- 无标题文档
查看论文信息

论文中文题名:

 石化企业环境风险综合评价与应用研究    

姓名:

 王子宜    

学号:

 20201221060    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 025200    

学科名称:

 经济学 - 应用统计    

学生类型:

 硕士    

学位级别:

 经济学硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 理学院    

专业:

 应用统计    

研究方向:

 金融统计    

第一导师姓名:

 夏小刚    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-14    

论文答辩日期:

 2023-06-01    

论文外文题名:

 Research and Application of Comprehensive Assessment of Environmental risk in Petrochemical Enterprises    

论文中文关键词:

 环境风险 ; 综合评价 ; DPSIR 模型 ; 网络分析法(ANP) ; 灰色变权聚类评价法    

论文外文关键词:

 Environmental risk ; comprehensive evaluation ; DPSIR model ; network analysis method (ANP) ; grey variable weight clustering evaluation method    

论文中文摘要:

随着工业发展速度越来越快,各种风险事故不断出现,风险管理势在必行,环境风险评价已经越来越成为风险管理的一个重要组成部分。尤其是在石化企业中,环境风险评价更加紧迫。为此,本文对现有的环境风险评价方法进行筛选比较,建立了优化的石化企业环境风险综合评价指标体系,整合网络分析法(ANP)与灰色变权聚类评价法,对QL 石化企业环境风险进行综合评价。
首先,建立优化的 QL 石化企业环境风险综合评价指标体系。本部分通过研究影响QL 石化企业环境风险因素,并利用相关性分析的指标筛选方法,进行指标体系的优化,将 44 个评价指标优化为 30 个评价指标;结合 QL 石化企业的实际情况,得到了符合该石化企业的环境风险综合评价指标体系,能够更好把控影响 QL 石化企业环境风险的关键因素,并对 QL 石化企业的环境风险进行相对合理的评价研究。
其次,基于 ANP 对 QL 石化企业环境风险综合评价指标权重进行确定。采用 1-9 标度法求出判断矩阵,对 QL 石化企业的环境风险指标进行了成对比较,并采用专家打分的方式进行评估。为了确保数据完整性,针对不同领域的专家,设定了必须给出评分的项目。通过建立未加权超矩阵和极限超矩阵,得出了评价指标的排序结果,并生成了评价指标权重表。以确保评价指标的权重计算准确且可靠。
最后,基于灰色变权聚类法对 QL 石化企业环境风险进行综合评价。根据该石化企业实际情况,将风险评价等级划分成 5 个等级,用 2 到 12 之间的数表示风险值的大小。采用灰色变权聚类评价法确定灰类,构造三角白化权函数,计算灰色评价系数,确定灰色矩阵。将 ANP 法计算出的指标权重用作各个灰类的定权系数,从而能够将主观无法量化的环境风险程度以模糊的语言形式量化,并转化为可比较的客观数值。综合评价结果
显示该石化企业环境风险值为 5.37,表明该企业环境风险总体处于较低风险等级。

论文外文摘要:

With the rapid development of industry, various risk accidents continue to appear, risk management is imperative, environmental risk assessment has become more and more an important part of risk management. Especially in petrochemical enterprises, environmental risk assessment is more urgent. Therefore, this issue screens and compares the existing environmental risk assessment methods, establishes an optimized comprehensive assessment
index system for the environmental risk of petrochemical enterprises, integrates the network analysis method (ANP) and the grey variable weight cluster evaluation method, and carries out
a comprehensive assessment of the environmental risk of QL petrochemical enterprises.
First of all, establish an optimized comprehensive evaluation index system of environmental risk of QL petrochemical enterprises. In this part, by studying the environmental risk factors of QL petrochemical enterprises, and using the index screening method of correlation analysis, the index system is optimized, and 44 evaluation indexes are optimized to 30 evaluation indexes.
Combined with the actual situation of QL petrochemical enterprises, a comprehensive evaluation index system of environmental risk is obtained, which can better control the key
factors affecting the environmental risk of QL petrochemical enterprises, and make a relatively reasonable evaluation and research on the environmental risk of QL petrochemical enterprises.
Secondly, the weight of comprehensive evaluation index of environmental risk of QL petrochemical enterprises is determined based on ANP. The judgment matrix is obtained by using the 1-9 scale method, and the environmental risk indexes of QL petrochemical enterprises are compared in pairs, and evaluated by experts. In order to ensure the integrity of the data, theitems that must be scored are set for experts in different fields. Through the establishment of unweighted super-matrix and limit hypermatrix, the ranking result of evaluation index is obtained, and the weight table of evaluation index is generated. To ensure that the weight of the evaluation index is calculated accurately and reliably.
Finally, the environmental risk of QL petrochemical enterprise is evaluated comprehensively based on grey variable weight clustering method. According to the actual situation of the
petrochemical enterprise, the risk assessment level is divided into 5 levels, and the risk value is represented by a number between 2 and 12. Grey class is determined by grey variable weight cluster evaluation method, triangular whitening weight function is constructed, grey evaluation coefficient is calculated and grey matrix is determined. The index weight calculated by ANP
method is used as the fixed weight coefficient of each gray class. Thus, the degree of environmental risk that cannot be quantified subjectively can be quantified in a vague language form and converted into a comparable objective value. The comprehensive evaluation results show that the environmental risk value of the petrochemical enterprise is 5.37, indicating that the environmental risk of the enterprise is in a low risk level.

参考文献:

[1] 龚腊芬. 美国液体储罐破裂事故与预防对策[J]. 安全、健康和环境, 2001(4): 122-123.

[2] 荆波. 重大事故回放: 重庆天原化工总厂“4·15”氯气泄漏爆炸事故[J]. 现代班组,2007(11): 45.

[3] 张彦春. 浅谈环境风险评价[C]. 华北五省市环境科学学会年会, 2011.

[4] 毛小苓, 刘阳生. 国内外环境风险评价研究进展[J]. 应用基础与工程科学学报, 2003,11(3): 266-273.

[5] 方晓栋. 环境污染责任保险与企业环境风险评估[J]. 青岛大学学报(自然科学版),

2016, 29(4): 110-116.

[6] 刘桂友, 徐琳瑜, 李巍. 环境风险评价研究进展[J]. 环境科学与管理, 2007, 32(2):114-118.

[7] 刘占, 孙燕, 陈红燕. 美国风险管理预案法规对我国环境风险管理的启示[J]. 煤炭与化工, 2017, 40(5): 157-160.

[8] He G Z, Lu Y. Environmental and health risk management methods in the United States and Canada [J]. Acta Ecologica Sinica, 2011, 31 (2): 556,564.

[9] Hu T, Zhu L. Overview and enlightenment of the construction of environmental risk management system in the United States[J]. Environmental monitoring in China, 2016(1):112-119.

[10] National Research Council. Risk Assessment in the Federal Government[M]. National Academies Press: 1983: 76-77.

[11] Yu L N, Lan X F, Jin J. Comparison of TRI and RMP environmental management systems for toxic chemicals in the United States[J]. Modern chemical industry, 2017(2): 1-4.

[12] Xie Y C , Zhang Y, Lu R. Research on the experience and enlightenment of strategic planning of water environmental protection in the United States[J]. Environmental science and management, 2013, 38(11): 25-29.

[13] United States Environmental Protection Agency. Chemical accident prevention provisions[M]. USA: 40CFR(Code of Federal Regulations), 1996: 68.

[14] Liu X M, Ren Y M, Li J. Research on environmental risk management in Italy[J].Environmental economy, 2011(3): 40-44.

[15] Wu Z Z. European and American regulations and standards for preventing major industrial accidents and Chinese countermeasures[J]. China safety production science and technology, 1999(5): 31-32.

[16] Zhao H Y. Circular economy trends in EU environmental law[J]. Journal of Shanghai Jiao Tong University (Philosophy and Social Sciences), 2006, 14(1): 42-46.

[17] Fang K, Zhu D J. Multi-dimensional interpretation and enlightenment of "Seveso II Instruction"[J]. Legal business study, 2011(4): 135-144.

[18] Zhu D J. Research and enlightenment on EU environmental emergency management system[D]. Shanghai: Shanghai Jiaotong University, 2010.

[19] Fu C. On the evolution of EU environmental law and policy[J]. European studies, 2007(4): 53-67.

[20] Chen B H, Gu Y J. Enlightenment of Seveso III directive on emergency management of environmental risk sources in China[J]. Pollution prevention technology, 2016(2): 80-82.

[21] Hu E B, Wang W H. Design, model, parameters and program of real-time dose evaluation system for Qinshan Nuclear Power Plant[J]. Radiation protection, 1994(1): 25-32.

[22] Jiang S. A HIVE model for regional integrated environmental risk assessment: A case study in China[J]. Human and ecological risk assessment, 2016, 22(3/4): 1002-1028.

[23] Alfred S, Igor S. Interactive GIS for environmental risk assessment[J]. International Journal of Geographical Information Science, 1995, 9(5): 509-525.

[24] Gheorghe A. Mock R. Risk assessment of regional systems[J]. Reliability Engineering & System Safety, 2000, 70(2): 141-156.

[25] Minolfi G, Albanese S, Lima A. A regional approach to the environmental risk assessment.Human health risk assessment case study in the Campania region[J]. Journal of Geochemical Exploration: Journal of the Association of Exploration Geochemists, 2018, 184(3): 400-416.

[26] Pelmulder S. Regional Risk Assessment of Environmental Contamination from Oil Pipelines[J]. Cell Host & Microbe, 1991, 2(2): 69–70.

[27] Liu G, Lin X. Information diffusion method for regional environmental risk assessment[J]. Acta Scientiae Circumstantiance, 2007, 10(5): 1016.

[28] 姜贵梅, 楚春礼, 徐盛国. 国际环境风险管理经验及启示[J]. 环境保护, 2014, 42(8): 61-63.

[29] 王金南, 曹国志, 曹东. 国家环境风险防控与管理体系框架构建[J]. 中国环境科学, 2013, 33(1): 186-191.

[30] 曹希寿. 区域环境系统的风险评价与风险管理的综述[J]. 环境科学研究, 1991, 4(2): 57-60.

[31] 杨晓松, 王华东, 宁大同. 油田开发区域环境风险综合评价探讨[J]. 环境科学,1992(1):63-68.

[32] 谢元博, 李巍, 郝芳华. 基于区域环境风险评价的产业布局规划优化研究[J]. 中国环境科学, 2013, 33(3): 560-568.

[33] 周美春, 钱新, 钱瑜. 区间证据推理法在区域环境风险评价中的应用[J]. 长江流域资源与环境, 2010(1): 160-165.

[34] 赵明, 陈求稳. 城市重大危险源区域风险评价方法研究[J]. 中国安全生产科学技术,2014, 10(9): 158-164.

[35] 张立, 钱瑜, 蔡云. 多米诺事故情景下的区域环境风险评价[J]. 中国环境科学, 2013, 33(3): 569-575.

[36] 杨娅, 房明, 顾伟伟. 环境风险图形化管理平台[C]. 中国环境科学学会学术年会论文集(第三卷). 2013.

[37] 袁立凡, 郭泓宇. 基于 GIS 的环境风险可视化管理[J]. 信息系统工程, 2014(11): 24-25.

[38] 戴婧, 毕军, 马宗伟. 风险排序及其在环境风险管控中的应用[J]. 环境监控与预警,2016(1): 1-4.

[39] 贾倩, 黄蕾, 袁增伟. 石化企业突发环境风险评价与分级方法研究[J]. 环境科学学报, 2010, 30(7): 1510-1517.

[40] 周新荣. 工业园区环境风险源识别与分级研究[J]. 环境监控与预警, 2013, 5(4): 4-8.

[41] 尹荣尧, 杨潇, 孙翔. 江苏沿海化工区环境风险分级及优先管理策略研究[J]. 中国环境科学, 2011, 31(7): 1225-1232.

[42] 张玲, 孙超智, 沈宏军. 在环境风险管理中运用“清单法”检查的探讨[J]. 辽宁化工, 2014(1): 27.

[43] 程如文. 我国精细化工企业风险管理研究[D]. 西安: 西北农林科技大学, 2012.

[44] 吕春雨. 企业环境风险管理与风险转移手段[J]. 环境保护与循环经济, 2011, 31(2):23-25.

[45] 杜婷婷. 突发性环境污染事件应急管理体系研究[D]. 南京: 南京大学, 2011.

[46] 房亮亮. 石油化工企业环境风险应急预案研究[D]. 西安: 西北大学, 2013.

[47] 郑俊. 工业园区环境风险管理研究进展及对策浅析[J]. 城市道桥与防洪, 2016(11): 156-159.

[48] 马书明. 化工石化区域环境风险和应急能力评价方法与空间决策支持系统的研究

[D]. 大连: 大连理工大学, 2016.

[49] 焦涛, 刘萌斐, 赵永刚. 区域突发环境风险评估与管理——以泰州医药高新区为例[J]. 环境科技, 2016, 29(5): 68-72.

[50] 黄圣彪, 王子健, 乔敏. 区域环境风险评价及其关键科学问题[J]. 环境科学学报,2007, 27(5): 705-713.

[51] 杜锁军. 国内外环境风险评价研究进展[J]. 环境科学与管理, 2006, 31(5): 193-194.

[52] 王金涛. 基于DPSIR模型的土地利用规划环境影响评价研究[D]. 武汉: 华中师范大学, 2011.

[53] 潘涌. 基于 DPSIR 模型的旅游地生态补偿综合评价研究——以太湖为例[D]. 南京:南京师范大学, 2015.

[54] 刘浪. 基于灰色变权聚类的国民经济动员能力综合评价[J]. 北京: 北京理工大学学报, 2006, 26(z1): 190-194.

[55] Zhang K, Yang H. Comprehensive Evaluation of the Intelligent Degree of the Mining Face Based on Grey Relational Analysis[J]. Modern Tunnelling Technology, 2022, 59(1): 69-79.

中图分类号:

 F272.5    

开放日期:

 2023-06-14    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式