- 无标题文档
查看论文信息

论文中文题名:

 凝胶泡沫制备及抑制煤自燃性能实验研究    

姓名:

 范新丽    

学号:

 19220214070    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 085224    

学科名称:

 工学 - 工程 - 安全工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 煤火灾害防治    

第一导师姓名:

 马砺    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-17    

论文答辩日期:

 2022-05-31    

论文外文题名:

 Experimental study on the preparation of gel foam and its inhibition performance of coal spontaneous combustion    

论文中文关键词:

 煤自燃 ; 凝胶泡沫 ; 稳定性 ; 保水降温 ; 抑制特性    

论文外文关键词:

 Coal spontaneous combustion ; Gel foam ; Stability ; Water retention and cooling ; Inhibitions characteristics    

论文中文摘要:

      泡沫防灭火技术是采空区煤自燃防治的主要技术手段之一。泡沫的稳定性和时效性对煤自燃的防治效果影响很大,为进一步提高泡沫的防灭火性能,本文制备了凝胶泡沫材料,并进行物理性能表征,研究其抑制煤自燃的性能。

      凝胶泡沫以表面活性剂、稳泡剂、凝胶体系和功能助剂为原料,经高速机械搅拌发泡形成。首先研究了凝胶泡沫成分配比对泡沫性能的影响,确定了表面活性剂(SDS:APG0810),稳泡剂(GG-XG),凝胶体系(HPAM-AlCit),制备出了功能助剂(SAP-OPC)。其次,采用响应面分析法设计优化试验,以发泡体积大、稳定性好为优化目标,得到优化后的成分配比为:表面活性剂0.92%、稳泡剂0.49%、凝胶体系0.34%及功能助剂0.55%。

      开展了凝胶泡沫的成膜性能、液膜稳定性、热稳定性、流动性及凝结性等基本物理特性测试。凝胶泡沫覆盖煤体后形成一层结构紧密、具有复吸水性的胶体层,实现对煤体的覆盖隔氧;采用体视显微镜发现凝胶泡沫数量缓慢下降且直径分布集中,泡沫液膜稳定性强;凝胶泡沫的热稳定性好,高温下失水率低,随温度升高失水率由表面控制逐渐变为扩散控制,建立了不同温度下失水率与时间的函数关系;凝胶泡沫具有剪切稀化特性,高温下粘度明显降低;凝胶泡沫对松散煤体具有凝结性,减小煤与氧气接触面积。

      研究了凝胶泡沫对煤自燃的抑制效果。采用程序升温实验装置分析了凝胶泡沫对煤体耗氧速率和指标性气体生成率的影响,煤温100℃时对煤体的阻化率为74.48%;利用热重分析仪测试了凝胶泡沫对煤体特征温度点的影响,煤体可燃性、稳燃性和综合燃烧指数较原煤均有所下降,降低了煤体的燃烧敏感度;使用红外光谱仪分析了煤体官能团变化,通过Gaussain拟合得出凝胶泡沫降低了煤氧化过程中脂肪烃和含氧官能团的含量,抑制和延缓煤自燃反应进程;通过全自动压汞仪分析凝胶泡沫对煤体孔隙结构的影响,煤体孔隙率和平均孔径降低,减少了煤体漏风通道,降低煤体孔隙间的含氧量。

论文外文摘要:

      Foam fire prevention technology is one of the main technical means of goaf coal spontaneous combustion prevention. The stability and timeliness of foam have a great influence on the prevention and control effect of coal spontaneous combustion. In order to further improve the fire prevention and extinguishing performance of foam, gel foam materials were prepared in this thesis, and their physical properties were characterized to study the performance of inhibiting coal spontaneous combustion.

      Gel foam was formed by high speed mechanical stirring foaming using surfactant, foam stabilizer, gel system and functional additives as raw materials. Firstly, the effect of gel foam composition ratio on foam properties was studied. Surfactant ( SDS: APG0810 ), foam stabilizer ( GG-XG ), gel system ( HPAM-AlCit ) were determined, and functional additives ( SAP-OPC ) were prepared. Secondly, the response surface analysis method was used to design the optimization experiment. With large foaming volume and well stability as the optimization objectives, the optimized composition ratio was: surfactant 0.92%, foam stabilizer 0.49%, gel system 0.34% and functional additives 0.55%, respectively.

      The basic physical properties such as film-forming property, liquid film stability, thermal stability, fluidity and setting property of gel foam were tested. The gel foam covers the coal and forms a layer of colloidal layer with close structure and water absorption, which realizes the cover and oxygen insulation of the coal. The stereomicroscope showed that the number of gel foams decreases slowly and the diameter distribution is concentrated, and the foam liquid film is stable. The gel foam has good thermal stability and low water loss rate at high temperature. With the increase of temperature, the water loss rate gradually changes from surface control to diffusion control, and the functional relationship between water loss rate and time at different temperatures is established. Gel foam has shear thinning characteristics, and the viscosity decreases significantly at high temperature; gel foam has condensation on loose coal, reducing the contact area between coal and oxygen.

      The inhibition effect of gel foam on coal spontaneous combustion was studied. The influence of gel foam on oxygen consumption rate and index gas formation rate of coal was analyzed by temperature programmed experiment device. The inhibition rate of coal at 100°C is 74.48%. The influence of gel foam on the characteristic temperature point of coal was tested by thermogravimetric analyzer. The flammability, flame stability and comprehensive combustion index of coal are lower than those of raw coal, which reduced the combustion sensitivity of coal. The change of coal functional groups was analyzed by infrared spectrometer. Gaussain fitting showed that gel foam reduced the content of aliphatic hydrocarbons and oxygen-containing functional groups during coal oxidation, and inhibited and delayed the process of coal spontaneous combustion. The influence of gel foam on the pore structure of coal was analyzed by automatic mercury porosimetry. The porosity and average pore size of coal decreased, which reduced the air leakage channel of coal and the oxygen content between the pores of coal.

参考文献:

[1] 邓军, 李贝, 王凯, 等. 我国煤火灾害防治技术研究现状及展望[J]. 煤炭科学技术, 2016, 44(10): 1-7+101.

[2] Onifade M, Genc B. A review of research on spontaneous combustion of coal[J]. International Journal of Mining Science and Technology, 2020, 30(3): 303-311.

[3] 王德明. 矿井火灾学[M]. 徐州: 中国矿业大学出版社, 2008.

[4] 徐精彩. 煤自燃危险区域判定理论[M]. 北京: 煤炭工业出版社, 2001.

[5] 邓军, 徐精彩, 陈晓坤. 煤自燃机理及预测理论研究进展[J]. 辽宁工程技术大学学报, 2003(4): 455-459.

[6] 徐精彩. 煤层自燃胶体防灭火理论与技术[M]. 北京: 煤炭工业出版社, 2003.

[7] 王增林, 亓翔, 何绍群, 等. 粉煤灰三相泡沫的制备及其稳定机制[J]. 中国石油大学学报(自然科学版), 2020, 44(5): 166-176.

[8] Ren X, Hu X, Cheng W, et al. Study of resource utilization and fire prevention characteristics of a novel gel formulated from coal mine sludge (MS)[J]. Fuel, 2020, 267: 117261.

[9] 于水军, 余明高, 谢锋承, 等. 无机发泡胶凝材料防治高冒区托顶煤自燃火灾[J]. 中国矿业大学学报, 2010, 39(2): 173-177.

[10] Dong S, Lu X, Wang D, et al. Experimental investigation of the fire-fighting characteristics of aqueous foam in underground goaf[J]. Process Safety and Environmental Protection, 2017, 106: 239-245.

[11] Xi Z, Li D, Feng Z. Characteristics of polymorphic foam for inhibiting spontaneous coal combustion[J]. Fuel, 2017, 206(15): 334-341.

[12] 马超. 高倍微胶囊阻化剂泡沫防灭火技术在煤矿的应用[J]. 煤矿安全, 2010, 41(9): 48-50.

[13] Qin B, Lu Y, Li Y, et al. Aqueous three-phase foam supported by fly ash for coal spontaneous combustion prevention and control[J]. Advanced Powder Technology, 2014, 25(5): 1527-1533.

[14] 董军, 刘国忠, 刘朝文. 高分子泡沫材料反应放热控制技术及固化特性研究[J]. 煤炭学报, 2010, 35(3): 377-380.

[15] 邓军, 王楠, 文虎, 等. 胶体防灭火材料阻化性能试验研究[J]. 煤炭科学技术, 2011, 39(7): 49-52.

[16] Li Y, Hu X, Cheng W, et al. A novel high-toughness, organic/inorganic double-network fire-retardant gel for coal-seam with high ground temperature[J]. Fuel, 2020, 263: 116779.

[17] 王刚. 新型高分子凝胶防灭火材料在煤矿火灾防治中的应用[J]. 煤矿安全, 2014, 45(2): 228-229.

[18] 邓军, 徐精彩, 张辛亥. 稠化胶体防灭火特性实验研究[J]. 西安科技学院学报, 2001(2): 102-105+122.

[19] 左希希, 王斌, 朱喜颖, 等. 高分子凝胶三相泡沫发泡剂的优化及研究[J]. 消防科学与技术, 2021, 40(5): 741-743.

[20] Saxena A, Pathak A.K, Ojha K. Synergistic effects of ionic characteristics of surfactants on aqueous foam stability, gel strength, and rheology in the presence of neutral polymer[J]. Industrial & Engineering Chemistry Research, 2014, 53(49): 19184-19191.

[21] Zhang L, Qin B. Development of a new material for mine fire control[J]. Combustion Science and Technology, 2014, 186(7): 928-942.

[22] Wu M, Liang Y, Zhao Y, et al. Preparation of new gel foam and evaluation of its fire extinguishing performance[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629: 127443.

[23] Xue D, Hu X, Cheng W, et al. Carbon dioxide sealing-based inhibition of coal spontaneous combustion: A temperature-sensitive micro-encapsulated fire-retardant foamed gel[J]. Fuel, 2020, 266: 117036.

[24] Zhao G, Dai C, Wen J, et al. Stability mechanism of a novel three-phase foam by adding dispersed particle gel[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 497: 214-224.

[25] Sun Q, Li Z, Wang J, et al. Aqueous foam stabilized by partially hydrophobic nanoparticles in the presence of surfactant[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 471: 54-64.

[26] Han C, Nie S, Liu Z, et al. A novel biomass sodium alginate gel foam to inhibit the spontaneous combustion of coal[J]. Fuel, 2022, 314: 122779.

[27] 李兴维. 丙烯酸/丙烯酰胺/蒙脱石三元共聚高吸水凝胶泡沫在煤矿防灭火的应用研究[D]. 青岛: 山东科技大学, 2011.

[28] Wang G, Yan G, Zhang X, et al. Research and development of foamed gel for controlling the spontaneous combustion of coal in coal mine[J]. Journal of Loss Prevention in the Process Industries, 2016, 44: 474-486.

[29] Ren X, Hu X, Xue D, et al. Novel sodium silicate/polymer composite gels for the prevention of spontaneous combustion of coal[J]. Journal of Hazardous Materials, 2019, 371(5): 643-654.

[30] 张烨, 王彦玲, 金家锋, 等. 泡沫冻胶调剖体系的优选及性能评价[J]. 高分子材料科学与工程, 2014, 30(3): 109-112.

[31] 朱树来. 防治煤自燃的泡沫凝胶防灭火特性研究[J]. 煤炭科学技术, 2019, 47(10): 223-228.

[32] Guo Q, Ren W, Bai L. Properties of foamed gel for coal ignition suppression in underground coal mine[J]. Combustion Science and Technology, 2019, 191(8): 1294-1308.

[33] 于水军, 赵红, 孟国栋, 等. 一种新型泡沫凝胶成胶时间及灭火特性的实验研究[J]. 火灾科学, 2013, 22(4): 219-225.

[34] Xu Y, Wang D, Wang L, et al. Experimental research on inhibition performances of the sand-suspended colloid for coal spontaneous combustion[J]. Safety Science, 2012, 50(4): 822-827.

[35] 董凯丽, 王俊峰, 梁择文, 等. 矿用CMC/ZrCit/GDL防灭火凝胶特性研究[J]. 中国安全科学学报, 2020, 30(1): 114-120.

[36] 秦波涛, 张雷林. 防治煤炭自燃的多相凝胶泡沫制备实验研究[J]. 中南大学学报(自然科学版), 2013, 44(11): 4652-4657.

[37] Yang F, Lu Y, Yan Z, et al. Colloidal particle-stabilized foam to control the coal spontaneous combustion: stability mechanism analysis and extinguishing properties[J]. Energy & Fuels, 2020, 34(11): 14822-14831.

[38] Qin B, Dou G, Wang Y, et al. A superabsorbent hydrogel–ascorbic acid composite inhibitor for the suppression of coal oxidation[J]. Fuel, 2017, 190: 129-135.

[39] Ma L, Wang D, Wang Y, et al. Experimental investigation on a sustained release type of inhibitor for retarding the spontaneous combustion of coal[J]. Energy & Fuels, 2016, 30(11): 8904-8914.

[40] Tang Z, Xu G, Yang S, et al. Fire-retardant foam designed to control the spontaneous combustion and the fire of coal: Flame retardant and extinguishing properties[J]. Powder Technology, 2021, 384(24): 258-266.

[41] Lu W, Zhang X, Yuan Y, et al. Study on the characteristics and mechanism of a new type of antioxidant gel foam for coal spontaneous combustion prevention[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 628: 127254.

[42] You Q, Wang Y, Zhou W, et al. Study and application of gelled foam for in-depth water shutoff in a fractured oil reservoir[J]. Journal of Canadian Petroleum Technology. 2009, 48(12): 51-55.

[43] Kuprin D.S. Physical–chemical explanation of fire-fighting efficiency of FHF (fast - hardening foam) based on structured silica particles[J]. Journal of Sol-Gel Science and Technology, 2017, 81(1): 36-41.

[44] Vinogradov A.V, Kuprin D.S, Abduragimov I.M, et al. Silica foams for fire prevention and firefighting[J]. ACS applied materials & interfaces, 2016, 8(1): 294-301.

[45] Li S, Wang L, Sun L, et al. Formulation evaluation of an innovative composite foamed gel with high temperature and salinity compatibility in heavy oil reservoirs[J]. Journal of Petroleum Science and Engineering, 2022, 210: 110007.

[46] 田兆君, 王德明, 徐永亮, 等. 矿用防灭火凝胶泡沫的研究[J]. 中国矿业大学学报, 2010, 39(2): 169-172+189.

[47] 张新花, 颜国强, 黄启铭. 矿用凝胶泡沫防灭火材料的研究[J]. 矿业安全与环保, 2014, 41(6): 5-8+12.

[48] Zhang L, Shi B, Qin B, et al. Characteristics of foamed gel for coal spontaneous combustion prevention and control[J]. Combustion Science and Technology, 2017, 189(6): 980-990.

[49] Ren W, Guo Q, Wang Z. Application of foam-gel technology for suppressing coal spontaneous combustion in coal mines[J]. Natural Hazards, 2016, 84(2): 1207-1218.

[50] Xi X, Shi Q. Study of the preparation and extinguishment characteristic of the novel high-water-retaining foam for controlling spontaneous combustion of coal[J]. Fuel, 2021, 288: 119354.

[51] 史全林. 防治煤炭自燃的胶体泡沫理论及特性研究[D]. 徐州: 中国矿业大学, 2019.

[52] 燕永利, 张宁生, 屈撑囤, 等. 胶体泡沫(CGA)排液动力学研究[J]. 化学学报, 2005(18): 1686-1692+1637.

[53] Shi Q, Qin B. Experimental research on gel-stabilized foam designed to prevent and control spontaneous combustion of coal[J]. Fuel, 2019, 254: 115558.

[54] 张雷林. 防治煤自燃的凝胶泡沫及特性研究[D]. 徐州: 中国矿业大学, 2014.

[55] Guo Q, Ren W, Zhu J, et al. Study on the composition and structure of foamed gel for fire prevention and extinguishing in coal mines[J]. Process Safety and Environmental Protection, 2019, 128: 176-183.

[56] 吴刚. 无机盐对表面活性剂及其复合体系泡沫稳定性影响的机理研究[D]. 青岛: 中国石油大学(华东), 2017.

[57] 陈启斌, 马宝歧, 倪炳华. 泡沫凝胶性质的几种影响因素[J]. 华东理工大学学报(自然科学版), 2007(1): 71-74+119.

[58] 于水军, 赵红. 无氨泡沫凝胶制备及其蒸发特性研究[J]. 河南理工大学学报(自然科学版), 2013, 32(3): 255-259.

[59] Zhang L, Qin B, Shi B, et al. The fire extinguishing performances of foamed gel in coal mine[J]. Natural Hazards, 2016, 81(3): 1957-1969.

[60] Shi Q, Qin B, Xu Y, et al. Experimental investigation of the drainage characteristic and stability mechanism of gel-stabilized foam used to extinguish coal fire[J]. Fuel, 2022, 313:122685.

[61] 张新花. 凝胶泡沫防灭火材料研制及防灭火性能的实验研究[D]. 青岛: 山东科技大学, 2015.

[62] Lu Y. Laboratory Study on the rising temperature of spontaneous combustion in coal stockpiles and a paste foam suppression technique[J]. Energy & Fuels, 2017, 31(7): 7290-7298.

[63] 任万兴, 郭庆, 左兵召, 等. 泡沫凝胶防治煤炭自燃的特性与机理[J]. 煤炭学报, 2015, 40(S2): 401-406.

[64] 沈一丁, 王德明, 王庆国, 等. 一种凝胶泡沫的研制及其封堵阻化特性[J]. 煤矿安全, 2017, 48(9): 28-31.

[65] 张军委. 防治煤自燃的新型凝胶泡沫材料实验研究[D]. 徐州: 中国矿业大学, 2017.

[66] 陆新晓, 赵鸿儒, 薛雪, 等. 凝胶泡沫对原煤自燃的阻化特性实验研究[J]. 煤矿安全, 2019, 50(1): 33-37.

[67] Zhang L, Wu W, Wei J, et al. Preparation of foamed gel for preventing spontaneous combustion of coal[J]. Fuel, 2021, 300: 121024.

[68] 李孜军, 牛娇, 周惠斌, 等. 一种凝胶泡沫及其对硫化矿石自燃的阻化性能研究[J]. 中国安全科学学报, 2015, 25(6): 57-61.

[69] 郑晨光. 防治煤自燃的新型凝胶泡沫的制备及性能研究[D]. 西安: 西安科技大学, 2020.

[70] 李丁. 防治煤自燃的多态泡沫及其特性研究[D]. 天津: 天津理工大学, 2019.

[71] Xue D, Hu X, Cheng W, et al. Fire prevention and control using gel-stabilization foam to inhibit spontaneous combustion of coal: Characteristics and engineering applications[J]. Fuel, 2020, 264: 116903.

[72] 路传波, 张炳花, 李丙成, 等. 两性/阴离子型表面活性剂协同增强起泡性能研究[J]. 石油化工高等学校学报, 2015, 28(4): 55-59.

[73] Ren Z, Huang J, Zheng Y, et al. Micellization of binary mixture of amino sulfonate amphoteric surfactant and octylphenol polyoxyethylene ether (10) in aqueous solution: Different electrolyte effect[J]. Journal of Chemical & Engineering Data, 2017, 62(3): 938-946.

[74] Mudgil D, Barak S, Khatkar B.S. X-ray diffraction, IR spectroscopy and thermal characterization of partially hydrolyzed guar gum[J]. International Journal of Biological Macromolecules. 2012, 50(4): 1035-1039.

[75] 梁择文, 王俊峰, 董凯丽, 等. 高价态金属离子交联体系防灭火性能影响研究[J]. 中国安全科学学报, 2021, 31(7): 113-119.

[76] 王成俊, 展转盈, 倪军, 等. 矿化度对柠檬酸铝与部分水解聚丙烯酰胺交联反应的影响[J]. 石油化工, 2021, 50(10): 1058-1063.

[77] 林梅钦, 董朝霞, 李明远, 等. 低浓度HPAM/AlCit交联体系的27AlNMR研究[J]. 高等学校化学学报, 2007(8): 1573-1576.

[78] 陈刚, 汤颖, 张洁, 等. 柠檬酸铝的合成与HPAM/柠檬酸铝弱凝胶体系的配制[J]. 钻采工艺, 2010, 33, 158(5): 89-92+141.

[79] Zhong X, Qin B, Dou G, et al. A chelated calcium-procyanidine-attapulgite composite inhibitor for the suppression of coal oxidation[J]. Fuel, 2018, 217: 680-688.

[80] Xue D, Hu X, Cheng W, et al. Development of a novel composite inhibitor modified with proanthocyanidins and mixed with ammonium polyphosphate[J]. Energy, 2020, 213: 118901.

[81] 许红英, 苗梦露, 陈鹏. 复合阻化剂抑制煤自燃的红外光谱实验研究[J]. 矿业安全与环保, 2019, 46(4): 40-44.

[82] Jensen W.A. Response surface methodology: process and product optimization using designed experiments[J]. Journal of Quality Technology, 2017, 49(2): 186.

[83] 梁琛, 王树众, 公彦猛, 等. 超临界水氧化处理垃圾渗滤液的响应面法优化[J]. 环境科学学报, 2013, 33(12): 3275-3284.

[84] Shi Q, Qin B. Film-forming property and oxygen barrier characteristic of gel-stabilized foam used for controlling spontaneous combustion of coal[J]. Energy & Fuels, 2021, 35(15): 12083-12090.

[85] 马砺, 刘西西, 周莎莎, 等. 淀粉基接枝丙烯酸钠复合高吸水树脂材料的制备及性能测试[J]. 材料导报, 2021, 35(22): 22172-22177.

[86] Li M, Wang D, He S, et al. Experimental study on foaming properties of anion-cation compound foaming agent to prevent coal spontaneous combustion[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 581: 123847.

[87] 于水军, 贾博宇. 新型无氨凝胶的制备与胶凝特性研究[J]. 山东科技大学学报(自然科学版), 2012, 31(2): 42-47.

[88] 陶蓉, 崔伟, 杨华, 等. 保水性聚丙烯酰胺增稠剂的合成及评价[J]. 涂料工业, 2009, 39(9): 18-20+24.

[89] Qin Y, Liu W, Yang C, et al. Experimental study on oxygen consumption rate of residual coal in goaf[J]. Safety Science, 2012, 50(4): 787-791.

[90] Ma L, Wang D, Wang Y, et al. Synchronous thermal analyses and kinetic studies on a caged-wrapping and sustained-release type of composite inhibitor retarding the spontaneous combustion of low-rank coal[J]. Fuel Processing Technology, 2017, 157: 65-75.

[91] 胡源. 不同配比下褐煤混合燃烧特性试验研究及评价[D]. 昆明: 昆明理工大学, 2013.

[92] Petersen H.I, Rosenberg P, Nytoft H.P. Oxygen groups in coals and alginite-rich kerogen revisited[J]. International Journal of Coal Geology, 2008, 74(2): 93-113.

[93] 玄伟伟, 王倩, 张建胜. 褐煤自燃倾向测定及其低温氧化反应过程研究[J]. 煤炭学报, 2016, 41(10): 2460-2465.

[94] Zhao J, Zhang Y, Song J, et al. Microstructure of coal spontaneous combustion in low-oxygen atmospheres at characteristic temperatures[J]. Fuel, 2022, 309: 122132.

[95] Huang Z, Liu X, Gao Y, et al. Experimental study on the compound system of proanthocyanidin and polyethylene glycol to prevent coal spontaneous combustion[J]. Fuel, 2019, 254: 115610.

[96] 刘玉龙, 汤达祯, 许浩, 等. 煤岩类型控制下的微观孔隙结构及吸附特征研究[J]. 煤炭工程, 2016, 48(11): 107-110.

[97] Zhao G, Dai C, Zhang Y, et al. Enhanced foam stability by adding comb polymer gel for in-depth profile control in high temperature reservoirs[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 482(3): 115-124.

[98] 张小艳. 柠檬酸对煤自燃特性的影响研究[D]. 徐州: 中国矿业大学, 2019.

[99] 陆新晓. 防治大空间煤炭自燃的泡沫高效制备技术及应用研究[D]. 徐州: 中国矿业大学, 2016.

中图分类号:

 TD752.2    

开放日期:

 2023-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式