论文中文题名: | 基于生态系统服务评估的陕西省生态安全格局构建研究 |
姓名: | |
学号: | 20210226049 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085215 |
学科名称: | 工学 - 工程 - 测绘工程 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2023 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 地理信息技术应用 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2023-12-12 |
论文答辩日期: | 2023-11-24 |
论文外文题名: | Ecological security pattern construction in Shaanxi Province based on ecosystem service assessment |
论文中文关键词: | |
论文外文关键词: | landscape pattern ; Ecosystem services ; Scarcity ; Minimum cumulative resistance model ; Ecological security pattern |
论文中文摘要: |
城镇化的快速推进加大了人类活动对自然生态系统的干预程度,从而在一定程度上影响着生态系统服务功能,对生态系统的健康发展造成了一定的威胁,实现生态系统服务的可持续发展要加大对生态系统的保护。生态安全格局(Ecological Security Pattern,ESP)关注的是生态过程与功能之间的联系,识别优化生态安全格局是维护生态系统正常功能,是保障区域可持续发展的有效措施,本文以陕西省为研究对象,基于多源遥感数据和社会经济数据评估2000-2020年生态系统服务并构建生态安全格局。本文首先对土地利用变化和所引起的生态系统服务价值(Ecosystem Services Value,ESV)的变化进行分析,在考虑供需影响的前提下来评估生态系统服务稀缺性价值(Ecosystem Services Scarcity Value,ESSV),并对生态系统服务价值的时空演变特征进行分析,选取五个单项生态系统服务功能指标来评估陕西省生态系统服务功能时空变化特征,在对生态系统服务价值和生态系统服务功能评估的基础上,利用最小累积阻力(Minimum Cumulative Resistance, MCR)模型来分析区域生态安全格局并提出优化措施。本文主要结论如下: (1)陕西省土地利用类型中,耕地、林地和草地的面积占比较大,2020年三种用地类型总面积占全区面积的96.50%,2000-2020年间土地利用总体转移特征为耕地向建设用地和草地转入,2000-2020年土地利用动态度变化最大的类型是建设用地,远远大于其它土地利用类型,达到3.32%,随着城镇化的快速推进,陕西省共有2967.13km2的林地转换为其它地类,在耕地向其它地类转移的过程中,耕地向草地转移的面积达到最大值,为2220.97km2,用地转化主要分布在陕西省的西部宝鸡市陇县和千阳县,究其原因主要是因为退耕还林工程的推进而造成。 (2)近20年来陕西省景观格局变化较大,除散布与并列指数(Interspersion Juxtaposition Index,IJI)和香农均匀度指数(Shannon’s Evenness Index,SHEI)减少外,其它指数均有所增加,景观斑块面积(Class Area,CA)和数量有所增加,说明破碎化程度增加,主要是因为陕西省经济的快速发展造成城镇向外围扩张而导致区域面积的增加,景观丰富度指数(Patch Richness Index,PRI)和景观丰富度密度(Patch Richness Density,PRD)呈上升趋势,说明近20年陕西省景观丰富度增加,物种多样化升高,也代表着破碎程度有所加重,这与城镇化的快速推进有直接关系,区域景观处于破碎化状态分布在研究区的各个地方。2010-2020年是陕西省快速发展期间,人工景观的修建在一定程度上改变了动物迁徙通道,对生态系统产生了一定的影响,陕西省景观分布合理性有待提升,城市内部建设用地分布较为密集,如西安市和榆林市,城镇周边被农田和林地所包围,整体上景观格局空间分布朝着不均衡的方向发展。 (3)陕西省生态系统服务价值呈现出先增加后减少再增加的演变趋势,2000-2010年呈现出增加的趋势,2010-2015年呈现减少的趋势,2015-2020年呈现增加的趋势。2015-2020年间,陕西省生态系统服务价值共增加了3.00×109元。2020年,生态系统服务功能高值区面积占研究区总面积的29.77%,区域整体生态系统服务功能处于较高水平,2000-2020年期间,ESV高值区分布在陕北地区榆林市西北部、汉江流域周围和铜川市北部等地区,ESV低值区主要分布在人口密集的城市中心和农村居民点分布的地区,如西安市市中心、榆林市市中心等。处于次优水平服务功能的斑块以草地为主,主要分布在郊区与农村之间;服务功能低值区主要位于人口密度大且建筑设施较多的地方。研究期间陕西省生态系统服务功能整体上有所减弱,以南部高北部低的空间分布格局为主,研究区内生态系统服务功能高值区大多分布在林地所覆盖的地区和水域周边地区,西安市北部、铜川市南部等地区生态系统服务功能处于较低水平。主要是因为研究区北部经济发展速度高于南部,北部城镇化发展较快、人口密度大且建设用地分布更为密集,而陕西省南部有着更多的耕地和林地,可以看出,生态系统服务功能的高低与城镇化水平在一定程度上呈负相关关系,城镇化水平间接影响着生态系统服务功能。 (4)陕西省生态源地中,林地、耕地和草地的面积占比较大,尤其在研究区的西南部和东北部这两个区域。髙阻力地区主要分布在城镇建设用地的四周,且该区域的生态安全水平呈现较低的态势,研究期间生态安全水平较低的区域面积有所减少。各级分区中,林地面积占比一直处于最高值。从空间上看,位于研究区北部和南部的生态廊道和生态节点较多,2000-2020年陕西省中水平生态安全区域面积位于第二,低水平生态安全区域面积占比较大,但随着时间的推移其面积不断减少,说明陕西省生态安全水平整体上有所好转。 基于以上研究,建议在制定可持发展政策时,应更多关注有较高潜在生态系统服务 的土地利用类型,继续进行生态修复工程,对于源地实施分级管理,从源头上提高生态 系统服务质量,统筹不同安全等级的区域管理措施,加强跨行政边界的区域合作。本文 研究结果可为决策者制定切实可行的区域可持续发展政策提供科学依据。 关键词:景观格局;生态系统服务;稀缺性;最小累积阻力模型;生态安全格局 研究类型:应用研究 |
论文外文摘要: |
The rapid advancement of urbanization has increased the degree of human intervention in natural ecosystems, thereby affecting the service functions of ecosystems to a certain extent and posing a certain threat to the healthy development of ecosystems. To achieve sustainable development of ecosystem services, it is necessary to increase the protection of ecosystems. The ecological security pattern focuses on the connection between ecological processes and functions. Identifying and optimizing the ecological security pattern is an effective measure to maintain the normal functions of the ecosystem and ensure regional sustainable development. This article takes Shaanxi Province as the research object, evaluates the ecosystem services from 2000 to 2020 based on multi-source remote sensing data and socio-economic data, and constructs an ecological security pattern. This article first analyzes the changes in Ecosystem Service Value (ESV) caused by land use changes, Ecosystem Services Scarcity Value (ESSV) while considering the impact of supply and demand, and analyzes the spatiotemporal evolution characteristics of ecosystem service value. Five single ecosystem service function indicators are selected to evaluate the spatiotemporal changes in ecosystem service function in Shaanxi Province, Based on the evaluation of the value and function of ecosystem services, the minimum cumulative resistance model is used to analyze the regional ecological security pattern and propose optimization measures. The main conclusions of this article are as follows: (1) Among the land use types in Shaanxi Province, the area of arable land, forest land, and grassland accounts for a relatively large proportion. In 2020, the total area of the three types of land use accounted for 96.50% of the entire area. The overall transfer of land use between 2000 and 2020 was characterized by the transfer of arable land to construction land and forest land. The type with the greatest dynamic change in land use from 2000 to 2020 was construction land, which was much larger than other land use types, reaching 3.32%. With the rapid advancement of urbanization, A total of 2967.13 km2 of forest land in Shaanxi Province has been converted into other land types. During the process of transferring farmland to other land types, the area of farmland to grassland has reached its maximum value of 2220.97 km2. The land conversion is mainly distributed in Long County and Qianyang County of Baoji City in western Shaanxi Province, mainly due to the promotion of the project of returning farmland to forests. (2) In the past 20 years, the landscape pattern in Shaanxi Province has undergone significant changes. Except for the decrease in the Interspersion Juxtaposition Index (IJI) and Shannon's Evenness Index (SHEI), other indices have all increased. The area and number of landscape patches have also increased, indicating an increase in fragmentation, mainly due to the rapid economic development of Shaanxi Province, which has led to the expansion of towns to the periphery and an increase in regional area, The Patch Richness Index (PRI) and Patch Richness Density (PRD) are showing an upward trend, indicating an increase in landscape richness and species diversity in Shaanxi Province in the past 20 years. This also indicates an increase in fragmentation, which is directly related to the rapid advancement of urbanization. The regional landscape is in a fragmented state and distributed in various parts of the study area. 2010-2020 is a period of rapid development in Shaanxi Province. The construction of artificial landscapes has changed animal migration channels to a certain extent and has had a certain impact on the ecosystem. The rationality of landscape distribution in Shaanxi Province needs to be improved, and the distribution of construction land within cities is relatively dense, such as Xi'an and Yulin. The surrounding areas of cities are surrounded by farmland and forest land, and the overall spatial distribution of landscape patterns is developing in an uneven direction. (3) The value of ecosystem services in Shaanxi Province shows an evolutionary trend of first increasing, then decreasing, and then increasing. It showed an increasing trend from 2000 to 2010, a decreasing trend from 2010 to 2015, and an increasing trend from 2015 to 2020. Between 2015 and 2020, the value of ecosystem services in Shaanxi Province increased by a total of 3.00 × 109 yuan. In 2020, the area of high value ecosystem service areas accounted for 29.77% of the total area of the research area, and the overall ecosystem service function of the region was at a high level. During the period from 2000 to 2020, ESV high value areas were distributed in the northwest of Yulin City, around the Han River Basin, and in the northern part of Tongchuan City in northern Shaanxi Province. ESV low value areas were mainly distributed in densely populated urban centers and rural residential areas, such as the center of Xi'an City Yulin City Center, etc. The patches with suboptimal service functions are mainly grassland, mainly distributed between suburbs and rural areas; Low value service areas are mainly located in areas with high population density and abundant building facilities. During the study period, the overall ecosystem service function of Shaanxi Province has weakened, with a spatial distribution pattern of high in the south and low in the north. The high value areas of ecosystem service function in the study area are mostly distributed in the areas covered by forest land and surrounding water areas. The ecosystem service function in areas such as the northern part of Xi'an City and the southern part of Tongchuan City is at a relatively low level. The main reason is that the economic development speed in the northern part of the study area is higher than that in the southern part. The urbanization development in the northern part is faster, the population density is higher, and the distribution of construction land is more dense. However, there is more arable land and forest land in the southern part of Shaanxi Province. It can be seen that the level of ecosystem service function is negatively correlated with the level of urbanization to a certain extent, and the level of urbanization indirectly affects the ecosystem service function. (4) In the ecological source areas of Shaanxi Province, the area of forest land, arable land, and grassland is relatively large, especially in the southwest and northeast regions of the research area. High resistance areas are mainly distributed around urban construction land, and the ecological security level in this area shows a low trend. During the study period, the area with low ecological security level has decreased. At all levels of zoning, the proportion of forest land area has always been at the highest value. From a spatial perspective, there are many ecological corridors and nodes located in the north and south of the research area. From 2000 to 2020, the area of medium level ecological security areas in Shaanxi Province ranked second, while the area of low level ecological security areas accounted for a relatively large proportion. However, with the passage of time, the area continued to decrease, indicating that the overall level of ecological security in Shaanxi Province has improved. Based on the above research, it is suggested that when formulating sustainable development policies, more attention should be paid to land use types with high potential for ecosystem services, ecological restoration projects should continue, graded management should be implemented for source areas, the quality of ecosystem services should be improved from the source, regional management measures with different security levels should be coordinated, and regional cooperation across administrative boundaries should be strengthened. The research findings of this article can provide scientific basis for decision-makers to formulate practical and feasible regional sustainable development policies. Key words: landscape pattern; Ecosystem services; Scarcity; Minimum cumulative resistance model; Ecological security pattern |
参考文献: |
[1] 胡西武, 贾天朝. 基于生态敏感性与景观连通性的三江源国家公园生态安全格局构建与优化[J]. 长江流域资源与环境, 2023, 32(08): 1724-1735. [2] 包玉斌, 王耀宗, 路锋, 等. 六盘山区国土空间生态安全格局构建与分区优化[J]. 干旱区研究, 2023,40(07): 1172-1183. [3] 刘斯媛, 罗勇, 于慧, 等.川西北长江黄河源区生态安全格局构建及优化[J]. 环境工程技术学报, 2023,13(04): 1315-1324. [4] 孙玉杰, 闫刚, 刘玲俐, 等. 耦合生态脆弱性和生境质量的生态安全格局构建——以南京市溧水区为例[J]. 山东农业大学学报(自然科学版), 2023, 54(03): 397-405. [5] 刘凤莲, 刘艳. 基于生态安全格局的高原城市生态修复关键区域识别——以昆明市为例[J]. 国土资源科技管理, 2023, 40(03): 17-30. [6] 张纹嘉, 付勇勇, 王晓军. 基于生态系统服务价值评价的忻州市生态安全格局构建[J].水土保持研究, 2023, 30(04): 355-364. [7] 陈丽华, 马源. 佛山市湿地景观生态安全格局构建及修复研究[J]. 环境科学与技术, 2023, 46(06): 174-186. [9] 宋珂, 王鹏, 许晨. 宜兴市县域尺度生态安全格局模拟研究[J]. 生态科学, 2023, 42(03): 163-176. [14] 摆万奇, 尚二萍, 张镱锂. 西藏自治区拉萨河流域湿地脆弱性评价与成因分析[J]. 湿地科学, 2014, 12(01): 7-14. [15] 崔世华. 湖北省土地利用碳排放时空演变及土地利用优化研究[D]. 湖北大学, 2022. [16] 张治国, 康鸿杰. 2000—2020年武威市土地利用/覆被时空变化及驱动力分析[J]. 科学技术与工程, 2023, 23(20): 8579-8587. [17] 杨佳嘉, 徐园园, 陈裕鑫, 等. 四川省土地利用转型的生态环境效应及其影响因素[J].西南农业学报, 2022, 35(10): 2237-2246. [18] 朱亚楠. 乌鲁木齐市土地利用景观格局变化与生态安全耦合协调研究[D]. 新疆农业大学, 2020. [21] 邬建国. 景观生态学—概念与理论[J]. 生态学杂志, 2000, 33(01): 42-52. [22] 刘智丽, 岳德鹏, 杨慧, 等. 基于城市化进程的宜兴市景观演变与预测[J]. 南京林业大学学报(自然科学版), 2019, 43(6): 105-112. [23] 于倩茹. 基于生态系统服务评估的生态安全格局构建研究[D]. 中央民族大学, 2021. [24] 江世雄, 李熙, 王重卿, 等.最小累积阻力模型的闽粤联网工程(福建段)区域生态安全格局[J]. 测绘通报, 2023, 24(04): 16-22. [25] 闫豫疆, 李建贵, 李均力, 等. 面向生态系统服务供需的开都-孔雀河流域生态安全格局研究[J]. 干旱区研究, 2023, 40(05): 829-839. [26] 孙立颖. 矿业城市土地利用景观格局分析与生态安全格局构建[D]. 安徽理工大学,2021. [27] 杨帅琦, 何文, 王金叶, 等. 基于MCR模型的漓江流域生态安全格局构建[J]. 中国环境科学, 2023, 43(04): 1824-1833. [28] 王琦, 王辉, 虞虎. 基于生态安全格局的国家公园边界划定——以雅鲁藏布大峡谷国家公园为例[J]. 自然资源学报, 2023, 38(04): 951-965. [30] 张平江, 党国锋. 基于MCR模型与蚁群算法的洮河流域生态安全格局构建[J]. 生态环境学报, 2023, 32(03): 481-491. [31] 孙丽慧, 刘浩, 汪丁, 等. 基于生态系统服务与生态环境敏感性评价的生态安全格局构建研究[J]. 环境科学研究, 2022, 35(11): 2508-2517. [32] 唐晓岚, 王忆梅, 周孔飞. 基于生态安全格局的山岳型风景区景观资源保护利用研究[J]. 南京林业大学学报(自然科学版), 2023, 47(02): 178-186. [33] 冯琰玮, 甄江红, 田桐羽. 基于生态安全格局的国土空间保护修复优化——以内蒙古呼包鄂地区为例[J]. 自然资源学报, 2022, 37(11): 2915-2929. [34] 田柳兰, 王珊珊, 毋兆鹏. 基于多时相遥感数据的乌鲁木齐市生态安全格局构建[J]. 干旱区地理, 2023, 46(07): 1155-1165. [35] 田柳兰, 王珊珊, 毋兆鹏. 基于多时相遥感数据的乌鲁木齐市生态安全格局构建[J].干旱区地理, 2023, 46(07): 1155-1165. [36] 李志英, 李媛媛, 李文星, 等. 基于形态学空间格局分析与最小累积阻力模型的昆明市生态安全格局构建研究[J]. 生态与农村环境学报, 2023, 39(01): 69-79. [38] 邓卓, 李文静, 张豫芳, 等. 天山-帕米尔地区生态安全格局时空演变及其影响因素[J]. 浙江农林大学学报, 2023, 40(02): 398-406. a) Environmental Toxicology and Chemistry, 2019, 38(12): 11-20. [44] 吴一洲, 姚申益, 吴思琴, 等. 海岛城市生态安全格局构建与优化策略研究——以舟山本岛为例[J]. 长江流域资源与环境, 2022, 31(12): 2693-2705. [45] 文惠, 邓西鹏, 李颖, 等. 整合生态空间的县域生态安全格局识别与构建——以武夷山市为例[J]. 生态学杂志, 2023, 42(05): 1197-1204. [46] 马超, 陈英, 张金龙, 等. 河西走廊生态安全格局构建与优化研究[J]. 生态科学, 2023, 42(01): 206-214. [47] 李晓文, 智烈慧, 马田田, 等. 构筑基于“三线整合”的中国滨海湿地生态安全格局[J]. 中国科学院院刊, 2023, 38(01): 123-133. [48] 冯碧鸥, 岳文泽, 夏皓轩. 生态安全格局视角下的生态保护红线评估——以浙江省为例[J]. 应用生态学报, 2022, 33(09): 2466-2474. [49] 周璟, 王宏卫, 谈波, 等. 开都河流域生态安全格局构建与生态修复分区识别[J]. 生态学报, 2022, 42(24): 10127-10137. [50] 魏露露, 金莲. 基于生态安全格局的国土空间生态修复分区研究——以贵州省清镇市为例[J]. 环境污染与防治, 2022, 44(07): 966-971. [51] 赵小凡, 齐晔, 李嘉慧. 气候变化风险评估体系的国际经验以及对我国的启示[J]. 环境保护, 2021, 49(08): 39-42. [52] 赵宇豪, 罗宇航, 易腾云, 等. 基于生态系统服务供需匹配的深圳市生态安全格局构建[J]. 应用生态学报, 2022, 33(09): 2475-2484. [53] 徐嘉, 许大为, 曲琛. 基于生态系统服务重要性的国土空间生态安全格局研究——以哈尔滨市域为例[J]. 西北林学院学报, 2023, 38(04): 304-312. [54] 沈润, 史正涛, 何光熊, 等. 基于景观破碎化指数的西双版纳生态安全格局构建与优化[J]. 热带地理, 2022, 42(08): 1363-1375. [55] 曹祺文, 赵丹, 王君, 等. 基于系统耦合的首都生态安全格局构建与管控[J]. 规划师, 2022, 38(09): 61-65. [56] 赵诚诚, 潘竟虎. 基于供需视角的黄河流域甘肃段生态安全格局识别与优化[J]. 生态学报, 2022, 42(17): 6973-6984. [57] 马雨欣, 杨琅, 李泞吕, 等. 基于生态系统服务重要性和生态系统脆弱性的临沧市生态安全格局构建[J]. 云南大学学报(自然科学版), 2022, 44(05): 1090-1100. [58] 王子琳, 李志刚, 方世明. 基于遗传算法和图论法的生态安全格局构建与优化——以武汉市为例[J]. 地理科学, 2022, 42(10): 1685-1694. [59] 潘卫涛, 岳邦瑞, 姚龙杰, 等. 耦合风险与服务的市域生态安全格局构建——以陕西省咸阳市为例[J]. 应用生态学报, 2023, 34(01): 178-186. [60] 张海铃, 叶长盛, 胡梦姗. 基于生态安全格局的环鄱阳湖城市群生态修复关键区域识别及修复策略[J]. 水土保持研究, 2023, 30(02): 393-402. [61] 杨立焜, 周婧楠, 孙道成, 等. 基于面向未来生态保护的全域生态安全格局构建——以开封为例[J]. 城市发展研究, 2022, 29(09): 33-39. [62] 王玉青, 李恒凯, 武镇邦, 等. 东江源区生态安全格局演变分析与评价[J]. 科学技术与工程, 2022, 22(14): 5548-5554. [63] 潘越, 龚健, 杨建新, 等. 基于生态重要性和MSPA核心区连通性的生态安全格局构建——以桂江流域为例[J]. 中国土地科学, 2022, 36(04): 86-95. [64] 许晓彤, 常军. 基于“山水林田湖草泉”系统的济南市生态安全格局构建[J]. 水土保持通报, 2022, 42(01): 208-216. [65] 魏家星, 张昱镇, 连紫璇, 等. 基于生态供需空间的区域生态安全格局构建研究——以苏南城市群为例[J]. 长江流域资源与环境, 2022, 31(02): 387-397. [66] 方国政, 薛东剑, 陈晓杰, 等. 面向生态安全格局的岷江地区生态修复重点区域识别[J]. 桂林理工大学学报, 2022, 42(01): 151-159. [67] 朱陇强, 郭泽呈, 肖敏, 等. 半干旱区县域生态安全格局构建——以临洮县为例[J].生态学报, 2022, 42(14): 5799-5811.s [68] 戴亚南, 陶红, 彭渤, 等. 基于最小累积阻力模型的平江县生态安全格局构建[J]. 湖南师范大学自然科学学报, 2022, 45(01): 110-119. [69] 毛源远, 张正栋, 董剑彬, 等. “水-能源-粮食”视角下粤港澳大湾区生态安全格局的构建及优化[J]. 热带地理, 2022, 42(02): 328-338. [70] 马才学, 杨蓉萱, 柯新利, 等. 基于生态压力视角的长三角地区生态安全格局构建与优化[J]. 长江流域资源与环境, 2022, 31(01): 135-147. [71] 姜虹, 张子墨, 徐子涵, 等. 整合多重生态保护目标的广东省生态安全格局构建[J].生态学报, 2022, 42(05): 1981-1992. [72] 柳建玲, 李胜鹏, 范胜龙, 等. 基于生态安全格局的厦漳泉地区国土空间生态保护修复区与预警点识别[J]. 生态学报, 2021, 41(20): 8124-8134. [73] 胡秋红, 丛楠, 殷国栋. 典型生态屏障区生态安全格局构建——以承德市为例[J]. 生态学杂志, 2021, 40(09): 2914-2926. [74] 吕大伟, 蔡海生, 张学玲, 等. 基于遥感生态指数的弋阳县生态安全格局构建及优化[J]. 农业现代化研究, 2021, 42(03): 545-556. [75] 后雪峰, 屈清, 江英志. 基于GIS的揭阳市城市生态安全格局构建[J]. 华南师范大学学报(自然科学版), 2021, 53(03): 83-92. [76] 如克亚·热合曼, 阿里木江·卡斯木, 哈力木拉提·阿布来提. 基于MSPA和MCR模型的图木舒克市生态安全格局构建[J]. 环境科学与技术, 2021, 44(05): 229-237. [77] 李皓, 翟月鹏, 杨小龙, 等. 基于层次分析-有序加权平均多准则评估的雄安新区生态安全格局模拟研究[J]. 生态学报, 2022, 42(01): 150-160. [78] 杨清可, 王磊, 李永乐, 等. 基于景观生态安全格局构建的城镇空间扩展模式研究——以江苏沿海地区为例[J]. 地理科学, 2021, 41(05): 737-746. [79] 李涛, 巩雅博, 戈健宅, 等. 基于电路理论的城市景观生态安全格局构建——以湖南省衡阳市为例[J]. 应用生态学报, 2021, 32(07): 2555-2564. [80] 韩俊宇, 余美瑛. 全域全要素统筹背景下生态安全格局识别与优化建议——以衢州市常山县为例[J]. 地理研究, 2021,40(04): 1078-1095. [81] 高梦雯, 胡业翠, 李向, 等. 基于生态系统服务重要性和环境敏感性的喀斯特山区生态安全格局构建——以广西河池为例[J]. 生态学报, 2021, 41(07): 2596-2608. [82] 赵伟, 邹欣怡, 蒲海霞. 成渝地区双城经济圈生态安全格局构建[J]. 中国环境科学, 2021, 41(05): 2423-2433. [83] 马世发, 劳春华, 江海燕. 基于生态安全格局理论的国土空间生态修复分区模拟——以粤港澳大湾区为例[J]. 生态学报, 2021, 41(09): 3441-3448. |
中图分类号: | P208.2 |
开放日期: | 2023-12-12 |