquired hyperspectral images: a comparison of statistical approaches[J]. ISPRS International Journal of Geo-Information, 2015, 4(4): 2792-2820. [109] 江立庚,曹卫星,甘秀芹,等.不同施氮水平对南方早稻氮素吸收利用及其产量和品质的影响[J].中国农业科学,2004(04):490-496. [110] Wright D L, Rasmussen V P, Ramsey R D, et al. Canopy reflectance estimation of wheat nitrogen content for grain protein management[J]. GIScience & Remote Sensing, 2004, 41(4): 287-300. [111] 屈莎,李振海,邱春霞,等.基于开花期氮素营养指标的冬小麦籽粒蛋白质含量遥感预测[J].农业工程学报,2017,33(12):186-193. [112] 冯伟,姚霞,田永超,等.小麦籽粒蛋白质含量高光谱预测模型研究[J].作物学报,2007(12):1935-1942. [113] Wang Zhijie, Wang Jihua, Liu Liangyun, et al. Prediction of grain protein content in winter wheat (Triticum aestivum, L.) using plant pigment ratio (PPR)[J]. Field Crops Research, 2004, 90(2): 311-321. [114] Zhang J, Song X, Jing X, et al. Remote Sensing Monitoring of Rice Grain Protein Content Based on a Multidimensional Euclidean Distance Method[J]. Remote Sensing, 2022, 14(16): 3989. [115] 李振海,徐新刚,金秀良,等.基于氮素运转原理和GRA-PLS算法的冬小麦籽粒蛋白质含量遥感预测[J].中国农业科学,2014,47(19):3780-3790. [116] Pan J, Zhu Y, Jiang D, et al. Modeling plant nitrogen uptake and grain nitrogen accumulation in wheat[J]. Field Crops Research, 2006, 97(2-3): 322-336. [117] 李卫国,朱艳,荆奇,等.水稻籽粒蛋白质积累的模拟模型研究[J].中国农业科学,2006(03):544-551. [118] Ritchie J T. IBSNAT and the CERES-Rice model[C]//Proceedings of the workshop on impact of weather parameters on growth and yield of rice. International Rice Research Institute, 1987: 271-281. [119] De Wit A J W, Van Diepen C A. Crop model data assimilation with the Ensemble Kalman filter for improving regional crop yield forecasts[J]. Agricultural and Forest Meteorology, 2007, 146(1-2): 38-56. [120] Horie T, Nakagawa H, Centeno H G S, et al. The rice crop simulation model SIMRIW and its testing[J]. Modeling the impact of climate change on rice production in Asia, 1995: 51-66. [121] Taylor R. Interpretation of the correlation coefficient: a basic review[J]. Journal of diagnostic medical sonography, 1990, 6(1): 35-39. [122] Abulaiti Y, Sawut M, Maimaitiaili B, et al. A possible fractional order derivative and optimized spectral indices for assessing total nitrogen content in cotton[J]. Computers and electronics in agriculture, 2020, 171: 105275. [123] 刘磊,沈润平,丁国香.基于高光谱的土壤有机质含量估算研究[J].光谱学与光谱分析,2011,31(03):762-766. [124] 游士兵,严研.逐步回归分析法及其应用[J].统计与决策,2017(14):31-35. [125] 何青海,王小龙,吴文龙.基于偏最小二乘回归的潜艇航渡区威胁度量化[J].舰船电子工程,2021,41(07):68-72. [126] 瞿海斌,刘全,程翼宇.近红外漫反射光谱法测定黄连浸膏粉中生物碱含量[J].分析化学,2004(04):477-480. [127] 吴琼,原忠虎,王晓宁.基于偏最小二乘回归分析综述[J].沈阳大学学报,2007(02):33-35. [128] 赵强,张工力,陈星旦.多元散射校正对近红外光谱分析定标模型的影响[J].光学精密工程,2005(01):53-58. [129] Nawar S, Buddenbaum H, Hill J, et al. Estimating the soil clay content and organic matter by means of different calibration methods of vis-NIR diffuse reflectance spectroscopy[J]. Soil and Tillage Research, 2016, 155: 510-522. [130] Srivastava R, Sethi M, Yadav R K, et al. Visible-near infrared reflectance spectroscopy for rapid characterization of salt-affected soil in the Indo-Gangetic Plains of Haryana, India[J]. Journal of the Indian Society of Remote Sensing, 2017, 45(2): 307-315. [131] Sierociuk D, Skovranek T, Macias M, et al. Diffusion process modeling by using fractional-order models[J]. Applied Mathematics and Computation, 2015, 257: 2-11. [132] Kusnierek K, Korsaeth A. Simultaneous identification of spring wheat nitrogen and water status using visible and near infrared spectra and Powered Partial Least Squares Regression[J]. Computers and Electronics in Agriculture, 2015, 117: 200-213. [133] Merzlyak M N, Gitelson A A, Chivkunova O B, et al. Non‐destructive optical detection of pigment changes during leaf senescence and fruit ripening[J]. Physiologia plantarum, 1999, 106(1): 135-141. [134] Rouse Jr J W, Haas R H, Deering D W, et al. Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation[R]. 1974. [135] Jiang Z, Huete A R, Didan K, et al. Development of a two-band enhanced vegetation index without a blue band[J]. Remote sensing of Environment, 2008, 112(10): 3833-3845. [136] He W, Wang L, Lin Q, et al. Rice seed storage proteins: Biosynthetic pathways and the effects of environmental factors[J]. Journal of Integrative Plant Biology, 2021 [137] Birla D S, Malik K, Sainger M, et al. Progress and challenges in improving the nutritional quality of rice (Oryza sativa L.)[J]. Critical Reviews in Food Science and Nutrition, 2017, 57(11): 2455-2481. [138] Zhu X, Guo R, Liu T, et al. Crop Yield Prediction Based on Agrometeorological Indexes and Remote Sensing Data[J]. Remote Sensing, 2021, 13(10): 2016. [139] Huete A, Didan K, Miura, et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices[J]. Remote Sensing of Environment, 2002, 83(1): 195-213. [140] 刘秀英,刘晨洲,吴姗微,等.玉米叶片花青素相对含量高光谱遥感反演[J].遥感信息,2018,33(06):1-8. [141] Dash, J.; Curran, P.J. The MERIS terrestrial chlorophyll index. Int. J. Remote Sens. 2004, 25, 5403–5413. [142] Gitelson A A, Viña A, Ciganda V, et al. Remote estimation of canopy chlorophyll content in crops[J]. Geophysical Research Letters, 2005, 32(8). [143] Penuelas J, Baret F, Filella I. Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance[J]. Photosynthetica, 1995, 31(2): 221-230. [144] Haralick R M, Shanmugam K, Dinstein I H. Textural features for image classification[J]. IEEE Transactions on systems, man, and cybernetics, 1973 (6): 610-621. [145] Mohanaiah P, Sathyanarayana P, GuruKumar L. Image texture feature extraction using GLCM approach[J]. International journal of scientific and research publications, 2013, 3(5): 1-5.
﹀
|
中图分类号: |
P237
|
开放日期: |
2024-06-16
|