- 无标题文档
查看论文信息

论文中文题名:

 2019Ridgecrest Mw 6.4 Mw 7.1    

姓名:

 楚紫茗    

学号:

 19210061022    

保密级别:

     

论文语种:

 chi    

学科代码:

 0816    

学科名称:

  -     

学生类型:

     

学位级别:

     

学位年度:

 2022    

培养单位:

 西    

院系:

 测绘科学与技术学院    

专业:

 测绘科学与技术    

研究方向:

     

第一导师姓名:

 段虎荣    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-26    

论文答辩日期:

 2022-06-09    

论文外文题名:

 Analysis of stress variations in Ridgecrest Mw 6.4 and 7.1 earthquakes in 2019    

论文中文关键词:

 2019年Ridgecrest地震 ; 同震滑动分布 ; 应力旋转 ; GNSS ; 震源机制解 ; 板块运动    

论文外文关键词:

 2019 Ridgecrest earthquakes ; Coseismic slip distribution ; Stress rotation ; GNSS ; Focal mechanism ; Plate motion    

论文中文摘要:
<p>GNSSRidgecrest M<sub>w</sub>6.4M<sub>w</sub>7.120141-201910</p> <p>1 InSAR访201974M<sub>w</sub>6.476M<sub>w</sub>7.1使使 GNSSRidgecrest使GNSSM<sub>w</sub>6.4F2F3F2~0.7 mF3~0.3 mM<sub>w</sub>7.1F1F2 F3F1F3~2.2 m~3.1 mF2</p> <p>22019Ridgecrest(SHmax)M<sub>w</sub>6.4SHmax3.8&deg;2.8&deg;4.0&deg;3.2&deg;~1&deg;M<sub>w</sub>6.4M<sub>w</sub>7.1SHmax2.8&deg;5.8&deg;3.0&deg; 53&deg; ~4.5 MPa ~4.3 MPa使b</p> <p>3使NE-SWNW-SENE-SW&ldquo;NW-SENE-SW&rdquo;</p>
论文外文摘要:
<p>The occurrence of earthquakes is closely related to the accumulation of stress in the crustal region and the relative motion of active plates. Studying the spatiotemporal changes of the seismic tectonic stress field helps us to deeply understand the relationship between tectonic deformation and earthquake rupture, which is of great scientific significance and practicality value for earthquake prevention and disaster mitigation. In this paper, the GNSS coseismic displacement data are used to invert the slip distribution of the Ridgecrest M<sub>w</sub> 6.4 sinistral and M<sub>w</sub> 7.1 dextral earthquakes. The focal mechanism data from January 2014 to October 2019 were divided into three periods and five subareas according to their spatiotemporal distribution, and the spatiotemporal variations of stress field were calculated. Based on the tectonic background of the relative movement of the Pacific plate and the North American plate, the common reasons for the frequent occurrence of conjugate earthquakes in California are explained. The main research work and final results of this paper are as follows:</p> <p>(1) The accuracy of the slip distribution results has an influence on the calculation of the stress drop &nbsp;and the deviatoric stress . Due to the long revisit period of InSAR data, it is difficult to distinguish the surface deformation caused by the two earthquakes on July 4, 2019, M<sub>w</sub> 6.4 and July 6, 2019, M<sub>w</sub> 7.1, respectively, and the slip distribution model inversion by InSAR data will make &nbsp;and &nbsp;larger. Because the GNSS data can capture the part of rupture between the Ridgecrest two earthquakes, allowing the two ruptures were decomposed. Based on GNSS data, this paper inverts the coseismic slip distribution of the two earthquakes respectively. The two earthquakes are not purely strike-slip, and both have minor dip-slip components. The M<sub>w</sub> 6.4 foreshock caused the rupture of faults F2 and F3, and fault F2 exhibited sinistral strike-slip with a maximum slip of ~0.7 m; fault F3 exhibited dextral strike-slip with a maximum slip of ~0.3 m. The M<sub>w</sub> 7.1 mainshock caused the rupture of faults F1, F2, and F3, and faults F1 and F3 exhibited dextral strike-slip with a maximum slip of ~2.2 m and ~3.1 m, respectively; fault F2 has almost no slip.</p> <p>(2) The maximum horizontal stress (SHmax) direction in the Ridgecrest earthquake region in 2019 has the characteristics of first counterclockwise and then clockwise rotation. After the M<sub>w</sub> 6.4 foreshock, the SHmax direction rotated counterclockwise, and the foreshock epicenter area changed from 3.8&deg; to 2.8&deg;, and the mainshock epicenter area changed from 4.0&deg; to 3.2&deg;, which only rotated counterclockwise by ~1&deg; within the error tolerance, indicating that the M<sub>w</sub> 6.4 foreshock did not cause substantial changes in the stress direction in its source area. After the M<sub>w</sub> 7.1 mainshock, the SHmax direction rotated clockwise, and the foreshock epicenter region changed from 2.8&deg; to 5.8&deg;, rotating clockwise by 3.0&deg;, and the stress change was more significant. However, the average misfit angle &nbsp;in the epicenter area of the mainshock is as high as 53&deg;, and this area is determined to be a heterogeneous stress field. Calculating the deviatoric stress &nbsp;~4.5 MPa and the stress drop &nbsp;~4.3 MPa in this area, it is found that they are almost equal, indicating that the post-earthquake heterogeneous stress field region had experienced almost complete stress release. The area with large stress changes corresponds to the area with large slip distribution. After the mainshock, due to the influence of the stress transfer caused by the larger aftershock and the complete release of stress, the trend or plunge angle of the main stress axis is changed, but the stresses at different depths are still dominated by the strike-slip state, which is less affected by the stress heterogeneity. Six months before the earthquake, the b-value began to change significantly, and its fluctuation tended to be stable after the earthquake.</p> <p>(3) The difference in relative motion rates between the Pacific plate and the North American plate constitutes a clockwise rotational trend, which puts the California region in a dextral shear zone formed by relative motion. Due to the arc-shaped structure at the junction of the two plates, the stress accumulation and distribution are uneven in this region, and the accumulated stress is mainly jointly regulated by the NW&ndash;SE dextral and NE&ndash;SW sinistral conjugate fracture zone. The frequent occurrence of conjugate earthquakes in the California region and the reason for this phenomenon of &quot;NW-SE dextral and NE-SW sinistral&quot; in foreshocks, mainshocks and aftershocks, as well as the corresponding stress direction changes were explained.</p>
参考文献:

[1]Vavryčuk V. Earthquake mechanisms and stress field[J]. Encyclopedia of Earthquake Engineering, 2015: 728–746.

[2]Avouac J-P. From Geodetic Imaging of Seismic and Aseismic Fault Slip to Dynamic Modeling of the Seismic Cycle[J]. Annual Review of Earth & Planetary Sciences, 2015, 43(1): 233-271.

[3]王强. 基于震源机制解反演研究云南现今构造应力场特征[D]. 云南大学, 2015.

[4]Meighan H, Pulliam J, Ten Brink U, et al. Seismic evidence for a slab tear at the Puerro Rico Trench[J]. Journal of Geophysical Research: Solid Earth, 2013, 118(6): 2915-2923.

[5]Kumar A, Wagner L, Beck S, et al. Seismicity and state of stress in the central and southern Peruvian flat slab[J]. Earth and Planetary Science Letters, 2016, 441: 71-80.

[6]Sheng S Z, Meng L S. Stress Field Variation During the 2019 Ridgecrest Earthquake Sequence[J]. Geophysical Research Letters, 2020, 47(15).

[7]Ross Z E, Idini B, Jia Z, et al. Hierarchical interlocked orthogonal faulting in the 2019 Ridgecrest earthquake sequence [J]. Science, 2019, 366(6463): 346-351.

[8]Wang K, Dreger D S, Tinti E, et al. Rupture Process of the 2019 Ridgecrest, California Mw 6.4 Foreshock and Mw 7.1 Earthquake Constrained by Seismic and Geodetic Data[J]. Bulletin of the Seismological Society of America 2020, 110(4): 1603–1626.

[9]Xu X H, Sandwell D T, Ward L A, et al. Surface deformation associated with fractures near the 2019 Ridgecrest earthquake sequence[J]. Science, 2020b, 370(6516): 605-608.

[10]Barnhart W D, Hayes G P, Gold R D. The July 2019 Ridgecrest, California, Earthquake Sequence: Kinematics of Slip and Stressing in Cross‐Fault Ruptures[J]. Geophysical Research Letters, 2019, 46(21): 11859-11867.

[11]Nanjo K Z. Were changes in stress state responsible for the 2019 Ridgecrest, California, earthquakes?[J]. Nature Communications, 2020, 11(1): 3082.

[12]Thatcher W, Hill D P. Fault orientations in extensional and conjugate strike-slip environments and their implications[J]. Geology, 1991, 19(11): 1116–1120.

[13]Fialko Y, Jin Z. Simple shear origin of the cross-faults ruptured in the 2019 Ridgecrest earthquake sequence[J]. Nature geoscience, 2021, 14: 513-518.

[14]Zoback M L, Zoback M D, Adams J, et al. Global patterns of tectonic stress[J]. Nature, 1989, 341(6240): 291-298.

[15]Zoback M. First- and Second-Order Patterns of Stress in the Lithosphere: The World Stress Map Project[J]. Journal of Geophysical Research:Solid Earth, 1992, 97(B8): 11703-11728.

[16]崔子健. 区域构造应力场的反演与地震带划分的研究[D]. 中国地震局地球物理研究所, 2018.

[17]徐纪人, 赵志新, 石川有三. 中国大陆地壳应力场与构造运动区域特征研究[J]. 地球物理学报, 2008, 51(3): 770-781.

[18]Wu Y M, Hsu Y J, Chang C H, et al. Temporal and spatial variation of stress field in Taiwan from 1991 to 2007: Insights from comprehensive first motion focal mechanism catalog[J]. Earth and Planetary Science Letters, 2010, 298(3-4): 306-316.

[19]Ickrath M, Bohnhoff M, Bulut F, et al. Stress rotation and recovery in conjunction with the 1999 Izmit Mw 7.4 earthquake[J]. Geophysical Journal International, 2013, 196(2): 951-956.

[20]Martínez-Garzón P, Bohnhoff M, Kwiatek G, et al. Stress tensor changes related to fluid injection at The Geysers geothermal field, California[J]. Geophysical Research Letters, 2013, 40(11): 2596-2601.

[21]Zhao L, Luo Y, Liu T Y, et al. Earthquake Focal Mechanisms in Yunnan and their Inference on the Regional Stress Field[J]. Bulletin of the Seismological Society of America, 2013, 103(4): 2498-2507.

[22]Hauksson. State of stress from focal mechanisms before and after the 1992 landers earthquake sequence[J]. Bulletin of the Seismological Society of America, 1994, 84(3): 917-934.

[23]Hardebeck J L. Coseismic and postseismic stress rotations due to great subduction zone earthquakes[J]. Geophysical Research Letters, 2012, 39(21).

[24]钱晓东, 秦嘉政, 刘丽芳. 云南地区现代构造应力场研究[J]. 地震地质, 2011, 33(1): 91-106.

[25]沈娅宏, 张建国, 毛燕. 小江断裂带及其周边地区构造应力场特征[J]. 云南大学学报(自然科学版), 2012, 34(3): 308-314.

[26]赵小艳, 苏有锦, 付虹. 欧亚地震带现代构造应力场及其分区特征[J]. 地震研究, 2007, 30(2): 146-151.

[27]张致伟, 程万正, 阮祥. 汶川8.0级地震前龙门山断裂带的地震活动性和构造应力场特征[J]. 地震学报, 2009, 31(2): 117-127.

[28]Mckenzie D P. The relation between fault plane solutions for earthquakes and the directions of the principal stresses [J]. Bulletin of the Seismological Society of America, 1969, 59(2): 591-601.

[29]Bott M H P. The Mechanics of oblique slip faulting[J]. Geological Magazine, 1959, 96(2): 109 - 117.

[30]Angelier J. Tectonic analysis of fault slip data set[J]. Journal of Geophysical Research: Solid Earth, 1984, 89(B7): 5835-5848.

[31]许忠淮, 戈澍谟. 滑动方向拟合法反演富蕴地震断裂带应力场[J]. 地震学报, 1984, 6(4): 395-404.

[32]张红艳, 谢富仁, 崔效锋. 四川芦山地震区域构造环境与构造应力场特征[J]. 地球科学与环境学报, 2013, 35(2): 99-106.

[33]万永革. 联合采用定性和定量断层资料的应力张量反演方法及在乌鲁木齐地区的应用[J]. 地球物理学报, 2015, 58(9): 3144-3156.

[34]Ellsworth W L, Xu Z. Determination of the stress tensor from focal mechanism data[J]. Eos Trans AGU, 1980, 61(1): 117.

[35]许忠淮. 用滑动方向拟合法反演唐山余震区的平均应力场[J]. 地震学报, 1985, 7(4): 349-362.

[36]Gephart J W, Forsyth D W. An improved method for determining the regional stress tensor using earthquake focal mechanism data: Application to the San Fernando Earthquake Sequence[J]. Journal of Geophysical Research: Solid Earth, 1984, 89(B11): 9305-9320.

[37]Gephart J W. FMSI: A FORTRAN program for inverting fault/slickenside and earthquake focal mechanism data to obtain the regional stress tensor[J]. Computers & Geosciences, 1990, 16(7): 953-989.

[38]Michael A J. Determination of stress from slip data: faults and folds[J]. Journal of Geophysical Research: Solid Earth, 1984, 89(B13): 11517-11526.

[39]Michael A J. Use of focal mechanisms to determine stress: A control study[J]. Journal of Geophysical Research: Solid Earth, 1987, 92(B1): 357-368.

[40]Hardebeck J L, Michael A J. Damped regional‐scale stress inversions: Methodology and examples for southern California and the Coalinga aftershock sequence[J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B11): B11310.

[41]Martínez‐Garzón P, Kwiatek G, Ickrath M, et al. MSATSI: A MATLAB Package for Stress Inversion Combining Solid Classic Methodology, a New Simplified User-Handling, and a Visualization Tool[J]. Seismological Research Letters, 2014, 85(4): 896-904.

[42]Anderson D L. Theory of the Earth[C], Blackwell Scientific Publications, 1989.

[43]刘绍英. 利用GPS同震位移观测数据反演尼泊尔Mw7.8地震滑动分布[D]. 西南交通大学, 2018.

[44]金双根. GPS监测全球板块构造运动的研究[D]. 中国科学院上海天文台, 2003.

[45]安欧. 地力学地震预测基础[M]. 北京:地震出版社, 2011.

[46]Steketee J A. On Volterra’s dislocation in a semi-infinite elastic medium. [J]. Canadian Journal of Physics, 1958, 36(2): 192-205.

[47]Okada Y. Surface Deformation due to Shear and Tensile Faults in a Half Space[J]. Bulletin of the Seismological Society of America, 1985, 82(2): 1018-1040.

[48]李志才, 许才军, 赵少荣, 等. 同震变形分析中不同地球结构模型差异性研究[J]. 大地测量与地球动力学, 2005, 25(3): 39-44.

[49]Wang R, Diao F, Hoechner A. SDM - A geodetic inversion code incorporating with layered crust structure and curved fault geometry[C],2013.

[50]Wang L, Wang R, Roth F, et al. Afterslip and viscoelastic relaxation following the 1999 M 7.4 İzmit earthquake from GPS measurements[J]. Geophysical Journal International, 2009, 178(3): 1220-1237.

[51]李泽潇, 万永革, 崔华伟, 等. 2018年9月8日墨江地震及周边地区构造应力场特征分析[J]. 地球物理学报, 2020, 63(4): 1431-1443.

[52]李红. 构造应力场、活动断裂及区域地震活动性的数值模拟研究[D]. 中国地震局地壳应力研究所, 2008.

[53]Chiba K, Iio Y, Fukahata Y. Detailed stress fields in the focal region of the 2011 off the Pacific coast of Tohoku Earthquake Implication for the distribution of moment release[J]. Earth, Planets and Space, 2012, 64: 1157–1165.

[54]Hardebeck J L. Coseismic and postseismic stress rotations due to great subduction zone earthquakes.[J]. Geophysical Research Letters, 2012, 39(21): L21313.

[55]Hensch M, Lund B, Árnadóttir T, et al. Temporal stress changes associated with the 2008 May 29 Mw 6 earthquake doublet in the western South Iceland Seismic Zone[J]. Geophysical Journal International, 2016, 204(1): 544–554.

[56]Gephart J W, Forsyth D W. An improved method for determining the regional stress tensor using earthquake focal mechanism data: Application to the San Fernando Earthquake Sequence[J]. Journal of Geophysical Research, 1984, 89(B11): 9305-9320.

[57]Kumar A, Wagner L S, Beck S L, et al. Seismicity and state of stress in the central and southern Peruvian flat slab[J]. Earth and Planetary Science Letters, 2016, 441: 71-80.

[58]Hardebeck J L, Hauksson E. Crustal stress field in southern California and its implications for fault mechanics.[J]. Journal of Geophysical Research: Solid Earth, 2001, 106(B10): 21859-21882.

[59]Golub G H, Hansen P C, O'leary D P. Tikhonov Regularization and Total Least Squares[J]. SIAM Journal on Matrix Analysis & Applications, 1999, 21(1): 185-194.

[60]Efron B, Tibshirani R. Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures of Statistical Accuracy[J]. Statistical Science, 1986, 1(1): 54-75.

[61]Lund B, Townend J. Calculating horizontal stress orientations with full or partial knowledge of the tectonic stress tensor[J]. Geophysical Journal International, 2007, 170(3): 1328-1335.

[62]Lund B. Crustal stress studies using microearthquakes and boreholes[D]. Uppsala University, 2000.

[63]Gutenberg B, Richter C F. Frequency of Earthquake in Californial [J]. Bulletin of the Seismological Society of America 1944, 34(4): 185-188.

[64]Mogi K. Study of the elastic shocks caused by the fracture of heterogeneous material and its relation to earthquake phenomena[J]. Bulletin of the Earthquake Research Institute, 1962, 40: 125-173.

[65]Scholtz C H. The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes[J]. Bulletin of the Seismological Society of America, 1968, 58(1): 399-415.

[66]尹翔础, 李世愚, 李红, 等. 从断裂力学观点探讨b值的物理实质[J]. 地震学报, 1987, 9(4): 364-374.

[67]Utsu T. A Method for Determining the Value of b in a Formula log n=a-bM showing the Magnitude-Frequency Relation for Earthquakes[J]. Geophysical Bulletin of Hokkaido University, 1965: 99-103.

[68]Aki K. Maximum Likelihood Estimate of b in the Formula logN=a-bM and its Confidence Limits[J]. Bulletin of the Earthquake Research Institute, 1965, 43(2): 237-239.

[69]孟昭彤, 刘静伟, 谢卓娟, 等. b 值的时空分布特征与地震危险性的关联分析[J]. 地球物理学进展, 2021, 36(1): 0030-0038.

[70]Wiemer S. A software package to analyze seismicity: ZMAP[J]. Seismological Research Letters, 2001, 72(3): 373-382.

[71]张建中, 宋良玉. 地震b值的估计方法及其标准误差——应用蒙特卡罗方法估计b值精度[J]. 地震学报, 1981, 3(3): 292-301.

[72]Demets C, Gordon R G, Argus D F, et al. Current plate motions[J]. Geophysical Journal International, 1990, 101(2): 425-478.

[73]Chen K, Avouac J, Aati S, et al. Cascading and pulse-like ruptures during the 2019 Ridgecrest earthquakes in the Eastern California Shear Zone[J]. Nature Communications, 2020, 11(1): 22.

[74]Magen Y, Ziv A, Inbal A, et al. Fault Rerupture during the July 2019 Ridgecrest Earthquake Pair from Joint Slip Inversion of InSAR, Optical Imagery, and GPS[J]. Bulletin of the Seismological Society of America, 2020, 110(4): 1-17.

[75]Stewart J, Brandenberg S, Wang P, et al. Preliminary Report on Engineering and Geological Effects of the July 2019 Ridgecrest Earthquake Sequence [M]. 2019.

[76]Dokka R K, Travis C J. Late Cenozoic strike-slip faulting in the Mojave Desert California[J]. Tectonics, 1990, 9(2): 311-340.

[77]Peltzer G, Crampé F, Hensley S, et al. Transient strain accumulation and fault interaction in the Eastern California shear zone[J]. Geology, 2001, 29(11): 975.

[78]Allison, Jacobs, David, et al. The 1999 (Mw 7.1) Hector Mine, California, Earthquake: Near-Field Postseismic Deformation from ERS Interferometry[J]. Bulletin of the Seismological Society of America, 2002, 92(4): 1433-1442.

[79]Gan W, Svarc J, Savage J, et al. Strain accumulation across the Eastern California Shear Zone at latitude 36°30′N[J]. Journal of Geophysical Research:Solid Earth, 2000, 105(B7): 16229-16236.

[80]Liu M, Wang H, Li Q S. Inception of the eastern California shear zone and evolution of the Pacific-North American plate boundary: From kinematics to geodynamics[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B07401).

[81]孙和平, 熊熊, 王勇. 大地测量与地球动力学进展.第二辑[M]. 湖北科学技术出版社, 2014.

[82]Golriz D, Bock Y, Xu X H. Defining the Coseismic Phase of the Crustal Deformation Cycle With Seismogeodesy[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(10).

[83]Xu X H, Sandwell D T, Smith-Konter B. Coseismic Displacements and surface fractures from Sentinel-1 InSAR: 2019 Ridgecrest earthquakes[J]. Seismological Research Letters, 2020a, 91(4): 1979-1985.

[84]Gao Y, Duan H, Zhang Y, et al. Coseismic fault-slip distribution of the 2019 Ridgecrest Mw 6.4 and Mw 7.1 earthquakes[J]. Scientific Reports, 2021, 11.

[85]Fang J, Xu C J, Zang J F, et al. Application of high-rate GPS for earthquake rapid response and modelling: a case in the 2019 Mw 7.1 Ridgecrest earthquake[J]. Geophysical Journal International, 2020, 222(3): 1923-1935.

[86]Goldberg D E, Melgar D, Thomas A M, et al. Complex Rupture of an Immature Fault Zone: A Simultaneous Kinematic Model of the 2019 Ridgecrest, CA Earthquakes[J]. Geophysical Research Letters, 2020, 47(3): e2019GL086382.

[87]Cronin V. A primer on focal mechanism solutions for geologists[J]. Science Education Resource Center, Carleton College, 2010.

[88]Hickman S H, Zoback M D, Healy J H. Continuation of a deep borehole stress measurement profile near the San Andreas Fault: 1. Hydraulic fracturing stress measurements at Hi Vista, Mojave Desert, California[J]. Journal of Geophysical Research Solid Earth, 1988, 93(B12): 15183-15195.

[89]Michael A J. Stress rotation during the Coalinga Aftershock Sequence[J]. Journal of Geophysical Research Solid Earth, 1987, 92(B8): 7963-7979.

[90]Martínez‐Garzón P, Ben-Zion Y, Abolfathian N, et al. A refined methodology for stress inversions of earthquake focal mechanisms[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(12): 8666-8687.

[91]Michael A J, Ellsworth W L, Oppenheimer D H. Coseismic stress changes induced by the 1989 Loma Prieta, California Earthquake[J]. Geophysical Research Letters, 1990, 17(9): 1441-1444.

[92]Michael A J. Spatial variations in stress within the 1987 Whittier Narrows, California, aftershock sequence: New techniques and results[J]. Journal of Geophysical Research:Solid Earth, 1991, 96(B4): 6303-6319.

[93]Townend J, Zoback M. Implications of earthquake focal mechanisms for the frictional strength of the San Andreas fault system[J]. Geological Society Special Publication, 2001, 186(1): 13-21.

[94]Scholtz C H. On the stress dependence of the earthquake b-value.[J]. Geophysical Research Letters, 2015, 45(2): 1399-1402.

[95]Milliner C, Donnellan A. Using daily observations from Planet Labs satellite imagery to separate the surface deformation between the 4 July Mw 6.4 foreshock and 5 July Mw 7.1 mainshock during the 2019 Ridgecrest earthquake sequence[J]. Seismological Research Letters, 2020, 91(4): 1986-1997.

[96]Wang X, Zhan Z W. Seismotectonics and Fault Geometries of the 2019 Ridgecrest Sequence: Insight From Aftershock Moment Tensor Catalog Using 3‐D Green's Functions[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(5): e2020JB019577.

[97]Li S P, Chen G, Tao T Y, et al. The 2019 Mw 6.4 and Mw 7.1 Ridgecrest earthquake sequence in Eastern California: Rupture on a conjugate fault structure revealed by GPS and InSAR measurements[J]. Geophysical Journal International, 2020, 221(3): 1651-1666.

[98]Shan B, Feng Y S, Liu C L, et al. Stress triggering among faults rupturing during one earthquake: a case study of the 2016 Mw 7.8 Kaikōura Earthquake, New Zealand[J]. Science Bulletin, 2020, 65(2): 89-91.

[99]Nicholson C, Seeber L, Williams P, et al. Seismic evidence for conjugate slip and block rotation within the San Andreas Fault System, southern California[J]. Tectonics, 1986, 5(4): 629-648.

[100]Hill D P. Contemporary block tectonics: California and Nevada[J]. Journal of Geophysical Research: Solid Earth, 1982, 87(B7): 5433-5450.

[101]Priestley K F, Smith K D, Cockerham R S. The 1984 Round Valley, California Earthquake Sequence[J]. Geophysical Journal, 1988, 95(2): 215-235.

[102]Cockerham R S, Corbett E J. The July 1986 Chalfant Valley, California, earthquake sequence: Preliminary results[J]. Bulletin of the Seismological Society of America, 1987, 77(1): 280-289.

[103]Hudnut K W, Seeber L, Pacheco J. Cross‐fault triggering in the November 1987 Superstition Hills Earthquake Sequence, southern California[J]. Geophysical Research Letters, 2013, 16(2): 199-202.

[104]Hauksson E, Jones L M, Hutton K, et al. The 1992 Landers Earthquake Sequence: Seismological Observations[J]. Journal of Geophysical Research:Solid Earth, 1993, 98(B11): 19835-19858.

[105]Zhang Y G, Zheng W J, Wang Y J, et al. Contemporary Deformation of the North China Plain From Global Positioning System Data[J]. Geophysical Research Letters, 2018, 45(4).

[106]Argus D F, Gordon R G. Present tectonic motion across the Coast Ranges and San Andreas fault system in central California[J]. Geological Society of America Bulletin, 2001, 113(12): 1580-1592.

中图分类号:

 P315.727    

开放日期:

 2022-06-27    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式