论文中文题名: | 冲击荷载作用下软硬组合岩体力学特性试验研究 |
姓名: | |
学号: | 20204228106 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085213 |
学科名称: | 工学 - 工程 - 建筑与土木工程 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2023 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 岩土力学与工程应用 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2023-06-12 |
论文答辩日期: | 2023-05-31 |
论文外文题名: | Experimental study on mechanical properties of soft and hard composite rock mass under impact load |
论文中文关键词: | 软硬组合岩体 ; 动力特性 ; 霍普金森压杆(SHPB) ; 数值模拟 ; 损伤本构模型 |
论文外文关键词: | Soft and hard composite rock mass ; dynamic mechanical properties ; hopkinson pressure bar (SHPB) ; numerical simulation ; damage constitutive model |
论文中文摘要: |
随着深部地下空间的开发,深部岩体的问题显得愈发重要,复合岩体作为地下工程中常见的工程对象,开挖时经常遇到动力扰动问题,如爆破或钎杆冲击等,所以对复合岩体的动力学研究意义重大。本文通过相似材料制备了软硬组合岩体试样,利用分离式霍普金森压杆试验(Split Hopkinson Pressure Bar,简称SHPB)研究了不同厚度比以及不同荷载作用面下软硬组合岩体的力学特性和破坏模式。通过数值模拟分析了冲击荷载下软硬组合试件内部裂隙发育过程。引入了Weibull分布统计强度理论,结合D-P岩石强度准则推导了软硬组合岩体统计损伤本构模型。主要研究内容及成果如下: (1)本文通过一定配比的水泥、石膏粉、石英砂等材料制作所需的类岩石试件,通过控制浇筑时间将两种不同强度的类岩石材料凝结为研究所需的软硬组合岩体试块,并进行了基础物理力学性质的测定。 (2)对软硬组合岩体试件开展SHPB试验,在冲击荷载作用下,试件的应力峰值会随着硬岩占比的增大而增大。同一组试件的荷载作用面不同,动态抗压强度也会不同,硬岩面冲击的抗压强度要高于软岩面冲击的抗压强度,并且随着硬岩占比增加两者差距会逐渐减小。 (3)利用PFC3D-FLAC3D耦合建模的方式对软硬组合岩体试件单轴冲击压缩进行数值模拟,结果表明试件破坏模式为张拉和剪切的混合型破坏,内部裂隙首先出现在两端及层理面附近,随后由撞击面向层理面发育,同一试件由硬岩面冲击时的裂隙发育速度和裂隙总数都明显大于软岩面冲击。 (4)将损伤模型与开尔文体并联得到了考虑损伤效应与应变率效应的软硬组合岩体损伤本构模型,对模型中各个参数进行了敏感度分析,计算了各个参数对本构关系的影响,最后通过模型的理论曲线与试验曲线相比较,验证了模型的合理性。 |
论文外文摘要: |
With the development of deep underground space, the problem of deep rock mass is becoming more and more important. As a common engineering object in underground engineering, layered rock mass will be subjected to dynamic disturbances such as drill rod impact and blasting during excavation. Therefore, it is of great significance to study the dynamics of soft and hard combined rock mass. In this paper, the soft and hard composite rock mass samples were prepared by similar materials. Through the Split Hopkinson Pressure Bar(SHPB) test, the mechanical properties and destroy modes of the soft and hard composite rock mass under different thickness ratios and impact directions were studied. The development process of internal cracks in soft and hard composite specimens under impact load was analyzed by numerical simulation. By introducing the Weibull statistical fracture theory and combining the D-P rock strength criterion, the damage constitutive model of soft and hard combined rock mass is derived. The main research contents are as follows : (1) In this paper, cement, gypsum powder and quartz sand are used proportionally to make the required rock-like materials. By controlling the pouring time, two kinds of rock-like materials with different strength are condensed into the soft and hard combined rock mass test blocks required for the study, and the basic physical and mechanical properties are measured. (2) The SHPB test was carried out on the soft and hard composite rock specimen. Under the impact load, the peak stress of the specimen will increase with the increase of the proportion of hard rock. The loading surface of the same group of specimens is different, and the dynamic compressive strength is also different. The compressive strength of hard rock surface impact is higher than that of soft rock surface impact, and the gap between the two will gradually decrease as the proportion of hard rock increases. (3) The PFC-FLAC coupling method is adopted for the numerical simulation of uniaxial impact compression of soft and hard composite rock specimens. The results prove that the specimen destroy mode is a mixed failure of tension and shear. The internal cracks first appear at both ends and near the bedding plane, and then develop from the impact to the bedding plane. The crack development speed and the total cracks number in the same specimen impacted by the hard rock surface are significantly greater than those impacted by the soft rock surface. (4) By paralleling the damage model with Kelvin body, the damage constitutive model of soft-hard composite rock mass considering damage effects and strain rate effects is obtained. The sensitivity analysis of each parameter in the model is conducted, and the influence of each parameter on the constitutive relation is discussed. Finally, the model rationality is verified by comparing the theoretical curve with the experimental curve. |
参考文献: |
[6] 尹光志,李星,鲁俊,宋真龙.真三轴应力条件下层状复合岩石破坏准则[J].岩石力学与工程学报, 2017, 36(02): 261-269. [11] 腾俊洋,唐建新,王进博,张宇宁.层状复合岩体损伤演化规律及分形特征[J].岩石力学与工程学报, 2018, 37(S1): 3263-3278. [15]王海亮,李宏健,王景春.巷道压力的岩石块体力学分析[J].石家庄铁道学院学报, 1997(01): 73-77. [16]王海亮.层状岩体中锯齿面与层理倾角间的关系[J].石家庄铁道学院学报, 1995(02):81-84. [17]鲜学福,谭学术.层状岩体破坏机理[M].重庆:重庆大学出版社, 1989. [18]高春玉,徐进,李忠洪,等.雪峰山隧道砂板岩各向异性力学特性的试验研究[J].岩土力学, 2011, 32(05): 1360-1364. [19]程建龙,罗松,李佳宝,等.复合岩层强度特性及破坏机理三轴加载试验研究[J].采矿与安全工程学报, 2020, 37(06): 1246-1254. [20]王旭一,黄书岭,丁秀丽,等.层状岩体单轴压缩力学特性的非均质层面影响效应研究[J/OL].岩土力学, 2021(02): 1-13[2021-01-29]. [23] 张晓春,缪协兴,杨挺青.冲击矿压的层裂板模型及实验研究[J].岩石力学与工程学报,1999,18(5): 507-511. [24] 张晓春,缪协兴.层状岩体中洞室围岩层裂及破坏的数值模拟研究[J].岩石力学与工程学报, 2002,21(11): 1645-1650. [25] 谢和平, Pariseau WG岩爆的分形特征和机理[J].岩石力学与工程学报,1993,12(1): 28-37. [26] 谢和平,周宏伟,陈忠辉.矿山非线性岩石力学的研究与展望[J].煤炭学报,1997,22(增): 180-186. [27] 潘一山,章梦涛.用突变理论分析冲击地压发生的物理过程[J].阜新矿业学院学报(自然科学版),1992,11(1): 12-18. [28] 潘一山,章梦涛,李国臻.洞室岩爆的尖角型突变模型[J].应用数学和力学,1994,15(10): 893-900. [29] 尹光志,李贺,鲜学福,等.煤岩体失稳的突变理论模型[J].重庆大学学报(自然科学版),1994,17(1): 23-28. [30] 徐曾和,徐小荷,唐春安.坚硬顶板下煤柱岩爆的尖点突变理论分析[J].煤炭学报,1995,20(5): 485-491. [31] 徐曾和,徐小荷,陈忠辉.粘弹性顶板岩层下煤柱岩爆的尖点突变与滞后[J].力学与实践,1996,18(3): 47-50. [32] 潘岳,王志强.狭窄煤柱冲击地压的折迭突变模型[J].岩土力学,2004,25(1): 23-30. [33] 潘岳,刘英,顾善发.矿井断层冲击地压的折迭突变模型[J].岩石力学与工程学报,2001,20(1): 43-48. [34]潘岳,张勇,于广明.圆形嗣室岩爆机制及其突变理论分析[J].应用数学和力学,2006,27(6): 741-749. [35] 谭云亮,孙中辉.矿区岩层运动非线性动力学特征及预测研究的基本框架[J].中国地质灾害与防治学报,2000,11(2): 54-57. [36] 谭云亮,孙中辉,杜学东.冲击地压AE时间序列小波神经网络预测模型[J].岩石力学与工程学报, 2000, 19(S1): 1034-1036. [37] 谭云亮,李芳成,周辉,等.冲击地压声发射前兆模式初步研究 [J]. 岩石力学与工程学报, 2000,19(4): 425-428. [38]王学滨,潘一山,海龙.基于剪切应变梯度塑性理论的断层岩爆失稳判据 [J].岩石力学与工程学报,2004,23(4): 588-591. [39] 王学滨,宋维源,黄梅,等.考虑水质弱化及应变梯度的断层岩爆分析[J].岩石力学与工程学报,2004,23(11): 1815-1818. [40] 李志华,窦林名,曹安业,等.采动影响下断层滑移诱发煤岩冲击机理[J].煤炭学报,2011,36(S1): 68-73. [41] 李利萍,潘一山,王晓纯,等.开采深度和垂直冲击荷载对超低摩擦型冲击地压的影响分析[J].岩石力学.与工程学报,2014,33(S1):3225-3230. [43] 李地元,邱加冬,李夕兵.冲击载荷作用下层状砂岩动态拉压力学特性研究[J].岩石力学与工程学报.2015(10):2091-2097. [44] 刘红岩,邓正定,王新生等.节理岩体动态破坏的SHPB相似材料试验研究[J].岩土力学.2014(03):659-665. [46] 单仁亮,陈石林,李宝强.花岗岩单轴冲击全程本构特性的实验研究[J].爆炸与冲击,2000(01):32-38. [47] 余永强,张文龙,范利丹,等.冲击荷载下煤系砂岩应变率效应及能量耗散特征研究[J/OL].煤炭学报:1-13[2020-07-12]. [48] 闫雷,刘连生,李仕杰,等.单轴循环冲击下弱风化花岗岩的损伤演化[J].爆炸与冲击,2020,40(05):96-105. [49] 戴兵,罗鑫尧,单启伟,等.循环冲击荷载下含孔洞岩石损伤特性与能量耗散分析[J].中国安全科学学报,2020,30(07):69-77. [50] 曹安业,范军,牟宗龙,等.矿震动载对围岩的冲击破坏效应[J].煤炭学报,2010,35(12):2006-2010. [51]翟健,程新锋,刘连生.循环冲击下风化花岗岩渗透性演化规律[J].工程爆破,2019,25(05):19-27. [52]邓显石. 冲击载荷下节理岩体动力特性模型实验研究[D].南华大学,2016. [54]章航,王志亮,卢志堂等.循环冲击荷载下花岗岩力学特性尺寸效应[J].水利水运工程学报,2020(02):107-115. [55]韩伯鲤,张文昌,杨存奋.新型地质力学模型材料(MIB)[J].武汉水利电力学院学报,1983(01):11-17. [56]马芳平,李仲奎,罗光福.NIOS模型材料及其在地质力学相似模型试验中的应用[J].水力发电学报,2004(01):48-51. [57]潘一山,张永利,徐颖,王洪英,阚兴,关杰.矿井冲击地压模拟试验研究及应用[J].煤炭学报,1998(06):32-37. [59]郑永来,夏颂佑.岩石粘弹性连续损伤本构模型[J].岩石力学与工程学报,1996,15(增):428~432. [61]单仁亮,薛友松,张倩.岩石动态破坏的时效损伤本构模型[J].岩石力学与工程学报,2003(11):1771-1776. |
中图分类号: | TU458.3 |
开放日期: | 2023-06-12 |