论文中文题名: |
钠金属电池氟化电解液设计与性能研究
|
姓名: |
赵岩岩
|
学号: |
22211225069
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
085600
|
学科名称: |
工学 - 材料与化工
|
学生类型: |
硕士
|
学位级别: |
工程硕士
|
学位年度: |
2025
|
培养单位: |
西安科技大学
|
院系: |
材料科学与工程学院
|
专业: |
材料工程
|
研究方向: |
新能源材料与器件
|
第一导师姓名: |
卢海
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2025-06-18
|
论文答辩日期: |
2025-05-30
|
论文外文题名: |
Design and Performance study of Fluorinated Electrolytes for Sodium Metal Batteries
|
论文中文关键词: |
钠金属电池 ; 氟化碳酸酯 ; 氟化醚 ; 溶剂化结构 ; 界面
|
论文外文关键词: |
Sodium metal batteries ; fluorinated carbonate electrolyte ; fluorinated ether ; solvation structure ; sodium-ion pouch batteries.
|
论文中文摘要: |
︿
钠金属电池具有能量密度高、原料来源丰富、环境友好等优点,是极具发展潜力的高比能、低成本电化学储能体系。然而,基于碳酸酯或醚类溶剂构建的有机电解液,在高活性钠金属负极表面通常难以形成稳定的固态电解质界面膜(SEI),导致界面副反应严重、死钠甚至钠枝晶生长等问题,严重影响钠金属电池的循环寿命与安全性。同时,这些传统碳酸酯或醚基电解液存在易燃、氧化稳定性差等缺陷,进一步加剧电池的安全隐患。鉴于此,本论文利用氟化溶剂的优良成膜性、阻燃性和耐氧化性,设计开发适配于钠金属电池的氟化电解液体系,系统研究了氟化溶剂调配设计对电解液理化性质、钠离子溶剂化结构、正负极界面化学和钠金属电池性能的影响机制。主要研究内容及获得的结论如下:
(1)基于强极性氟代碳酸乙烯酯(FEC)和弱极性甲基三氟乙基碳酸酯(FEMC)构建氟化碳酸酯基电解液,探究氟化碳酸酯溶剂调配对电解液宏观性质、微观结构和电池电化学性能的影响规律。研究结果表明:合理调配氟化碳酸酯比例可以保障较高的钠盐溶解度和离子电导率,提高钠离子迁移数,增强电解液的氧化稳定性;两款氟化碳酸酯均能够参与钠离子溶剂化结构,减少FEC用量可以导致更少FEC进入Na+溶剂化鞘层,有助于降低钠离子脱溶剂化能垒,增强电极反应动力学;FEMC与钠离子配位后具有优先还原能力,增加FEMC用量有助于在钠金属表面贡献更富含NaF的SEI膜,抑制界面副反应和钠枝晶生长,改善氟化电解液与钠金属负极的相容性。在FEC/FEMC等体积比条件下,基于磷酸钒钠(NVP)正极构建的钠金属电池在5 C倍率下循环800次后容量保持率高达92 %。
(2)在氟化碳酸酯基电解液中引入氟化醚助剂构建酯/醚混配氟化电解液,研究氟化醚助剂种类对电解液宏观性质、微观结构和钠金属电池性能的影响规律。研究结果表明:在氟化碳酸酯基电解液中引入1,2-双(1,1,2,2-四氟乙氧基)乙烷(TFEE)、1H,1H,5H-八氟戊基1,1,2,2-四氟乙醚(OTE)两款助剂均可以降低电解液粘度,同时进一步增强电解液的氧化稳定性;相比氟化碳酸酯,两款氟化醚助剂与钠离子结合能相对较弱,由此形成了具有局部高浓度特征(内层氟酯-外层氟化醚)的钠离子溶剂化结构,OTE与钠离子配位相对TFEE更强,形成的局部高浓度溶剂化环境更有利于降低钠离子在界面附近的脱溶剂化能垒,提高电极反应交换电流密度与钠离子扩散动力学;相比TFEE,OTE具有更好的氧化稳定性和还原成膜能力,可以在正负极两侧同时贡献氟化度更高且“刚柔并济”的无机-有机复合界面膜层,充分抑制电解液的不可逆氧化还原分解。使用OTE助剂构建的酯/醚混配氟化电解液,支持NVP/Na电池在高倍率(40 C)和宽电位窗口(2~4.2 V)条件下稳定循环超过1500圈。
(3)进一步考察上述经优化设计构建的氟化电解液对软包装钠离子电池安全性能的改善作用。研究结果表明:几款氟化电解液均具有阻燃特性和良好的热稳定性,较之传统电解液具有显著的安全性优势;传统电解液制作的钠离子电池经50次充放电循环后产气明显,而氟化电解液能够有效抑制钠离子电池的产气鼓胀现象;基于醚/酯混配氟化电解液制作的软包装钠离子电池,能够顺利通过针刺等破坏性试验,试验过程未产生明火、爆炸且电池表面温升较低,展现出良好的安全性能。
﹀
|
论文外文摘要: |
︿
Sodium metal batteries possess advantages such as high energy density, abundant raw material sources, and environmental friendliness, making them a highly promising electrochemical energy storage system with high specific energy and low cost. However, organic electrolytes based on carbonate or ether solvents often struggle to form a stable solid electrolyte interphase (SEI) on the surface of the highly reactive sodium metal anode. This leads to severe interfacial side reactions, dead sodium, and even the growth of sodium dendrites, which significantly impact the cycling life and safety of sodium metal batteries. Additionally, these traditional carbonate or ether-based electrolytes have shortcomings such as flammability and poor oxidative stability, further exacerbating safety concerns. In light of these issues, this paper utilizes the excellent film-forming properties, flame retardancy, and oxidative stability of fluorinated solvents to design and develop a fluorinated electrolyte system suitable for sodium metal batteries. A systematic study was conducted on the effects of fluorinated solvent formulation on the physicochemical properties of the electrolyte, the solvation structure of sodium ions, the interfacial chemistry of the anode and cathode, and the performance of sodium metal batteries. The main research content and conclusions obtained are as follows:
(1) A fluorinated carbonate-based electrolyte was constructed using strongly polar fluoroethylene carbonate (FEC) and weakly polar methyl trifluoroethyl carbonate (FEMC) to investigate the effects of fluorinated carbonate solvent composition on the macroscopic properties, microscopic structure, and electrochemical performance of sodium-ion batteries. The results indicate that an appropriate ratio of fluorinated carbonates can ensure high sodium salt solubility and ionic conductivity, enhance sodium ion transference number, and improve the oxidative stability of the electrolyte. Both fluorinated carbonates can participate in the solvation structure of sodium ions; reducing the amount of FEC leads to less FEC entering the Na+ solvation sheath, which helps lower the desolvation energy barrier for sodium ions and enhances the kinetics of electrode reactions. FEMC exhibits preferential reduction capability after coordination with sodium ions; increasing the amount of FEMC contributes to a solid electrolyte interphase (SEI) film enriched with NaF on the sodium metal surface, suppressing interfacial side reactions and sodium dendrite growth, thereby improving the compatibility of the fluorinated electrolyte with the sodium metal anode. Under equal volume ratios of FEC and FEMC, sodium metal batteries constructed with sodium vanadate phosphate (NVP) cathodes demonstrated a capacity retention of up to 92% after 800 cycles at a rate of 5 C
(2) The introduction of fluorinated ether additives into fluorinated carbonate-based electrolytes to construct ester/ether mixed fluorinated electrolytes allows for the investigation of the effects of different fluorinated ether additives on the macroscopic properties, microscopic structure, and performance of sodium metal batteries. The research results indicate that the incorporation of two additives, 1,2-bis(1,1,2,2-tetrafluoroethoxy)ethane (TFEE) and 1H,1H,5H-octafluoropentyl-1,1,2,2-tetrafluoroethyl ether (OTE), into the fluorinated carbonate-based electrolyte can reduce the viscosity of the electrolyte while further enhancing its oxidative stability.Compared to fluorinated carbonates, both fluorinated ether additives exhibit relatively weaker binding energies with sodium ions, resulting in a sodium ion solvation structure characterized by a locally high concentration (with a fluorinated ester inner layer and a fluorinated ether outer layer). The coordination of OTE with sodium ions is stronger than that of TFEE, leading to a more favorable local high-concentration solvation environment that reduces the desolvation energy barrier of sodium ions near the interface, thereby enhancing the exchange current density of electrode reactions and the diffusion kinetics of sodium ions. In comparison to TFEE, OTE demonstrates better oxidative stability and film-forming ability, contributing to a fluorinated inorganic-organic composite interfacial film layer with higher fluorination and a balance of rigidity and flexibility on both the anode and cathode sides, effectively suppressing the irreversible redox decomposition of the electrolyte. The ester/ether blended fluorinated electrolyte constructed with the OTE additive supports the stable cycling of NVP/Na batteries for over 1500 cycles under high-rate (40 C) and wide potential window (2–4.2 V) conditions.
(3) Further investigation into the improved safety performance of sodium-ion batteries with soft packaging using the optimized fluorinated electrolyte is presented. The results indicate that several fluorinated electrolytes exhibit non-flammable characteristics and good thermal stability, demonstrating significant safety advantages over traditional electrolytes. Sodium-ion batteries made with traditional electrolytes show noticeable gas generation after 50 charge-discharge cycles, whereas the fluorinated electrolytes effectively suppress gas generation and swelling phenomena in sodium-ion batteries. Soft-packaged sodium-ion batteries utilizing ether/ester blended fluorinated electrolytes successfully pass destructive tests such as puncture tests, with no open flames or explosions occurring during the testing process, and a relatively low temperature rise on the battery surface, showcasing excellent safety performance.
﹀
|
参考文献: |
︿
[1] 李洪庆, 谭玲玲, 康凯. 中国新能源汽车动力电池行业发展研究 [J]. 汽车工业研究, 2025, (01): 1-6. [2] He M L, Davis R, Chartouni D, Johnson M, Abplanalp M, Troendle P, et al. Assessment of the first commercial Prussian blue based sodium-ion battery [J]. Journal of Power Sources, 2022, 548: 232036. [3] Fang W, Jiang H, Zheng Y, Zheng H, Liang X, Sun Y, et al. A bilayer interface formed in high concentration electrolyte with SbF3 additive for long-cycle and high-rate sodium metal battery [J]. Journal of Power Sources, 2020, 455: 227956. [4] Wang Y, Yang H, Xu J, Tang P, Wei Q, Hu T, et al. Competitive Coordination of Sodium Ions for High-Voltage Sodium Metal Batteries with Fast Reaction Speed [J]. Journal of the American Chemical Society, 2024, 146(11): 7332-40. [5] Chu S, Guo S. From Rotten to Magical: Transition Metal Migration in Layered Sodium-Ion Battery Cathodes [J]. 2024, 34(18): 2313234. [6] Xu W, Li J, Liao X, Zhang L, Zhang X, Liu C, et al. Fluoride-Rich, Organic–Inorganic Gradient Interphase Enabled by Sacrificial Solvation Shells for Reversible Zinc Metal Batteries [J]. Journal of the American Chemical Society, 2023, 145(41): 22456-65. [7] Song X N, Zhou X F, Zhou Y X, Deng Y M, Meng T, Gao A M, et al. Reaction Mechanisms of Sodium-Ion Batteries under Various Charge and Discharge Conditions in a Three-Electrode Setup [J]. Chemelectrochem, 2018, 5(17): 2475-81. [8] Usiskin R, Lu Y, Popovic J, Law M, Balaya P, Hu Y-S, et al. Fundamentals, status and promise of sodium-based batteries [J]. Nature Reviews Materials, 2021, 6(11): 1020-35. [9] Bai P X, He Y W, Xiong P X, Zhao X X, Xu K, Xu Y H. Long cycle life and high rate sodium-ion chemistry for hard carbon anodes [J]. Energy Storage Materials, 2018, 13: 274-82. [10] Huang X, Jing H L, Yang M, Lu H, Xue F, Zhao J C, et al. Comparative study on thermal and gas characteristics of 26700 sodium-ion and lithium-ion batteries [J]. Journal of Power Sources, 2025, 631: 236270. [11] Chotard J N, Rousse G, David R, Mentré O, Courty M, Masquelier C. Discovery of a Sodium-Ordered Form of Na3V2(PO4)3 below Ambient Temperature [J]. Chemistry of Materials, 2015, 27(17): 5982-7. [12] Hilder M, Howlett P C, Saurel D, Gonzalo E, Basile A, Armand M, et al. The effect of cation chemistry on physicochemical behaviour of superconcentrated NaFSI based ionic liquid electrolytes and the implications for Na battery performance [J]. Electrochimica Acta, 2018, 268: 94-100. [13] Gao H C, Xue L G, Xin S, Park K, Goodenough J B. A Plastic-Crystal Electrolyte Interphase for All-Solid-State Sodium Batteries [J]. Angewandte Chemie-International Edition, 2017, 56(20): 5541-5. [14] Damircheli R, Hoang B, Ferrari V C, Lin C F. Highly uniform nitride-rich artificial solid electrolyte interphase enabled by nano-silicon nitride for superior performance in advanced sodium metal batteries [J]. Journal of Materials Chemistry A, 2024, 12(46): 31949-58. [15] Fang W, Jiang R, Zheng H, Zheng Y, Sun Y, Liang X, et al. Stable sodium metal anode enhanced by advanced electrolytes with SbF3 additive [J]. Rare Metals, 2021, 40(2): 433-9. [16] 江芮. 钠金属电池电极-电解液界面的改性研究 [D].合肥:合肥工业大学, 2022. [17] Chen X, Huang Y S, Zhang M B, Yu Y L, Li X Y, Chen D G, et al. Tin-antimony/carbon composite porous fibers: electrospinning synthesis and application in sodium-ion batteries [J]. Materials Research Express, 2024, 11(3). [18] Zhao S Z, Shen Y X, Che H Y, Liao X Z, Zhang X M, Ma Z F. Ionic conductive membrane suitable for sodium metal batteries [J]. Journal of Membrane Science, 2024, 702: 122792. [19] Jo J H, Jo C H, Qiu Z F, Yashiro H, Shi L Y, Wang Z Y, et al. Nature-Derived Cellulose-Based Composite Separator for Sodium-Ion Batteries [J]. Frontiers in Chemistry, 2020, 8: 00153. [20] Li Z P, Zhu K J, Liu P, Jiao L F. 3D Confinement Strategy for Dendrite-Free Sodium Metal Batteries [J]. Advanced Energy Materials, 2022, 12(4): 2100359. [21] Dahbi M, Fukunishi M, Horiba T, Yabuuchi N, Yasuno S, Komaba S. High performance red phosphorus electrode in ionic liquid-based electrolyte for Na-ion batteries [J]. Journal of Power Sources, 2017, 363: 404-12. [22] Bayley P M, Trease N M, Grey C P. Insights into Electrochemical Sodium Metal Deposition as Probed with in 23Na NMR [J]. Journal of the American Chemical Society, 2016, 138(6): 1955-61. [23] Mendes T C, Zhang X M, Wu Y T, Howlet P C, Forsyth M, Macfarlane D R. Supported Ionic Liquid Gel Membrane Electrolytes for a Safe and Flexible Sodium Metal Battery [J]. Acs Sustainable Chemistry & Engineering, 2019, 7(4): 3722-6. [24] Zhou H Y, Gu J, Zhang W W, Hu C S, Lin X Y. Rational Design of Cellulose Nanofibrils Separator for Sodium-Ion Batteries [J]. Molecules, 2021, 232: 115481. [25] Zhou X, Zhang Q, Zhu Z, Cai Y, Li H, Li F. Anion‐Reinforced Solvation for a Gradient Inorganic‐Rich Interphase Enables High‐Rate and Stable Sodium Batteries [J]. Angewandte Chemie International Edition, 2022, 61(30): e202205045. [26] Wu W, Hou S, Zhang C, Zhang L. A Dendrite-free Na–Na2S–Carbon Hybrid toward a Highly Stable and Superior Sodium Metal Anode [J]. ACS Applied Materials & Interfaces, 2020, 12(24): 27300-6. [27] Shi H, Zhang Y, Liu Y, Yuan C. Metallic Sodium Anodes for Advanced Sodium Metal Batteries: Progress, Challenges and Perspective [J]. The Chemical Record, 2022, 22(10): e202200112. [28] Jin Y, Le P M L, Gao P Y, Xu Y B, Xiao B W, Engelhard M H, et al. Low-solvation electrolytes for high-voltage sodium-ion batteries [J]. Nature Energy, 2022, 7(8): 718-25. [29] Geng C X, Buchholz D, Kim G T, Carvalho D V, Zhang H, Chagas L G, et al. Influence of Salt Concentration on the Properties of Sodium-Based Electrolytes [J]. Small Methods, 2019, 3(4): 1800208. [30] Sun Y, Li J-C, Zhou H, Guo S. Wide-temperature-range sodium-metal batteries: from fundamentals and obstacles to optimization [J]. Energy & Environmental Science, 2023, 16(11): 4759-811. [31] Che H Y, Yang X R, Yu Y, Pan C L, Wang H, Deng Y H, et al. Engineering optimization approach of nonaqueous electrolyte for sodium ion battery with long cycle life and safety [J]. Green Energy & Environment, 2021, 6(2): 212-9. [32] Cheng F Y, Cao M L, Li Q, Fang C, Han J T, Huang Y H. Electrolyte Salts for Sodium-Ion Batteries: NaPF6 or NaClO4? [J]. Acs Nano, 2023, 17(18): 18608-15. [33] Fu H Y, Yin Q Y, Huang Y, Sun H B, Chen Y W, Zhang R Q, et al. Reducing Interfacial Resistance by Na-SiO2 Composite Anode for NASICON-Based Solid-State Sodium Battery [J]. Acs Materials Letters, 2020, 2(2): 127-32. [34] Forsyth M, Yoon H, Chen F F, Zhu H J, MacFarlane D R, Armand M, et al. Novel Na+ Ion Diffusion Mechanism in Mixed Organic-Inorganic Ionic Liquid Electrolyte Leading to High Na+ Transference Number and Stable, High Rate Electrochemical Cycling of Sodium Cells [J]. Journal of Physical Chemistry C, 2016, 120(8): 4276-86. [35] Firouzi A, Qiao R M, Motallebi S, Valencia C W, Israel H S, Fujimoto M, et al. Monovalent manganese based anodes and co-solvent electrolyte for stable low-cost high-rate sodium-ion batteries [J]. Nature Communications, 2018, 9(1): 861-10. [36] Ferdousi S A, O'Dell L A, Hilder M, Barlow A J, Armand M, Forsyth M, et al. SEI Formation on Sodium Metal Electrodes in Superconcentrated Ionic Liquid Electrolytes and the Effect of Additive Water [J]. Acs Applied Materials & Interfaces, 2021, 13(4): 5706-20. [37] Kim Y J, Lee H, Noh H, Lee J, Kim S, Ryou M H, et al. Enhancing the Cycling Stability of Sodium Metal Electrodes by Building an Inorganic-Organic Composite Protective Layer [J]. Acs Applied Materials & Interfaces, 2017, 9(7): 6000-6. [38] Jache B, Adelhelm P. Use of Graphite as a Highly Reversible Electrode with Superior Cycle Life for Sodium-Ion Batteries by Making Use of Co-Intercalation Phenomena [J]. Angewandte Chemie-International Edition, 2014, 53(38): 10169-73. [39] Ba D L, Gui Q Y, Liu W Y, Wang Z, Li Y N, Liu J P. Robust cathode-ether electrolyte interphase on interfacial redox assembled fluorophosphate enabling high-rate and ultrastable sodium ion full cells [J]. Nano Energy, 2022, 94: 106918. [40] Han M, Zhu C B, Ma T, Pan Z, Tao Z L, Chen J. In atomic force microscopy study of nano-micro sodium deposition in ester-based electrolytes [J]. Chemical Communications, 2018, 54(19): 2381-4. [41] Han J, Zhang H, Varzi A, Passerini S. Fluorine-Free Water-in-Salt Electrolyte for Green and Low-Cost Aqueous Sodium-Ion Batteries [J]. Chemsuschem, 2018, 11(21): 3704-7. [42] Lin S S, Yang Z, Chen J, Qiao Y, Li L, Chou S L. Functional Electrolyte Additives for Sodium-Ion and Sodium-Metal Batteries: Progress and Perspectives [J]. Advanced Functional Materials, 2024, 34(34): 2400731. [43] Che H Y, Liu J, Wang H, Wang X P, Zhang S S, Liao X Z, et al. Rubidium and cesium ions as electrolyte additive for improving performance of hard carbon anode in sodium-ion battery [J]. Electrochemistry Communications, 2017, 83: 20-3. [44] Lee Y, Lee J, Kim H, Kang K, Choi N S. Highly stable linear carbonate-containing electrolytes with fluoroethylene carbonate for high-performance cathodes in sodium-ion batteries [J]. Journal of Power Sources, 2016, 320: 49-58. [45] Yabuuchi N, Kubota K, Dahbi M, Komaba S. Research Development on Sodium-Ion Batteries [J]. Chemical Reviews, 2014, 114(23): 11636-82. [46] Li P R, Xu T H, Ding P, Deng J, Zha C Y, Wu Y L, et al. Highly reversible Na and K metal anodes enabled by carbon paper protection [J]. Energy Storage Materials, 2018, 15: 8-13. [47] Gao Y W, Wang Z C, Tu H F, Xue J Y, Weng S X, Lu S W, et al. Low-Temperature and Fast-Charging Sodium Metal Batteries Enabled by Molecular Structure Regulation of Fluorinated Solvents [J]. Advanced Functional Materials, 2025, 35(5): 2414652. [48] Liang X, Hwang J Y, Sun Y K. Practical Cathodes for Sodium‐Ion Batteries: Who Will Take The Crown? [J]. Advanced Energy Materials, 2023, 13(37): 2301975. [49] Zheng X Y, Gu Z Y, Liu X Y, Wang Z Q, Wen J Y, Wu X L, et al. Bridging the immiscibility of an all-fluoride fire extinguishant with highly-fluorinated electrolytes toward safe sodium metal batteries [J]. Energy & Environmental Science, 2020, 13(6): 1788-98. [50] Lin Z H, Xia Q B, Wang W L, Li W S, Chou S L. Recent research progresses in ether- and ester-based electrolytes for sodium-ion batteries [J]. Infomat, 2019, 1(3): 376-89. [51] Ma X H, Cheng Z Y, Zhang T W, Zhang X Q, Ma Y, Guo Y Q, et al. High efficient recycling of glass fiber separator for sodium-ion batteries [J]. Ceramics International, 2023, 49(14): 23598-604. [52] Bai P X, Han X P, He Y W, Xiong P X, Zhao Y F, Sun J, et al. Solid electrolyte interphase manipulation towards highly stable hard carbon anodes for sodium ion batteries [J]. Energy Storage Materials, 2020, 25: 324-33. [53] Adams B D, Zheng J M, Ren X D, Xu W, Zhang J G. Accurate Determination of Coulombic Efficiency for Lithium Metal Anodes and Lithium Metal Batteries [J]. Advanced Energy Materials, 2018, 8(7): 1702097. [54] Cha J, Han J G, Hwang J, Cho J, Choi N S. Mechanisms for electrochemical performance enhancement by the salt-type electrolyte additive, lithium difluoro(oxalato)borate, in high-voltage lithium-ion batteries [J]. Journal of Power Sources, 2017, 357: 97-106. [55] Chen L, Fan X L, Hu E Y, Ji X, Chen J, Hou S, et al. Achieving High Energy Density through Increasing the Output Voltage: A Highly Reversible 5.3 V Battery [J]. Chem, 2019, 5(4): 896-912. [56] Dugas R, Ponrouch A, Gachot G, David R, Palacin M R, Tarascon J M. Na Reactivity toward Carbonate-Based Electrolytes: The Effect of FEC as Additive [J]. Journal of the Electrochemical Society, 2016, 163(10): A2333-A9. [57] Simone V, Lecarme L, Simonin L, Martinet S. Identification and Quantification of the Main Electrolyte Decomposition By-product in Na-Ion Batteries through FEC: Towards an Improvement of Safety and Lifetime [J]. Journal of the Electrochemical Society, 2017, 164(2): A145-A50. [58] Yu Q T, Xiao Y, Zhao S S, Miao Y, Wan S, Zhou L Y, et al. All-Fluorinated Low-Solvation Electrolytes for High-Voltage Sodium Metal Batteries with Appealing Stability [J]. Advanced Functional Materials, 2024, 34(34): 2401868. [59] Hartmann P, Bender C L, Vracar M, Durr A K, Garsuch A, Janek J, et al. A rechargeable room-temperature sodium superoxide (NaO2) battery [J]. Nature materials, 2013, 12(3): 228-32. [60] 于青涛. 基于溶剂化结构调控的高压钠金属电池电解液设计和应用 [D].北京:北京化工大学, 2024. [61] Oshima T, Kajita M, Okuno A J I J o A C T. Development of Sodium‐Sulfur Batteries [J]. 2005, 1: 269-76. [62] Bao C, Wang B, Liu P, Wu H, Zhou Y, Wang D, et al. Solid Electrolyte Interphases on Sodium Metal Anodes [J]. 2020, 30(52): 2004891. [63] Chen M Z, Liu Q N, Wang S W, Wang E H, Guo X D, Chou S L. High-Abundance and Low-Cost Metal-Based Cathode Materials for Sodium-Ion Batteries: Problems, Progress, and Key Technologies [J]. Advanced Energy Materials, 2019, 9(14): 1803609. [64] Kondou H, Kim J, Watanabe H. Thermal Analysis on Na Plating in Sodium Ion Battery [J]. Electrochemistry, 2017, 85(10): 647-9. [65] Abe T, Sagane F, Iriyama Y, Ogumi Z. Li+ and Na+ transfer through interfaces between inorganic solid electrolytes and polymer or liquid electrolytes [J]. Journal of Power Sources, 2005, 146(1-2): 749-52. [66] Fang Y J, Xiao L F, Ai X P, Cao Y L, Yang H X. Hierarchical Carbon Framework Wrapped Na3V2(PO4)3 as a Superior High-Rate and Extended Lifespan Cathode for Sodium-Ion Batteries [J]. Advanced Materials, 2015, 27(39): 5895-900. [67] Zhang Z S, Hu X Q, Zhou Y, Wang S F, Yao L M, Pan H, et al. Aqueous rechargeable dual-ion battery based on fluoride ion and sodium ion electrochemistry [J]. Journal of Materials Chemistry A, 2018, 6(18): 8244-50. [68] Liu X Y, Zheng X Y, Dai Y M, Wu W Y, Huang Y Y, Fu H Y, et al. Fluoride-Rich Solid-Electrolyte-Interface Enabling Stable Sodium Metal Batteries in High-Safe Electrolytes [J]. Advanced Functional Materials, 2021, 31(30): 2103522. [69] Liu W, Yan T F, Wang Y, Li Y, Luo Y, Guo R, et al. Matching Poly (vinylidene fluoride) and β"-Al2O3 for Hybrid Electrolyte Membrane for Advanced Solid-State Sodium Batteries [J]. Journal of the Electrochemical Society, 2021, 168(8): 080541. [70] Harshlata, Mishra K, Rai D K. Studies on ionic liquid based nanocomposite gel polymer electrolyte and its application in sodium battery [J]. Materials Science and Engineering B-Advanced Functional Solid-State Materials, 2021, 267: 115098
﹀
|
中图分类号: |
TQ152
|
开放日期: |
2025-06-18
|