- 无标题文档
查看论文信息

论文中文题名:

 煤矿综采设备群生产与维护联合决策方法研究    

姓名:

 李鹏飞    

学号:

 19205016020    

保密级别:

 保密(2年后开放)    

论文语种:

 chi    

学科代码:

 080202    

学科名称:

 工学 - 机械工程 - 机械电子工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 机械工程学院    

专业:

 机械工程    

研究方向:

 装备状态监测与健康管理    

第一导师姓名:

 曹现刚    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-29    

论文答辩日期:

 2022-06-02    

论文外文题名:

 Research on Joint Decision Method of Production and Maintenance of Fully Mechanized Mining Equipment Group in Coal Mine    

论文中文关键词:

 综采设备群 ; 多级机会维护 ; 联合决策 ; 组合算法 ; 决策系统    

论文外文关键词:

 Fully Mechanized Mining Equipment Group ; Multi-level Opportunistic Maintenance ; Joint Decision ; Combinatorial Algorithm ; Decision System    

论文中文摘要:

随着煤矿智能化的发展,煤矿企业对机械设备可靠性与稳定性的要求越来越高。综采设备群作为煤矿开采中的主要设备,维护不当将造成经济损失与安全事故,建立其合理的维护决策模型对于保障煤矿生产安全来说十分关键。目前,煤矿开采过程中生产与维护冲突严重,面向综采设备群的决策模型没有考虑生产对维护的影响。本文源于国家自然科学基金(编号:51875451),针对煤矿生产与维护冲突的问题,以综采设备群为研究对象,提出了生产与维护联合决策优化方法。

针对综采设备群维护成本高、停机时间长的问题,提出多级机会维护策略。基于威布尔分布建立综采设备的退化模型,运用故障模式、影响及危害度分析对综采设备进行故障分析。基于不完美维护效果模型与机会维护思想,引入修正因子,制定多级机会维护策略,为后续模型建立提供依据。

针对综采设备群维护决策模型没有考虑生产因素的问题,建立综采设备群生产与维护联合决策模型。分析煤矿生产系统业务流程,找出生产与维护的制约关系,将库存、缺货、生产计划等因素考虑到维护决策模型中。基于多级机会维护策略,以总成本最低为目标,构建生产与维护联合决策模型。

针对联合决策模型的复杂性与智能算法的局限性,设计组合算法求解模型。将鲸鱼优化算法、模拟退火算法与遗传算法进行组合,设计混合鲸鱼退火遗传算法(Hybrid Whale Annealing Genetic Algorithm,HWAGA)。通过案例对比分析证明了算法和模型的有效性,通过灵敏度分析表明了联合决策优化的必要性。

为了将生产与维护联合决策模型应用于与煤矿实际生产过程中,开发煤矿综采设备群生产与维护联合决策系统。依据Browser/Server体系,确定系统的层次架构与功能模块。以模型与算法为基础,基于前后端分离模式,运用Java、Vue、Mybatis等技术对系统进行详细设计。系统功能测试表明系统可以满足煤矿企业管理与决策的需求。

综采设备群生产与维护联合决策方法的研究降低了综采设备的停机时间与维护成本,有效解决煤矿企业生产与维护的冲突,提升了企业效益。

论文外文摘要:

With the development of coal mine intelligence, coal mining enterprises have higher and higher requirements for the reliability and stability of mechanical equipment. As the leading equipment in coal mining, the improper maintenance of fully mechanized equipment group will cause economic losses and safety accidents. Establishing a reasonable maintenance decision model is very important to ensure coal mine production safety. Currently, the conflict between production and maintenance is severe in coal mining, and the decision model for the fully mechanized mining equipment group does not consider the impact of production on maintenance. This paper originates from the National Natural Science Foundation of China (No. 51875451), aiming at the conflict between coal mine production and maintenance, taking the fully mechanized mining equipment group as the research object, and proposing a joint decision optimization method for production and maintenance.

A multi-level opportunistic maintenance strategy is proposed to solve the problems of high maintenance costs and extended downtime of the fully mechanized mining equipment group. The degradation model of fully mechanized mining equipment is established based on Weibull distribution, and the Fault Modes Effects and Criticality Analysis is used to analyze the failure of fully mechanized mining equipment. Based on the imperfect maintenance effect model and the idea of opportunistic maintenance, a correction factor is introduced, and a multi-level opportunistic maintenance strategy is formulated to provide a basis for the subsequent model establishment.

The maintenance decision model of the fully mechanized mining equipment group does not consider the production factor, so a joint decision model of production and maintenance of the fully mechanized mining equipment group is established. Analyze the business process of the coal mine production system, find out the constraint relationship between production and maintenance, and take inventory, out-of-stock, production planning, and other factors into consideration in the maintenance decision model. Based on the multi-level opportunistic maintenance strategy, a joint decision model of production and maintenance is constructed to achieve the lowest total cost.

The joint decision model is complex, and intelligent algorithms have limitations. A combinatorial algorithm is designed to solve the model. The whale optimization algorithm, simulated annealing algorithm, and genetic algorithm are combined to design a Hybrid Whale Annealing Genetic Algorithm. The effectiveness of the algorithm and model is proved by case comparison analysis, and the necessity of joint decision optimization is demonstrated by sensitivity analysis.

To apply the joint decision model of production and maintenance to the actual production process of coal mines, a joint decision system for production and maintenance of fully mechanized mining equipment group in coal mines is developed. According to the Browser/Server system, the system's hierarchical structure and functional modules are determined. Based on the model and algorithm, the front-end and back-end separation mode is adopted, Java, Vue, and Mybatis are used to design the system in detail. The function test shows that the system can meet coal mining enterprises' management and decision needs.

The research on the joint decision method of production and maintenance of fully mechanized mining equipment group reduces the downtime and maintenance cost of fully mechanized mining equipment, effectively solves the conflict between production and maintenance of coal mining enterprises, and improves enterprise benefits.

参考文献:

[1]王国法,任怀伟,赵国瑞,等. 智能化煤矿数据模型及复杂巨系统耦合技术体系[J]. 煤炭学报,2022, 47(01): 61-74.

[2]王国法,张铁岗,王成山,等. 基于新一代信息技术的能源与矿业治理体系发展战略研究[J]. 中国工程科学,2022, 24(01): 176-189.

[3]关于加快煤矿智能化发展的指导意见[N]. 中国煤炭报,2020-03-05(002).

[4]樊红卫,张旭辉,曹现刚,等. 智慧矿山背景下我国煤矿机械故障诊断研究现状与展望[J]. 振动与冲击,2020,39(24):194-204.

[5]王国法,刘峰,孟祥军,等. 煤矿智能化(初级阶段)研究与实践[J]. 煤炭科学技术,2019, 47(08): 1-36.

[6]曹现刚,马宏伟,段雍,等. 煤矿设备智能维护与健康管理技术研究现状与展望[J].智能矿山,2020, 1(01): 105-111.

[7]孟远,谢东海,苏波,等. 2010年-2019年全国煤矿生产安全事故统计与现状分析[J]. 矿业工程研究,2020, 35(04): 27-33.

[8]宁小亮. 2013-2018年全国煤矿事故规律分析及对策研究[J]. 工矿自动化,2020, 46(07): 34-41.

[9]蒋方平,庄竞. 煤矿综采机电设备的质量管理探讨[J]. 中国设备工程,2022, (04): 232-233.

[10]Yin A, Hui Z, Cui W. Research of an integrated decision model for production scheduling and maintenance planning with economic objective [J]. Computers & Industrial Engineering, 2020, 137: 106092.

[11]Gary L, Amos H C. A hybrid simulation-based optimization framework supporting strategic maintenance development to improve production performance[J]. European Journal of Operational Research, 2020, 281(2): 402-414.

[12]Mullor J, Mulero M. Trottini. A modelling approach to optimal imperfect maintenance of repairable equipment with multiple failure modes[J]. Computers & Industrial Engineering, 2019, 128: 24-31.

[13]Salih D, Ahmet K, Umar A. An integrated model of production scheduling, maintenance and quality for a single machine[J]. Computers & Industrial Engineering, 2020, 142: 106239.

[14]康红普,王国法,王双明,等. 煤炭行业高质量发展研究[J]. 中国工程科学,2021, 23(05): 130-138.

[15]谢志强,周伟,余泽睿. 动态调整设备维护开始时间的综合调度算法[J]. 机械工程学报,2021, 57(04): 240-246.

[16]吴波,丁毓峰,黎明发. 机械系统可靠性维修及决策模型[M]. 北京: 化学工业出版社,2006.

[17]吕文元. 先进制造设备维修理论、模型与方法[M]. 北京: 科学出版社,2008 .

[18]Liu B, Xie M, Xu Z G. An imperfect maintenance policy for mission-oriented systems subject to degradation and external shocks[J]. Computers & Industrial Engineering, 2018, 102: 21-32.

[19]杜海东,曹军海,申莹,等. 非完美维修策略下退化系统可靠性仿真评估研究[J]. 系统仿真学报,2018, 30(08): 2834-2840.

[20]王金贺,张晓红,曾建潮. 非完美维修模型下的风电机组最优维修决策[J]. 计算机集成制造系统,2019, 25(05): 1151-1160.

[21]Zhu Z, Xiang Y, Li M. Preventive Maintenance Subject to Equipment Unavailability[J]. IEEE Transactions on Reliability, 2019, 68(3): 1009-1020.

[22]Cui H. Optimization of Preventive Maintenance Cycle of Ship Mechanical and Electrical Equipment Based on MRO System[J]. Journal of Coastal Research, 2019, 93: 953-959.

[23]Xin Z, Shang C, Lin L. Parallel-machine scheduling with linear deteriorating jobs and preventive maintenance activities under a potential machine disruption[J]. Computers & Industrial Engineering, 2020, 145:106482.

[24]马智亮,向星磊,任远. 基于RCM方法的建筑设备维护策略定量化决策模型[J]. 清华大学学报(自然科学版), 2020, 60(04): 348-356.

[25]宋庭新,韩国晨. 基于预防性维修的舰船装备等级修理决策系统研究[J]. 中国机械工程,2022, 33(04): 496-503.

[26]张奥,林圣,冯玎,等. 基于马尔可夫过程的牵引供电设备维修决策模型及其应用[J]. 铁道学报,2017, 39(11): 38-45.

[27]陈琼. 基于DWH-FNN的矿山电气设备监测维护决策支持系统研究[J]. 化工矿物与加工,2018, 47(06): 55-58.

[28]侯鹏飞,韩磊. 基于状态的煤矿大型固定设备维护系统[J].煤矿现代化,2019, (05): 160-163.

[29]Khac T, Huynh H. A Hybrid Condition-Based Maintenance Model for Deteriorating Systems Subject to Nonmemoryless Imperfect Repairs and Perfect Replacements[J]. IEEE Transactions on Reliability, 2019, 69(2): 781-815.

[30]杨明朝. 变电站电力设备运行监测与维护分析[J].电子测试,2020, (02): 93-95.

[31]Rui Z, Bing C, Liu D G. Condition-based maintenance with dynamic thresholds for a system using the proportional hazards model[J]. Reliability Engineering and System Safety, 2020, 204.

[32]Zhang N, Mitra F, Anne B. Condition-based maintenance for a K -out-of- N deteriorating system under periodic inspection with failure dependence[J]. European Journal of Operational Research, 2020, 287(1): 159-167.

[33]Mullor R, Mulero J, Trottini M. A modelling approach to optimal imperfect maintenance of repairable equipment with multiple failure modes[J]. Computers & Industrial Engineering, 2019, 128:24-31.

[34]孙旭升,周刚,于洋,等. 机械设备故障预测与健康管理综述[J]. 兵工自动化,2016, 35(01): 30-33.

[35]Chen Z S . A technical framework and roadmap of embedded diagnostics/prognostics for complex mechanical systems in PHM systems[J]. IEEE Transactions on Reliability, 2012, 61(2) :314-322.

[36]石慧,曾建潮. 考虑非完美维修的实时剩余寿命预测及维修决策模型[J]. 计算机集成制造系统,2016, 20(09): 2259-2266.

[37]石慧,曾建潮. 基于寿命预测的预防性维护维修策略[J]. 计算机集成制造系统,2016, 20(05): 1133-1140.

[38]裴洪,胡昌华,司小胜,等. 不完美维护下基于剩余寿命预测信息的设备维护决策模型[J]. 自动化学报,2018, 44(04): 719-729.

[39]Ding H, Yang L, Yang Z. A Predictive Maintenance Method for Shearer Key Parts Based on Qualitative and Quantitative Analysis of Monitoring Data[J]. IEEE Access, 2019(7): 108684-108702 .

[40]李福兴,李璐爔,彭友. 基于数字孪生的船舶预测性维护[J]. 船舶工程,2020, 42(S1): 117-120.

[41]Olesen J F, Shaker H R. Predictive maintenance within combined heat and power plants based on a novel virtual sample generation method[J]. Energy Conversion and Management, 2020, 227: 1-22.

[42]Ton B, Basten R, Bolte J. PrimaVera: Synergising Predictive Maintenance[J]. Applied Sciences, 2020, 10(23): 8348.

[43]Pisacane O, Potena D, Antomarioni S. Data-driven predictive maintenance policy based on multi-objective optimization approaches for the component repairing problem[J]. Engineering Optimization, 2020, 53(10): 1752-1771.

[44]曹惠玲,崔科璐,郭静. 非完美维修下民航发动机剩余寿命预测[J]. 机械科学与技术,2020, 39(12): 1969-1974.

[45]陶红玉,周炳海. 基于随机过程的风力机状态维护建模[J]. 计算机集成制造系统, 2014, 20(06): 1416-1423.

[46]Lu Z Q, Zhao C Y, Cui W W. Modeling and optimization of preventive maintenance scheduling for series production systems[J]. Journal of Harbin Engineering University, 2017, 38( 2) : 269-275.

[47]Li H, Xu W, Cui Y. Preventive Maintenance Decision Model of Ur-ban Transportation System Equipment Based on Multi-Control Units[J]. IEEE Access, 2019, 8: 15851-15869.

[48]Ruiz H, Pinar P M, Delgado G D. Multi-machine preventive maintenance scheduling with imperfect interventions: a restless bandit approach[J]. Computers and Operations Research, 2019, 119: 104927.

[49]陈琴. 带有冷贮备的多部件串联系统维修策略研究[D]. 南昌: 南昌大学,2016.

[50]谷雨. 基于可靠性的多部件串联系统机会维修策略的研究[D]. 郑州: 郑州大学,2020.

[51]Li M X, Jiang X L, Negenorn R. Opportunistic maintenance for offshore wind farms with multiple-component age-based preventive dispatch[J]. Ocean Engineering, 2021, 231: 1-17.

[52]Xia T B, Jin X N, Xi L F. Production-driven opportunistic maintenance for batch production based on MAM–APB scheduling[J]. European Journal of Operational Research, 2015, 240(3): 781-790.

[53]杨志远,赵建民,程中华. 退化相关多部件系统预防性维修决策模型[J]. 系统工程与电子技术,2018, 40(04): 823-832.

[54]程志君,杨征,谭林. 基于机会策略的复杂系统视情维修决策模型[J]. 机械工程学报, 2012, 48(06): 168-174.

[55]Liu G, Chen S. Optimum opportunistic maintenance schedule incorporating delay time theory with imperfect maintenance[J]. Reliability Engineering and System Safety, 2021.

[56]史凯龙,陆彪,方玲珍,等. 产能导向的三设备混联系统预防维护决策[J]. 计算机集成制造系统,2019, 25(11): 2813-2819.

[57]Yuan Q, Jin Z. An improved opportunity maintenance model of complex system[J]. Advances in Mechanical Engineering, 2019, 11(4): 1-19.

[58]俞梦琦,史凯龙,周晓军. 基于双时间窗的多设备串行系统机会维护策略[J]. 上海交通大学学报,2020, 54(01): 69-75.

[59]曹现刚,宫钰蓉,罗璇,等. 考虑机会维护的退化机械设备维护决策优化研究[J]. 煤炭工程, 2020, 52(06): 164-169.

[60]王华. 设备维护和备件库存的联合建模与决策研究[D]. 上海: 上海交通大学,2016.

[61]Xiao L, Song S. Joint optimization of production scheduling and machine group preventive maintenance[J]. Reliability Engineering and System Safety, 2017, 146: 68-78.

[62]Wang S J, Liu M. Two-machine flow shop scheduling integrated with preventive maintenance planning[J]. International Journal of Systems Science, 2017, 47(3): 672-690.

[63]Hao P, Geert J. Joint optimization of condition-based maintenance and production lot-sizing[J]. European Journal of Operational Research, 2019, 253(1): 94-107.

[64]Bouslah B, Gharbi A, Pellerin R. Joint economic design of production, continuous sampling inspection and preventive maintenance of a deteriorating production system[J]. International Journal of Production Economics, 2019, 173: 184-198.

[65]Bouslah B, Gharbi A, Pellerin R. Joint production, quality and maintenance control of a two-machine line subject to operation-dependent and quality-dependent failures[J]. International Journal of Production Economics, 2019, 195: 210-226.

[66]廖雯竹,张秀芳. 成组生产方式下生产调度和设备维护的多目标联合决策问题[J]. 计算机集成制造系统,2017, 23(01): 82-92.

[67]Polotski V, Kenne A. Gharbi. Joint production and maintenance optimization in flexible hybrid Manufacturing-Remanufacturing systems under age-dependent deterioration[J]. International Journal of Production Economics, 2019, 216.

[68]成国庆,周炳海,李玲. 多设备系统的生产批量、质量控制与预知维护联合优化[J].系统工程理论与实践,2019, 39(08): 2152-2161.

[69]任子强,胡昌华,王玺. 不完美维修下的系统维护与库存联合决策模型[J]. 电光与控 制,2020, 27(09): 105-111.

[70]何勇,王红,李振华,等. 考虑备件弹性订货的动车组部件分阶段维护决策[J]. 计算机集成制造系统,2021, 27(6): 1760-1767.

[71]李京峰,陈云翔,项华春,等. 考虑随机冲击影响的多部件系统视情维修与备件库存联合优化[J]. 系统工程与电子技术,2022, 44(03): 875-883.

[72]裴海燕. 订单不确定下流水车间生产与维护的联合动态调度及交货期决策[D]. 上海: 上海交通大学,2017.

[73]赖新峰,陈志祥. 不完备生产与条件维护策略下的生产批量决策研究[J]. 工业工程, 2019, 22(04): 31-39.

[74]Ye J, Ma H. Multiobjective Joint Optimization of Production Scheduling and Maintenance Planning in the Flexible Job-Shop Problem[J]. Mathematical Problems in Engineering, 2015, 20: 1-9.

[75]Ao Y, Zhang H, Wang C. Research of an integrated decision model for production scheduling and maintenance planning with economic objective[J]. Computers & Industrial Engineering, 2019, 137: 106092.

[76]Radhwane B, Fayçal B. Bi-objective optimization algorithms for joint production and maintenance scheduling under a global resource constraint: Application to the permutation flow shop problem[J]. Computers and Operations Research, 2020, 122: 104943.

[77]Gan J, Zhang W, Wang S. Joint decision of condition-based opportunistic maintenance and scheduling for multi-component production systems[J]. International Journal of Production Research. 2021(Early Access).

[78]边沛东. 关于煤矿综采机电设备事故的认识与探讨[J] 当代化工研究,2021(18): 145-146.

[79]宫钰蓉. 煤矿综采设备群维护决策方法研究[D]. 西安: 西安科技大学,2020.

[80]冯银辉. 大采高综采工作面设备智能控制系统研究[J]. 煤炭科学技术,2022, 1-7.

[81]连佳亮. 采煤机生产故障的成因与处理研究[J]. 能源与节能,2021, (10): 157-158.

[82]胡海鲲. 煤矿刮板输送机常见故障及改进措施研究[J]. 当代化工研究,2021, (17): 49-50.

[83]李宝库,耿殿明,王传生. 综采设备系统故障规律分布研究[C]//系统工程与可持续发展战略—中国系统工程学会第十届年会论文集. 1998: 643-648.

[84]喻天翔,宋笔锋,万方义,等. 机械可靠性试验技术研究现状和展望[J]. 机械强度,2007(02): 256-263.

[85]母洪都. 矿井机电维修工[M]. 北京: 中国矿业出版社,2008.

[86]Xia T, Xi L, Zhou X. Dynamic maintenance decision-making for series-parallel manufacturing system based on MAM-MTW methodology[J]. European Journal of Operational Research, 2018, 221(1): 231-240.

[87]胡家文. 变工况生产系统预防维护及其与生产计划联合决策研究[D]. 上海: 上海交通大学,2017.

[88]Jing H, Qing C, Jorge A. Deep reinforcement learning based preventive maintenance policy for serial production lines[J]. Expert Systems With Applications, 2020, 160: 113701.

[89]李帅帅,任怀伟. 综采工作面“三机”设备位姿测量技术研究现状与展望[J]. 煤炭科学技术,2020, 48(09): 218-226.

[90]王晓燕,申桂香,张英芝,等. 基于故障链的复杂系统故障相关系数建模[J]. 吉林大学学报(工学版),2015, 45(02): 442-447.

[91]吴爱华. 生产计划与控制[M]. 北京: 机械工业出版社,2016.

[92]Duan H B, Luo Q. New progresses in swarm intelligence-based computation[J]. International Journal of Bio-Inspired Computation, 2017, 7(1): 26-35.

[93]洪晓翠,段礼祥,杨晓光,等. 智能优化算法在机械故障诊断领域的应用综述[J]. 测控技术,2021, 40(07): 1-8.

[94]Farhad S, Hojjat G. A comprehensive survey: Whale Optimization Algorithm and its applications[J]. Swarm and Evolutionary Computation, 2019, 48: 1-24.

[95]Seyedali M, Andrew L. The Whale Optimization Algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67.

[96]Sen M K, Datta G A, Stoffa P.L. Stochastic Reservoir Modeling Using Simulated Annealing and Genetic Algorithm[J]. SPE Formation Evaluation, 1995, 10(01): 49-55.

中图分类号:

 TD407    

开放日期:

 2024-06-28    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式