- 无标题文档
查看论文信息

论文中文题名:

 孔压增速影响下黄土液化特性及滑坡机理研究    

姓名:

 李珍艳    

学号:

 20209071024    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0818    

学科名称:

 工学 - 地质资源与地质工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 地质与环境学院    

专业:

 地质资源与地质工程    

研究方向:

 岩土体稳定与地质灾害防治    

第一导师姓名:

 段钊    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-17    

论文答辩日期:

 2023-06-05    

论文外文题名:

 Liquefaction characteristics and landslide mechanism of loess based on the rate of increase in pore water pressure    

论文中文关键词:

 液化特性 ; 孔压增速 ; CSD试验 ; 微观结构 ; 滑坡机理    

论文外文关键词:

 Liquefaction characteristic ; Rate of increase in pore water pressure ; CSD triaxial tests ; Microstructure ; Mechanism of landslide    

论文中文摘要:

黄土滑坡作为黄土地区的代表性地质灾害,具有孕灾时间长、发生突然等特点,给当地居民生命财产安全造成巨大威胁。经野外调查发现,受长期农业灌溉影响,泾阳南塬地下水位不规则抬升,导致斜坡坡脚土体中孔隙水压力升高,有效应力状态改变,进而造成土体形变引发液化。然而孔隙水压力上升速率对土体力学行为、微观结构及液化机理等影响尚不清晰。因此,本文以泾阳南塬Q2黄土为研究对象,通过开展7种不同孔压增速下的常剪应力排水剪切(CSD应力路径)试验,查明孔压增速影响下黄土力学破坏过程及液化特性,并利用扫描电镜(SEM)测试,厘清液化破坏试样微观特征,在此基础上,采用Geo-Studio软件揭示不同灌溉作用和裂缝特征对黄土斜坡渗流场和稳定性的影响,阐释孔压增速影响下黄土滑坡机理。研究成果以期为水致黄土斜坡失稳研究提供一定理论借鉴。取得主要成果如下:

(1)CSD应力路径试验结果表明,随着孔隙水压力的增加,黄土试样的破坏过程可分为“平稳蠕动”和“失稳剧动”两个阶段。应力重分布和颗粒联锁结构的形成是“失稳剧动”阶段出现应变台阶的主要原因。随着孔压增速的增大,试样破坏的临界孔压比也随之增大,其范围在0.48~0.66;

(2)SEM测试结果表明,CSD试验后的黄土试样中出现了明显团粒化结构,大、中孔隙大部分转变为微小孔隙,黏粒聚团填充孔隙现象显著。随着孔压增速的增大,颗粒和孔隙定向性增强,孔隙的丰度和分形维数均降低;

(3)数值模拟结果表明,灌溉量、灌溉范围、裂缝深度和裂缝塬边距对黄土斜坡渗流场和稳定性存在显著影响。斜坡稳定性随灌溉范围和灌溉量的增大而减小,随裂缝深度的增加而减小,随裂缝塬边距的增加先减小后增大,在15m塬边距位置存在稳定系数临界值;

(4)灌溉水沿裂隙入渗,形成优势渗流通道,导致地下水位不断升高,引发黄土胶结弱化,颗粒旋转、错动并重新组合,大量黏粒滑移并填充至孔喉中造成渗流通道堵塞,促使坡脚土体中局部孔压快速增加,饱和软弱带形成,最终因排水不畅导致有效应力迅速降低,液化开始发生,此时微小的蠕动即可使土体沿潜在贯通滑动面快速滑动,形成黄土滑坡。

论文外文摘要:

Loess landslide is a typical geological disaster in loess areas. It has the characteristics of long preparation time and sudden occurrence, which poses a huge security threat to the lives and property of local villagers. Field investigation shows that the loess landslides in the South Jingyang Platform are affected by long term agricultural irrigation, resulting in irregular increase of groundwater table. The increase of pore water pressure of loess at the slope toe causes the change of effective stress state, which further leads to soil deformation and even liquefaction damage. However, it is not clear about the influence of rise rate of pore water pressure on the mechanical behavior, microstructure and liquefaction mechanism of loess. Therefore, taking the Q2 loess in the South Jingyang Platform as the samples, constant-shear drained (CSD) triaxial tests under different rates of increase in pore water pressure was carried out to find out the mechanical failure process and liquefaction characteristics of loess. In addition, the scanning electron microscope (SEM) tests were used to clarify the microscopic characteristics of the liquefied samples. On the basis of the above, Geo-Studio software was used to reveal the influence of different irrigation and crack characteristics on the seepage and stability of slope, and finally explain the mechanism of loess landslide under the influence of pore water pressure growth rate. The results can provide some theoretical reference for the study of water-induced loess slope instability. The main results include:

(1) The CSD triaxial tests results showed that with the increase of pore water pressure, the failure process of the samples can be divided into two stages of stable creep and sharply unstable deformation. The stress redistribution and the formation of interlocking structure were the main reasons for the occurrence of rapid-slow strain development state in the sharply unstable deformation stage. In addition, with increases in the rate of increase in pore water pressure, the critical pore pressure ratio u/σc increased ranging from 0.48 to 0.66.

(2) The SEM tests results showed that the samples after CSD triaxial tests had obvious clay particles filling the pores and aggregation structures, and macropores and mesopores were transformed into micropores. Moreover, with increases in the rate of increase in pore water pressure, the orientations of particles and pores increased, and the abundance and fractal dimension of pores decreased.

(3) The numerical simulation results showed that irrigation amount, irrigation area, crack depth and crack platform edge distance had significant effects on the seepage and stability of loess slope. Slope stability decreased with the increase of irrigation amount, irrigation area or crack depth. However, the slope stability decreased first and then increased with the increase of the distance the crack and the edge of the platform, and there was a critical value of the stability coefficient at the edge distance of 15m in platform.

(4) The infiltration of irrigation water along the cracks formed the dominant seepage channels, which led to the continuous increase of groundwater table. Therefore, it caused the weakening of cementation, the rotation and the recombination of particles. And a large number of clay particles slipped and filled into the pore throat, causing the blockage of seepage channel, leading to a rapid increase of local pore water pressure in the loess and the formation of saturated weak zones. Due to the obstruction of drainage, the effective stress was reduced, and liquefaction began to occur. Finally, small creep can make the slide rapidly along the potential sliding surface, forming a loess landslide.

参考文献:

[1] 刘东生. 黄土与环境 [M]. 北京: 科学出版社, 1985.

[2] Wen B P, Yan Y J. Influence of structure on shear characteristics of the unsaturated loess in Lanzhou, China [J]. Engineering Geology, 2014, 168: 46-58.

[3] Wang X G, Wang J D, Zhan H B, et al. Moisture content effect on the creep behavior of loess for the catastrophic Baqiao landslide [J]. Catena, 2019, 187: 104371.

[4] 彭建兵, 林鸿州, 王启耀, 等. 黄土地质灾害研究中的关键问题与创新思路 [J]. 工程地质学报, 2014, 22(04): 684-691.

[5] 段钊, 张弘, 唐皓, 等. 泾河下游黄土台塬区侵蚀诱发滑坡机理 [J]. 地质科技情报, 2019, 38(06): 10-16.

[6] Ma P H, Peng J B, Wang Q Y, et al. The mechanisms of a loess landslide triggered by diversion-based irrigation: a case study of the South Jingyang Platform, China [J]. Bulletin of Engineering Geology and the Environment, 2019, 78(07): 4945-4963.

[7] 郭晨, 许强, 魏勇, 等. 陕西泾阳南塬蒋刘4#滑坡运动堆积特征及流动性成因分析 [J]. 科学技术与工程, 2017, 17(27): 15-25.

[8] 郭晨, 许强, 魏勇, 等. 陕西泾阳南塬多序次黄土滑坡演化特征及成灾模式 [J]. 地质科技情报, 2019, 38(05): 204-211.

[9] 连宝琴. 泾阳南塬渐退式黄土滑坡形成机理研究 [D]. 西安: 长安大学, 2020.

[10] Leroueil S, Chu J, Wanatowski D. Slope instability due to pore water pressure increase [M]. Proceedings of the 1st Italian Workshop on Landslides (1st IWL). Naples. 2009: 81-90.

[11] Brand E W. Some thoughts on rain-induced slope failures [J]. Proc 10th International Conference on Soil Mechanics and Foundation Engineering, 1981, 3: 373-376.

[12] Lourenço S D N, Wang G H, Sassa K, et al. Volumetric behavior of saturated sands under poor drainage conditions [J]. Journal of Geophysical Research: Earth Surface, 2006, 111(F3): 000324.

[13] Xu L, Dai F C, Tham L G, et al. Field testing of irrigation effects on the stability of a cliff edge in loess, North-west China [J]. Engineering Geology, 2011, 120(01): 10-17.

[14] Xu Q, Peng D L, Zhang S, et al. Successful implementations of a real-time and intelligent early warning system for loess landslides on the Heifangtai terrace, China [J]. Engineering Geology, 2020, 278: 105817.

[15] Peng D L, Xu Q, Zhang X L, et al. Hydrological response of loess slopes with reference to widespread landslide events in the Heifangtai terrace, NW China [J]. Journal of Asian Earth Sciences, 2019, 171: 259-276.

[16] Wang W, Li J L, Li X Y, et al. Evolution of the hydrogeological structure and disaster-generating mechanisms of landslides in loess slopes of the southern Jingyang Plateau, Shaanxi, China [J]. Hydrogeology Journal, 2020, 28(06): 2223-2239.

[17] Duan Z, Cheng W C, Peng J B, et al. Investigation into the triggering mechanism of loess landslides in the south Jingyang platform, Shaanxi province [J]. Bulletin of Engineering Geology and the Environment, 2019, 78(07): 4919-4930.

[18] Lian B Q, Peng J B, Zhan H B, et al. Formation mechanism analysis of irrigation-induced retrogressive loess landslides [J]. CATENA, 2020, 195: 104441.

[19] 武彩霞, 戴福初, 闵弘, 等. 台塬塬顶裂缝对黄土斜坡水文响应的影响 [J]. 吉林大学学报(地球科学版), 2011, 41(05): 1512-1519.

[20] William L T, Allen M W. Stress Path Method: Second Edition [J]. Journal of the Geotechnical Engineering Division, 1979, 105(06): 1195-1217.

[21] Anderson S A, Sitar N. Analysis of Rainfall-Induced Debris Flows [J]. Journal of Geotechnical Engineering, 1995, 121(07): 544-552.

[22] 戴福初, 李焯芬, 王思敬. 松散击实火山岩坡残积土的应力应变特性及其对滑坡的意义 [J]. 岩土工程学报, 1999, (03): 1-6.

[23] 戴福初, 陈守义, 李焯芬. 从土的应力应变特性探讨滑坡发生机理 [J]. 岩土工程学报, 2000, (01): 130-133.

[24] 金艳丽, 戴福初. 灌溉诱发黄土滑坡机理研究 [J]. 岩土工程学报, 2007, (10): 1493-1499.

[25] 武彩霞, 许领, 戴福初, 等. 黑方台黄土泥流滑坡及发生机制研究 [J]. 岩土力学, 2011, 32(06): 1767-1773.

[26] 周跃峰, 谭国焕, 甄伟文, 等. 入渗诱发黄土滑坡的力学机制 [J]. 岩土力学, 2013, 34(11): 3173-3179+3186.

[27] 谌文武, 范文军, 刘伟, 等. 饱和黄土增孔压试验研究 [J]. 兰州大学学报 (自然科学版本) 2020, 56(05): 595-600.

[28] 雷祥义. 中国黄土的孔隙类型与湿陷性 [J]. 中国科学(B辑 化学 生物学 农学 医学 地学), 1987, 31(12): 1309-1318.

[29] 张宗祜. 我国黄土类土显微结构的研究 [J]. 地质学报, 1964, (03): 357-369+375.

[30] 高国瑞. 黄土显微结构分类与湿陷性 [J]. 中国科学, 1980, (12): 1203-1208+1237-1240.

[31] 雷祥义. 西安黄土显微结构类型 [J]. 西北大学学报(自然科学版), 1983, (04): 56-65+127-132.

[32] He S Y, Wang X L, Fan H B, et al. The study on loess liquefaction in China: a systematic review [J]. Natural Hazards, 2020, 103(02): 1639-1669.

[33] Liu W, Chen W W, Wang Q, et al. Effect of pre-dynamic loading on static liquefaction of undisturbed loess [J]. Soil Dynamics and Earthquake Engineering, 2020, 130: 105915.

[34] Hwang H, Wang L, Yuan Z. Comparison of liquefaction potential of loess in Lanzhou, China, and Memphis, USA [J]. Soil Dynamics and Earthquake Engineering, 2000, 20(05): 389-395.

[35] 刘红玫, 王兰民. 饱和黄土液化的孔隙微结构特征 [J]. 西北地震学报, 2002, (02): 40-44.

[36] Jiang M J, Zhang F G, Hu H J, et al. Structural characterization of natural loess and remolded loess under triaxial tests [J]. Engineering Geology, 2014, 181: 249-260.

[37] Luo H, Wu F Q, Chang J Y, et al. Microstructural constraints on geotechnical properties of Malan Loess: A case study from Zhaojiaan landslide in Shaanxi province, China [J]. Engineering Geology, 2018, 236: 60-69.

[38] Li P, Xie W L, Pak R Y S, et al. Microstructural evolution of loess soils from the Loess Plateau of China [J]. CATENA, 2019, 173: 276-288.

[39] Liu Z, Liu F Y, Ma F L, et al. Collapsibility, composition, and microstructure of loess in China [J]. Canadian Geotechnical Journal, 2015, 53(04): 673-686.

[40] Yan R X, Peng J B, Zhang J Y, et al. Static Liquefaction Capacity of Saturated Undisturbed Loess in South Jingyang Platform [J]. Water, 2020, 12(08): 2298.

[41] Xu P P, Zhang Q Y, Qian H, et al. Microstructure and permeability evolution of remolded loess with different dry densities under saturated seepage [J]. Engineering Geology, 2021, 282(07): 105875.

[42] 闫蕊鑫, 彭建兵, 王烁. 饱和土静态液化研究进展综述及趋势浅析 [J]. 灾害学, 2018, 33(02): 137-145.

[43] Lade P V, Yamamuro J A. Effects of nonplastic fines on static liquefaction of sands [J]. Canadian Geotechnical Journal, 1997, 34(06): 918-928.

[44] Yamamuro J A, Lade P V. Experiments and modelling of silty sands susceptible to static liquefaction [J]. Mechanics of Cohesive-frictional Materials, 1999, 4(06): 545-564.

[45] 雷祥义. 陕西泾阳南塬黄土滑坡灾害与引水灌溉的关系 [J]. 工程地质学报, 1995, (01): 56-64.

[46] 王家鼎, 刘悦. 高速黄土滑坡蠕、滑动液化机理的进一步研究 [J]. 西北大学学报(自然科学版), 1999, (01): 83-86.

[47] 赵春宏, 戴福初. 深圳某填土滑坡破坏机理研究 [J]. 中国地质灾害与防治学报, 2007, (02): 1-8.

[48] 金艳丽, 戴福初. 饱和黄土的静态液化特性试验研究 [J]. 岩土力学, 2008, 29(12): 3293-3298.

[49] 许领, 戴福初, 闵弘, 等. 泾阳南塬黄土滑坡类型与发育特征 [J]. 地球科学(中国地质大学学报), 2010, 35: 155-160.

[50] 廖红建, 李涛, 彭建兵. 高陡边坡滑坡体黄土的强度特性研究 [J]. 岩土力学, 2011, 32(07): 1939-1944.

[51] 段钊. 黄土滑坡触发机理研究 [D]. 西安: 长安大学, 2013.

[52] 谢婉丽, 葛瑞华, 郭倩怡, 等. 灌溉作用下黄土宏观力学响应及微观结构特性研究 [J]. 水文地质工程地质, 2017, 44(02): 82-89.

[53] 赵秋鹏. 灌溉作用下陕西省泾阳县张村湾黄土滑坡形成机理及稳定性分析研究 [D]. 西安: 西北大学, 2014.

[54] 冷艳秋. 黄土水敏特性及其灾变机制研究 [D]. 西安: 长安大学, 2018.

[55] Kund N K, Dutta P. Numerical simulation of solidification of liquid aluminum alloy flowing on cooling slope [J]. Transactions of Nonferrous Metals Society of China, 2010, 20: 898-905.

[56] Sarkar K, Singh T N, Verma A K. A numerical simulation of landslide-prone slope in Himalayan region—a case study [J]. Arabian Journal of Geosciences, 2012, 5(01): 73-81.

[57] Dapporto S, Rinaldi M, Casagli N. Failure mechanisms and pore water pressure conditions: analysis of a riverbank along the Arno River (Central Italy) [J]. Engineering Geology, 2001, 61(04): 221-242.

[58] 张亚国. 延安地区降雨诱发的黄土滑坡形成机理研究 [D]. 西安: 长安大学, 2012.

[59] 贾俊, 朱立峰, 胡炜. 甘肃黑方台地区灌溉型黄土滑坡形成机理与运动学特征——以焦家崖头13号滑坡为例 [J]. 地质通报, 2013, 32(12): 1968-1975.

[60] 王思铎. 灌溉诱发黄土滑坡机理离心模型试验研究 [D]. 成都: 成都理工大学, 2014.

[61] 张珊珊. 黄土斜坡优势通道及优势入渗规律 [D]. 北京: 中国地质大学(北京), 2018.

[62] 苏恒宇. 降雨条件下边坡渗流及稳定性数值模拟分析 [J]. 江苏建筑职业技术学院学报, 2019, 19(01): 28-31.

[63] 段钊, 彭建兵, 王启耀. 泾阳南塬多序次黄土滑坡特征参数与成因 [J]. 山地学报, 2016, 34(01): 71-76.

[64] Xu L, Dai F C, Tu X B, et al. Occurrence of landsliding on slopes where flowsliding had previously occurred: An investigation in a loess platform, North-west China [J]. Catena, 2013, 104: 195-209.

[65] 闫蕊鑫. 饱和黄土静态液化力学行为及启滑机制 [D]. 西安: 长安大学, 2020.

[66] 杨阳. 黄土滑坡裂缝发育特征及其对滑坡孕灾模式的影响 [D]. 西安: 长安大学, 2016.

[67] Yan R X, Peng J B, Huang Q B, et al. Triggering Influence of Seasonal Agricultural Irrigation on Shallow Loess Landslides on the South Jingyang Plateau, China [J]. Water, 2019, 11(07): 1474.

[68] ASTM. Annual book of ASTM standards [M]. Pa: ASTM International, West Con-shohocken, 2009.

[69] 段钊, 李珍艳, 牛兵, 等. 孔压增速对黄土静态液化特性影响试验研究 [J]. 干旱区资源与环境, 2022, 36(06): 179-186.

[70] Li X J, Hu C Z, Li F Y, et al. Determining soil water characteristic curve of lime treated loess using multiscale structure fractal characteristic [J]. Scientific Reports, 2020, 10(01): 21569.

[71] Hu W L, Cheng W C, Wang L, et al. Micro-structural characteristics deterioration of intact loess under acid and saline solutions and resultant macro-mechanical properties [J]. Soil and Tillage Research, 2022, 220: 105382.

[72] Nan J J, Peng J B, Zhu F J, et al. Shear behavior and microstructural variation in loess from the Yan'an area, China [J]. Engineering Geology, 2021, 280: 105964.

[73] Duan Z, Li Z Y, Wu Y B, et al. Mechanical and microscopic properties of soil according to the rate of increase in pore water pressure [J]. Soil & Tillage Research, 2023, 225: 105530.

[74] Li X A, Li L C, Song Y X, et al. Characterization of the mechanisms underlying loess collapsibility for land-creation project in Shaanxi Province, China—a study from a micro perspective [J]. Engineering Geology, 2019, 249: 77-88.

[75] Liu C, Shi B, Zhou J, et al. Quantification and characterization of microporosity by image processing, geometric measurement and statistical methods: Application on SEM images of clay materials [J]. Applied Clay Science, 2011, 54(01): 97-106.

[76] Wei Y N, Fan W, Yu N Y, et al. Permeability of loess from the South Jingyang Plateau under different consolidation pressures in terms of the three-dimensional microstructure [J]. Bulletin of Engineering Geology and the Environment, 2020, 79(09): 4841-4857.

[77] Hu W L, Cheng W C, Wen S J, et al. Effects of chemical contamination on microscale structural characteristics of intact loess and resultant macroscale mechanical properties [J]. CATENA, 2021, 203: 105361.

[78] Wang D, Yang C S, Cheng G D, et al. Experimental Study on Pore Water Pressure and Microstructures of Silty Clay Under Freeze-Thaw Cycles [M]. Transportation Soil Engineering in Cold Regions. Singapore. 2020: 239-254.

[79] Leng Y Q, Peng J B, Wang Q Y, et al. A fluidized landslide occurred in the Loess Plateau: A study on loess landslide in South Jingyang tableland [J]. Engineering Geology, 2018, 236: 129-136.

[80] 王锴. 灌溉诱发黄土滑坡形成机理研究 [D]. 西安: 长安大学, 2020.

[81] 王钰. 泾阳南塬黄土边坡水文地质结构演化及其控灾机理 [D]. 西安: 长安大学, 2017.

[82] 苏杰. 台缘裂缝对黄土渗透性和黄土斜坡稳定性的控制规律 [D]. 北京: 中国地质大学(北京), 2018.

[83] 梁燕, 乔俊, 谢超, 等. 裂缝对灌溉诱发黄土滑坡的影响——以陕西省泾阳南塬为例 [J]. 科学技术与工程, 2019, 19(20): 305-314.

[84] Zhang F Y, Wang G H, Peng J B. Initiation and mobility of recurring loess flowslides on the Heifangtai irrigated terrace in China: Insights from hydrogeological conditions and liquefaction criteria [J]. Engineering Geology, 2022, 302: 106619.

[85] Zhang F Y, Wang G H, Kamai T, et al. Effect of pore-water chemistry on undrained shear behaviour of saturated loess [J]. Quarterly Journal of Engineering Geology and Hydrogeology, 2014, 47(03): 201-210.

[86] Wang G H, Zhang D X, Furuya G, et al. Pore-pressure generation and fluidization in a loess landslide triggered by the 1920 Haiyuan earthquake, China: A case study [J]. Engineering Geology, 2014, 174: 36-45.

[87] Setiawan H, Sassa K, Takara K, et al. Initial Pore Pressure Ratio in the Earthquake Triggered Large-scale Landslide near Aratozawa Dam in Miyagi Prefecture, Japan [J]. Procedia Earth and Planetary Science, 2016, 16: 61-70.

[88] Pei X J, Zhang X C, Guo B, et al. Experimental case study of seismically induced loess liquefaction and landslide [J]. Engineering Geology, 2017, 223: 23-30.

[89] Sadrekarimi A. Forewarning of Static Liquefaction Landslides [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(09): 04020090.

[90] Wen B P, Aydin A. Mechanism of a rainfall-induced slide-debris flow: constraints from microstructure of its slip zone [J]. Engineering Geology, 2005, 78(01): 69-88.

[91] Xue L, Qi M, Qin S Q, et al. A Potential Strain Indicator for Brittle Failure Prediction of Low-Porosity Rock: Part II—Theoretical Studies Based on Renormalization Group Theory [J]. Rock Mechanics and Rock Engineering, 2015, 48(05): 1773-1785.

[92] Xu P P, Zhang Q Y, Qian H, et al. Investigation into microscopic mechanisms of anisotropic saturated permeability of undisturbed Q2 loess [J]. Environmental Earth Sciences, 2020, 79(18): 412-424.

[93] Wang L, Li X A, Li L C, et al. Characterization of the collapsible mechanisms of Malan loess on the Chinese Loess Plateau and their effects on eroded loess landforms [J]. Human and Ecological Risk Assessment: An International Journal, 2020, 26(09): 2541-2566.

[94] Duan Z, Cheng W C, Peng J B, et al. Interactions of landslide deposit with terrace sediments: Perspectives from velocity of deposit movement and apparent friction angle [J]. Engineering Geology, 2021, 280: 105913.

[95] Hu S, Wang X G, Wang N L, et al. Dynamic process, influence, and triggering mechanism of slope remodelling by landslide clusters in the South Jingyang Tableland, China [J]. CATENA, 2022, 217: 106518.

中图分类号:

 P642.22    

开放日期:

 2023-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式