论文中文题名: |
层状硫的制备及其在锂硫电池中的应用
|
姓名: |
陈小倩
|
学号: |
19213213052
|
保密级别: |
保密(1年后开放)
|
论文语种: |
chi
|
学科代码: |
085218
|
学科名称: |
工学 - 工程 - 矿业工程
|
学生类型: |
硕士
|
学位级别: |
工学硕士
|
学位年度: |
2022
|
培养单位: |
西安科技大学
|
院系: |
化学与化工学院
|
专业: |
矿业工程
|
研究方向: |
矿基功能材料
|
第一导师姓名: |
申丽华
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2023-01-05
|
论文答辩日期: |
2022-12-07
|
论文外文题名: |
Preparation of layered sulfur nanosheets and its application in lithium sulfur batteries
|
论文中文关键词: |
层状硫纳米材料 ; 煤基碳纳米管 ; S-NSs/CNTs复合材料 ; 锂硫电池
|
论文外文关键词: |
Layered sulfur nanomaterials ; Coal based carbon nanotubes ; S-NSs/CNTs composites ; Lithium sulfur battery
|
论文中文摘要: |
︿
由于二维纳米材料具有独特的光电特性的,因此,对于制备二维纳米材料原材料的研发迄今成为基础物理、矿物开发等研究的焦点之一。但是,二维纳米材料中石墨烯为零带隙,多层二硫化钼是间接带隙,黑磷的不稳定、不容易制备等问题影响其发展。新型二维纳米材料层状硫(S-NSs)的出现,使二维纳米材料进入新的研究领域,为二维纳米材料的学科发展带来新的机遇。但是,目前S-NSs合成方法存在耗时长、产量低等问题,合成方法的缺点是限制层状二维纳米材料S-NSs性能开发的瓶颈问题,开发简单、快速、产量高的合成新方法,为研究其光电化学特性有着重要的科学意义。另外随着能源危机问题日益凸显,锂硫电池具有输出电压高的优势,硫正极材料表现出比容量高(2600 Whkg-1)、资源丰富、环境友好等特点,使得锂硫电池成为一种应用前景广泛的高能量密度的电池体系;然而锂硫电池还存在着导电性差、“穿梭效应”和锂晶枝等问题。提高硫基正极材料的导电性和稳定性,开发新型硫正极材料是解决锂硫电池问题的主要研究方向。本研究以S-NSs为依托,利用电解法建立了二维纳米材料S-NSs合成新方法;利用煤基碳纳米管CNTs为固硫载体,考察S-NSs/CNTs复合材料硫正极在锂-硫电池中的电化学性能,具体开展了两方面研究工作。
(1)建立了S-NSs的合成新方法。分别以硫磺、黄铁矿和硫脲为硫源,聚3,4-乙烯二氧噻吩/聚苯乙烯磺酸盐(PEDOT:PSS)或者牛血清蛋白(BSA)作为稳定剂,在水溶液中直流电解硫源成功地制备了新型二维S-NSs纳米材料;考察了硫源种类及用量、稳定剂种类及用量、电解时间等对合成S-NSs纳米材料的影响。利用TEM、XRD等手段考察了合成S-NSs材料的光电物理特性。
以煤基CNTs为固硫载体,将合成的S-NSs材料通过静电作用与煤基CNTs形成S-NSs/CNTs复合材料并作为锂硫电池正极材料;旨在设计二维层状结构的S-NSs为硫基电极,利用煤基CNTs提高硫材料的导电性,提高电池的电化学充放电性能。在0.1 C下,S-NSs/CNTs复合材料正极首次放电比容量为888.5 mAhg-1,相比于升华硫S/CNTs复合材料正极的首次放电比容量(355 mAhg-1)提高了近三倍。在0.1 C 的循环电流下,S-NSs/CNTs复合材料正极往复40圈后的放电容量为 450 mAhg-1,保持率为46.6 %,每圈的容量衰减率仅为0.193 %。S-NSs结合了CNTs高的导电性,有效缓解了锂硫电池的穿梭溶解,提升了电池的反应速率,提高了电池的电化学性能。
本研究建立的合成S-NSs新方法简单、快速、产量高,为二维S-NSs材料的性能开发提供方便,有助于促进二维纳米材料学科的发展;煤基CNTs对S-NSs的固硫作用以及二维S-NSs在电池中的应用,为锂硫电池正极的结构设计提供了新的思路。
﹀
|
论文外文摘要: |
︿
Due to the unique photoelectric properties of two-dimensional nanomaterials, the research and development of raw materials for the preparation of two-dimensional nanomaterials has become one of the focuses of basic physics, mineral development and other research. At present, graphene has zero band gap in two-dimensional nanomaterials, and multi-layer molybdenum disulfide has an indirect band gap. The instability of black phosphorus and its difficulty in preparation affect its development. The emergence of a new type of two-dimensional nanomaterial layered sulfur (S-NSs) has brought the research of two-dimensional nanomaterials into a new research field. In view of the problems of time-consuming and low-yield synthesis of S-NSs, it is of great scientific significance to develop a new synthesis method with high speed and high-yield for the study of the photoelectrochemical properties. In addition, with the increasingly prominent energy crisis, lithium-sulfur batteries have the advantage of high output voltage, and sulfur cathode materials have the characteristics of high specific capacity (2600 Whkg-1), abundant resources, and environmental friendliness, making lithium-sulfur batteries an application a promising high-energy-density battery system; However, lithium-sulfur batteries still suffer from poor conductivity, "shuttle effect" and lithium dendrites. Improving the conductivity and stability of sulfur-based cathode materials and developing new sulfur cathode materials are the main research directions to solve the problems of lithium-sulfur batteries. In this study, a new method for the synthesis of two-dimensional S-NSs was established by electrolysis techinique. Coal-based carbon nanotube CNTs were used as sulfur carriers, and the electrochemical performance of S-NSs/CNTs composite as sulfur positive electrode in lithium sulfur battery was investigated in detail.
(1) A new method for synthesizing S-NSs is established. Sulfur, pyrite and thiourea were used as sulfur sources, Poly-3,4-ethylenedioxy thiophene/polystyrene sulfonate (PEDOT:PSS) or bovine serum albumin (BSA) was sued as stabilizer. The lyaered 2D S-NSs nanomaterials were successfully prepared by DC electrolysis in ultrapure water. The effects of the type and amount of sulfur source, the type and amount of stabilizer, and the electrolysis time on the synthesis of S-NSs nanomaterials were investigated. The photoelectric physical properties of the synthesized S-NSs were investigated by means of TEM and XRD.
(2) Using coal-based CNTs as a sulfur carrier, the synthesized S-NSs materials were electrostatically interacted with coal-based CNTs to form S-NSs/CNTs composite materials which was used as cathode materials for lithium-sulfur batteries. The aim using coal-based CNTs is to improve the conductivity of the composite material which improves the electrochemical charging and discharging performance of the battery. At 0.1 C, the first discharge specific capacity of the S-NSs/CNTs composite cathode is 888.5 mAhg-1, which is nearly three times higher than the first discharge specific capacity (355.0 mAhg-1) of the sublimated sulfur S/CNTs composite cathode. At a cycling current of 0.1 C, the discharge capacity of the S-NSs/CNTs composite cathode after 40 cycles of reciprocation is 450 mAhg-1, and the retention rate is 46.6 %. The capacity decay rate is only 0.193 % for every cycle. Combined with the high conductivity of CNTs, S-NSs with the unique layered structure can effectively alleviate the shuttle dissolution of lithium-sulfur batteries, increase the reaction rate of the battery, and improve the electrochemical performance of the battery.
The new method for synthesizing S-NSs established in this study is simple, rapid and high-yield, which provides convenience for the further study of the potential properties of two-dimensional S-NSs materials. The application of two-dimensional layered S-NSs in batteries provide a new idea for the structural design of lithium-sulfur battery cathodes.
﹀
|
参考文献: |
︿
[1] 焦建聪. 硫磺回收装置[J]. 炼油技术与工程, 2021, 51(4): 4-5. [2] Lim J, Pyun J, Char K. Recent Approaches for the direct use of elemental sulfur in the synthesis and processing of advanced materials[J]. Angewandte Chemie International Edition, 2015, 54(11): 3249-3258. [3] Cao W, Dai F, Hu R. Economic sulfur conversion to functional polythioamides through catalyst-free multi-component polymerizations of sulfur acids, and amines[J]. Journal of the American Chemical Society, 2020, 142(2): 978-986. [4] Suleiman M, Al-Masr M, Ali A, et al.Synthesis of nano-sized sulfur nanoparticles and their antibacterial activities[J]. Journal of Materials and Environmental Science, 2015, 6(2): 513-518. [5] Urakaev F, Drebushchak T, Savintsev Y. Mechanism and modelling of formation of amorphous sulfur nuclei[J]. Mendeleev Commun, 2003, 13: 37-38. [6] Paralikar P, Ingle A, Tiwari V, et al. Evaluation of antibacterial efficacy of sulfur nanoparticles alone and in combination with antibiotics against multidrug resistant uropathogenic bacteria[J]. Journal of Environmental Science and Health, Part A, 2019, 54(5): 381-390. [7] Shankar S, Pangeni R, Park W, et al. Preparation of sulfur nanoparticles and their antibacterial activity and aytotoxic effect[J]. Materials Science and Engineering: C, 2018, 92: 508-517. [8] Kim J, Lee D. J, Jung et al. An advanced lithium‐sulfur battery[J]. Advanced Functional Materials, 2013, 23(8): 1076-1080. [9] 《化工百科全书》编辑委员会. 化工百科全书[M]. 北京: 化学工业出版社, 1996. [10] Chung W, Griebel J, Kim E, et al. The use of elemental sulfur as an alternative feedstock for polymeric materials [J]. Nature Chemistry, 2013, 5(6): 518-524.Greenwood N N, Earnshaw A. [11] Penczek S, Slazak R, Duda A. Anionic copoiymerisation of elemental sulphur [J]. Nature, 1978, (273): 738-739. [12] Eisenberg A, Tobolski A. Equilibrium polymerization of selenium [J]. Journal of Polymer Science, 1960, 6(10): 19-28. [13] 鲍荣华, 郭小兵. 世界硫资源及其开发利用[J]. 化肥工业, 2018, 45(2): 6-9. [14] 唐昭峥, 毛兴民. 国外硫磺回收和尾气处理技术进展综述[J]. 齐鲁石油化工, 1996,24(4): 302-311. [15] 章青. 氧压酸浸锌渣中单质硫的回收研究[D]. 赣州: 江西理工大学, 2014. [16] 唐昭峥, 毛兴民. 我国硫磺回收技术的进步[J]. 石油化工环境保护, 1996(1): 22-26. [17] 李竟菲. 煤油对含铜金精矿热压酸浸工艺过程浸铜渣回收单质硫的工艺研究[D]. 厦门:厦门大学, 2008. [18] Halfyard J E, Hawboldt K. Separation of elemental sulfur from hydrometallurgical residue: A review[J]. Hydrometallurgy, 2011, 109(1): 80-89. [19] 王礼康. 硫在中国非农业方面中的应用[J]. 硫酸工业, 1994(1): 17-18. [20] 郭德威. 《无机化学丛书》[M]. 北京: 科学出版社, 1990. [21] 彭兴华. 某矿山硫尾矿的综合回收试验研究[D]. 武汉: 武汉科技大学, 2016. [22] 胡文宾, 高淑美, 郝国阳, 等. 硫磺的几种专门应用[J]. 精细石油化工, 2000(5): 23-25. [23] 赵奎涛, 张艳松, 丛殿阁, 等. 全球硫资源供需形势分析[J]. 中国矿业, 2018, 27(9):11-15. [24] 司斌. 2019 年中国硫磺市场数据统计与分析[J]. 硫酸工业, 2020(2): 1-4. [25] 元素化学(中册)[M]. 北京: 高等教育出版社, 1996. [26] 大连理工大学无机化学教研室. 无机化学(下册)[M]. 北京: 高等教育出版社, 1990. [27] 中国化学矿业学会. 我国硫资源供需形势分析及对策建议[J]. 化工矿物与加工, 2004(6):1-2. [28] Steinhagen C, Harvey T B, Stolle C J, et al. Pyrite nanocrystal solar cells: promising, or fool’s gold?[J]. The Journal of Physical Chemistry Letters, 2012, 3(17): 2352-2356. [29] Yang Y, Liu J, Liu F, et al. Molecular-level insights into mercury removal mechanism by pyrite[J]. Journal of hazardous materials, 2018, 344: 104-112. [30] Abraitis P K, Pattrick R A D, Vaughan D J. Variations in the compositional, textural and electrical properties of natural pyrite: a review[J]. International Journal of Mineral Processing, 2004, 74(1-4): 41-59. [31] Wadia C, Alivisatos A P, Kammen D M. Materials availability expands the opportunity for large-scale photovoltaics deployment[J]. Environmental Science & Technology, 2009, 43(6): 2072-2077. [32] 鲁安怀. 矿物法-环境污染治理的第四类方法[J]. 地学前缘, 2005, 12(1):196-205 [33] Bonnissel-Gissinger P, Alnot M, Ehrhardt J J, et al. Surface oxidation of pyrite as a function of pH[J]. Environmental Science & Technology, 1998, 32(19): 2839-2845. [34] Özverdi A, Erdem M. Cu2+, Cd2+ and Pb2+ adsorption from aqueous solutions by pyrite and synthetic iron sulphide[J]. Journal of Hazardous Materials, 2006, 137(1): 626-632. [35] Gur I, Fromer A, Geier L, et al. Air-stable all-inorganic nanocrystal solar cells processed from solution[J]. Science, 2005, 310(5747): 462-465. [36] Ding L, Fan X, Sun X, et al. Direct preparation of semiconductor iron sulfide nanocrystals from natural pyrite[J]. RSC Advances, 2013, 3(14): 4539-4543. [37] Wadia C, Alivisatos P, Kammen M. Materials availability expands the opportunity for large-scale photovoltaics deployment[J]. Environmental Science & Technology, 2009, 43(6): 2072-2077. [38] Jing P, Wang Q, Wang B, et al. Encapsulating yolk-shell FeS2@ carbon microboxes into interconnected graphene framework for ultrafast lithium/sodium storage[J]. Carbon, 2020, 159: 366-377. [39] Yersak T A, Macpherson H A, Kim S C, et al. Solid state enabled reversible four electron storage[J]. Advanced Energy Materials, 2013, 3(1): 120-127. [40] Yu S, Ng V M H, Wang F, et al. Synthesis and application of iron-based nanomaterials as anodes of lithium-ion batteries and supercapacitors[J]. Journal of Materials Chemistry A, 2018, 6(20): 9332-9367. [41] Lim J, Pyun J, Char K. Recent approaches for the direct use of elemental sulfur in the synthesis and processing of advanced materials[J]. Angewandte Chemie International Edition, 2015, 54(11): 3249-3258. [42] Boyd D A. Sulfur and its role in modern materials science[J]. Angewandte Chemie International Edition, 2016, 55(50): 15486-15502. [43] Saleh T A. Characterization, determination and elimination technologies for sulfur from petroleum: toward cleaner fuel and a safe environment[J]. Trends in Environmental Analytical Chemistry, 2020, 25: 80. [44] Simeonidis K, Liébana-Viñas S, Wiedwald U, et al. A versatile large-scale and green process for synthesizing magnetic nanoparticles with tunable magnetic hyperthermia features[J]. RSC Advances, 2016, 6(58): 53107-53117. [45] Fang, R, Xu, J, Wang, D. W. Covalent fixing of sulfur in metal-sulfur batteries[J]. Energy & Environmental Science, 2020, 13: 432-471. [46] Mann M, Kruger J E, Andari F, et al. Sulfur polymer composites as controlled-release fertilizes[J]. Organic & Bio molecular Chemistry, 2019, 17(7): 1929-1936. [47] Nguyen T B. Recent advances in organic reactions involving elemental sulfur[J]. Advanced Synthesis & Catalysis, 2017, 359(7): 1066-1130. [48] Argueta-Figueroa L, Martinez-Alvarez O, Santos-Cruz J, et al. Nanomaterials made of non-toxic metallic sulfides: A systematic review of their potential biomedical applications[J]. Materials Science and Engineering: C, 2017, 76(2): 1305-1315. [49] Xu G, Zeng S, Zhang B, et al. New generation cadmium-free quantum dots for biophotonics and nanomedicine[J]. Chemical Reviews, 2016, 116(19): 12234-12327. [50] Vlasova N, Sorokin M, Oborina E. Carbofunctional sulfur-containing organosilicon compounds: synthesis and application fields. russ[J]. Applied Organometallic Chemistry, 2016, 89: 1031-1042. [51] Lee S K, Lee Y J, Sun Y K. Nanostructured lithium sulfide materials for lithium-sulfur batteries[J]. Journal of Power Sources, 2016, 323: 174-188. [52] Sheng J, Wang L, Han Y, et al. Dual roles of protein as a template and a sulfur provider: a general approach to metal sulfides for efficient photothermal therapy of cancer[J]. Small, 2018, 14(1): 1702-1708. [53] Li S, Chen D, Zheng F, et al. Water-soluble and lowly toxic sulphur quantum dots[J]. Advanced Functional Materials, 2014, 24(45): 7133-7138. [54] Shen L, Wang H, Liu S, et al. Assembling of sulfur quantum dots in fission of sublimed sulfur[J]. Journal of the American Chemical Society, 2018, 140(25): 7878-7884. [55] Wang H, Wang Z, Xiong Y, et al. Hydrogen peroxide assisted synthesis of highly luminescent sulfur quantum dots[J]. Angewandte Chemie, 2019, 131(21): 7114-7118. [56] Hu Z, Dai H, Wei X, et al. 49.25 % efficient cyan emissive sulfur dots via a microwave-assisted route[J]. RSC Advances, 2020, 10(29): 17266-17269. [57] Xiao L, Du Q, Huang Y, et al. Rapid synthesis of sulfur nanodots by one-step hydrothermal reaction for luminescence-based applications[J]. ACS Applied Nano Materials, 2019, 2(10): 6622-6628. [58] Song Y, Tan J, Wang G, et al. Oxygen accelerated scalable synthesis of highly fluorescent sulfur quantum dots[J]. Chemical Science, 2020, 11(3): 772-777. [59] Li Q L, Shi L X, Du K, et al. Cooperation assisted precipitation etching method for the luminescent enhanced assembling of sulfur quantum dots[J]. ACS Omega, 2020, 5(10): 5407-5411. [60] Zhang Y, Liu J, Wu X, et al. Ultrasensitive detection of Cr (VI)(Cr2O72-/CrO42-) ions in water environment with a fluorescent sensor based on metal-organic frameworks combined with sulfur quantum dots[J]. Analytica Chimica Acta, 2020, 1131: 68-79. [61] Jin J, Wang L, Dong Z H, et al. Covalent bond glued sulfur nanosheet-based cathode integration for long-cycle-life Li-S batteries[J]. Nano letters, 2013, 13(12): 6244-6250. [62] Shen L, Wei J, Liu Z, et al. Stable layered sulfur nanosheets prepared by one-step liquid-phase exfoliation of natural sublimed sulfur with bovine serum albumin for photocatalysis[J]. Chemistry of Materials, 2020, 32(24): 10476-10481. [63] Bai Z, Shen L, Wei J, et al. Layered sulfur nanosheets prepared by assembly of sulfur quantum dots: implications for wide optical absorption and multiwavelength photoluminescence[J]. ACS Applied Nano Materials, 2020, 3(11): 10749-10756. [64] Dunn B, Kamath H, Tarascon J M. Electrical energy storage for the grid: a battery of choices[J]. Science, 2011, 334(6058): 928-935. [65] Zhu C, Usiskin R E, Yu Y, et al. The nanoscale circuitry of battery electrodes[J]. Science, 2017, 358(6369): 2808-2818. [66] Wang K X, Li X H, Chen J S. Surface and interface engineering of electrode materials for lithium‐ion batteries[J]. Advanced Materials, 2015, 27(3): 527-545. [67] Cabana J, Monconduit L, Larcher D, et al. Beyond intercalation-based Li-S batteries: the state of the art and challenges of electrode materials reacting through conversion reactions[J]. Advanced Materials, 2010, 22(35): 170-192. [68] Zhang L, Li Q, Xue H, et al. Fabrication of Cu2O‐based materials for Li-S batteries[J]. Chemistry Sus Chemistry, 2018, 11(10): 1581-1599. [69] Deng C, Wang Z, Wang S, et al. Inhibition of polysulfide diffusion in Li-S batteries: mechanism and improvement strategies[J]. Journal of Materials Chemistry A, 2019, 7(20): 12381-12413. [70] Fang X, Peng H. A revolution in electrodes: recent progress in rechargeable Li-S batteries[J]. Small, 2015, 11(13): 1488-1511. [71] Peng H J, Huang J Q, Zhang Q. A review of flexible Li-S and analogous alkali metal-chalcogen rechargeable batteries[J]. Chemical Society Reviews, 2017, 46(17): 5237-5288. [72] Luo L, Chung S H, Yaghoobnejad Asl H, et al. Long-life Li-S batteries with a bifunctional cathode substrate configured with boron carbide nanowires[J]. Advanced Materials, 2018, 30(39): 1804-1810. [73] Manthiram A, Fu Y, Su Y S. Challenges and prospects of Li-S batteries[J]. Accounts of Chemical Research, 2013, 46(5): 1125-1134. [74] Yuan L, Qiu X, Chen L, et al. New insight into the discharge process of sulfur cathode by electrochemical impedance spectroscopy[J]. Journal of Power Sources, 2009, 189(1): 127-132. [75] Waluś S, Barchasz C, Colin J F, et al. New insight into the working mechanism of Li-S batteries: in situ and operando X-ray diffraction characterization[J]. Chemical Communications, 2013, 49(72): 7899-7901. [76] Su Y S, Fu Y, Cochell T, et al. A strategic approach to recharging Li-S batteries for long cycle life[J]. Nature Communications, 2013, 4(1): 1-8. [77] Zhou L, Danilov D L, Eichel R A, et al. Host materials anchoring polysulfides in Li-S batteries reviewed[J]. Advanced Energy Materials, 2021, 11(15): 301-304. [78] Ng S F, Lau M Y L, Ong W J. Lithium-sulfur battery cathode design: tailoring metal-based nanostructures for robust polysulfide adsorption and catalytic conversion[J]. Advanced Materials, 2021, 33(50): 652-654. [79] Hsieh Y Y, Zhang L, Dear mond D, et al. Integrated graphene-sulfur cathode and separator with plasma enhancement for Li-S batteries[J]. Carbon, 2018, 139: 1093-1103. [80] Ye H, Lee J Y. Solid additives for improving the performance of sulfur cathodes in Li-S batteries-adsorbents, mediators, and catalysts[J]. Small Methods, 2020, 4(6): 861-864. [81] Sun K, Fu M, Xie Z, et al. Improvement of Li-S battery electrochemical performance with 2D TiS2 additive[J]. Electrochimica Acta, 2018, 292(15): 779-788. [82] Song M S, Han S C, Kim H S, et al. Effects of nanosized adsorbing material on electrochemical properties of sulfur cathodes for Li-S secondary batteries[J]. Journal of the Electrochemical Society, 2004, 151(6): 791-798. [83] Zhang Y, Wu X, Feng H, et al. Effect of nanosized Mg0.8Cu0.2O on electrochemical properties of Li-S rechargeable batteries[J]. International Journal of Hydrogen Energy, 2009, 34(3): 1556-1559. [84] Choi Y J, Jung B S, Lee D J, et al. Electrochemical properties of sulfur electrode containing nano Al2O3 for Li-S cell[J]. Physica Scripta, 2007, 2007(T129): 62-71. [85] Dong K, Wang S, Zhang H, et al. Preparation and electrochemical performance of sulfur-alumina cathode material for Li-S batteries[J]. Materials Research Bulletin, 2013, 48(6): 2079-2083. [86] Zhang L, Wang Y, Niu Z, et al. Advanced nanostructured carbon-based materials for rechargeable Li-S batteries[J]. Carbon, 2019, 141(121): 400-416. [87] Park J, Yu S H, Sung Y E. Design of structural and functional nanomaterials for Li-S batteries[J]. Nano Today, 2018, 18(19): 35-64. [88] Zhong Y, Xia X, Deng S, et al. Popcorn inspired porous macrocellular carbon: rapid puffing fabrication from rice and its applications in Li-S batteries[J]. Advanced Energy Materials, 2018, 8(1): 1701110. [89] Ahn W, Kim K B, Jung K N, et al. Synthesis and electrochemical properties of a sulfur-multi walled carbon nanotubes composite as a cathode material for Li-S batteries[J]. Journal of Power Sources, 2012, 202(33):394-399. [90] Shulaker M M, Hills G, Patil N, et al. Carbon nanotube computer[J]. Nature, 2013, 501(7468): 526-530. [91] Pan Y, Chou S, Liu H K, et al. Functional membrane separators for next-generation high-energy rechargeable batteries[J]. National Science Review, 2017, 4(6): 917-933. [92] Wang L, Zhao Y, Thomas M L, et al. In situ synthesis of bi-pyramidal sulfur with 3D carbon nanotube framework for Li-S batteries[J]. Advanced Functional Materials, 2014, 24(15): 2248-2252. [93] Chen S, Huang X, Liu H, et al. 3D hyperbranched hollow carbon nanorod architectures for high-performance Li-S Batteries[J]. Advanced Energy Materials, 2014, 4(8): 1301-1306. [94] Lu S, Chen Y, Wu X, et al. Three-dimensional sulfur/graphene multifunctional hybrid sponges for Li-S batteries with large areal mass loading[J]. Scientific Reports, 2014, 4(1): 1-4. [95] Usachov D, Vilkov O, Gruneis A, et al. Nitrogen-doped graphene: efficient growth, structure, and electronic properties[J]. Nano Letters, 2011, 11(12): 5401-5407. [96] Murali A, Lokhande G, Deo K A, et al. Emerging 2D nanomaterials for biomedical applications[J]. Materials Today, 2021, 50: 276-302. [97] Abnavi A, Ahmadi R, Hasani A, et al. Free-standing multilayer molybdenum disulfide memristor for brain-inspired neuromorphic applications[J]. ACS Applied Materials & Interfaces, 2021, 13(38): 45843-45853. [98] Mayorga-Martinez C, Sofer Z, Pumera M. Layered black phosphorus as a selective vapor sensor[J].Angewandte Chemie International Edition, 2015, 54(48): 14317-14320. [99] Ghanemi K, Nikpour Y, Omidvar O et al. Sulfur-nanoparticle-based method for separation and preconcentration of some heavy metals in marine samples prior to flame atomic absorption spectrometry determination[J]. Talanta. 2011, 85(1): 763-769. [100] Suleiman M, Al-Masri M, Al Ali A, et al. Synthesis of nano-sized sulfur nanoparticles and their antibacterial activities[J]. Journal of Materials Chemistry , 2015, 6(2): 513-518. [101] Rao K, Paria S. Use of sulfur nanoparticles as a green pesticide on fusarium solani and venturia inaequalis[J]. RSC. Advances, 2013, 3(26): 10471-10478. [102] Rivnay J, Inal S, Collins B A, et al. Structural control of mixed ionic and electronic transport in conducting polymers[J]. Nature Communications, 2016, 7(1): 1-9. [103] Crispin X, Jakobsson F L E, Crispin A, et al. The origin of the high conductivity of poly (3, 4-ethylenedioxythiophene)- poly (styrenesulfonate) (PEDOT:PSS) plastic electrodes[J]. Chemistry of Materials, 2006, 18(18): 4354-4360. [104] Qiao G X, Liu L, Hao X X. Signal Transduction from small particles: sulfur nanodots featuring mercury sensing, cell entry mechanism and in vitro tracking performance[J]. Chemical Engineering Journal, 2020, 382: 1229-1236. [105] Huang Y, Lin L, Zhang C, et al. Recent advances and strategies toward polysulfides shuttle inhibition for high‐performance Li-S batteries[J]. Advanced Science, 2022(8): 2106-2112. [106] Chadha U, Bhardwaj P, Padmanaban S, et al. Contemporary progresses in carbon- based electrode material in Li-S batteries[J]. Journal of The Electrochemical Society, 2022, 169(2): 02053-02058.
﹀
|
中图分类号: |
TD98
|
开放日期: |
2024-01-05
|