- 无标题文档
查看论文信息

题名:

 大功率不间断本安开关电源的分析与设计    

作者:

 庹汉宇    

学号:

 21206029020    

保密级别:

 保密(3年后开放)    

语种:

 chi    

学科代码:

 080804    

学科:

 工学 - 电气工程 - 电力电子与电力传动    

学生类型:

 硕士    

学位:

 工学硕士    

学位年度:

 2024    

学校:

 西安科技大学    

院系:

 电气与控制工程学院    

专业:

 电气工程    

研究方向:

 开关电源    

导师姓名:

 刘树林    

导师单位:

 西安科技大学    

提交日期:

 2024-06-26    

答辩日期:

 2024-06-05    

外文题名:

 Analysis and Design of High-power Intrinsically Safe Uninterruptible Switching Power Supply    

关键词:

 大功率 ; 本质安全 ; Power-i ; 正激变换器 ; 磁复位    

外文关键词:

 High power ; Intrinsically safe ; Power-i ; Forward converter ; Magnetic reset    

摘要:

随着矿井中的照明、通信和监测等设备日益增多,对本安电源的性能提出了更高要求,不仅需要提供更高的输出功率,还应具备不间断供电能力,以降低停电事故的风险。但传统本安电源仍存在输出功率小、保护电路响应速度慢和供电不稳定等问题。为此,本文基于Power-i技术和新颖的副边附加LCD正激变换器,对一款大功率不间断本安开关电源进行了深入研究,对正激变换器在本安电源领域的应用具有重要意义。

通过深入分析Power-i技术原理和Power-i电源的要求,并结合IEC TS 60079-39标准,确定了大功率不间断本安开关电源的整体设计方案。通过分析副边附加LCD正激变换器中不同电感工作模式之间的影响关系,指出该变换器可能存在六种组合工作模式,其中L1和Lm工作于CCM,L2工作于DCM为最佳。通过分析最佳工作模式下的能量传输过程,得出附加LC不仅可以传输正激能量和励磁能量,还能改善多种电气性能,如实现开关管低电压关断、调整开关管电压应力和在负载不太重时实现开关管低电压导通等。通过分析附加LC对变换器电气性能的影响,得出开关管电压应力随C2增大而降低,开关管低电压导通性能随C2和L2减小而提升,并提出了一种可最大程度提升电气性能的参数设计方法。依据不间断本安开关电源的性能要求,提出通过采用PMOS代替普通二极管的双电源切换电路方案,在保证输出不间断的同时还有效降低了损耗。结合锂电池的充放电过程,设计了锂电池充放电保护和均衡电路,保证锂电池的充放电安全。最后,根据Power-i技术的原理,对本安保护电路及其关键参数进行了设计。

依据所提出的参数设计方法研制了一款输出功率为48W的大功率不间断本安开关电源试验样机,并对样机的关键电气性能和输出本安性能进行了测试。实验结果验证了理论分析的准确性和参数设计方法的可行性。

外文摘要:

As the number of devices in the mine, such as lighting, communication, and monitoring equipment, continues to increase, there are higher demands for the performance of intrinsically safe power supplies. These supplies not only need to provide higher output power but also should possess uninterrupted power capabilities to reduce the risk of power outages. However, traditional intrinsically safe power sources still face issues such as low output power, slow response speed of protection circuits, and unstable power supply. Therefore, this thesis conducts in-depth research on a high-power uninterrupted intrinsically safe switching power sources based on integrating Power-i technology and a novel secondary-side auxiliary LCD forward converter. This research holds significant importance for the application of the forward converter in the field of intrinsically safe power sources.

By thoroughly analyzing the principles of Power-i technology and the requirements of Power-i power supplies, and in conjunction with the IEC TS 60079-39 standard, the overall design scheme for a high-power uninterruptible intrinsically safe switching power supply has been determined. By analyzing the interdependent relationships among the different inductor operation modes in the secondary-side auxiliary LCD forward converter, it is pointed out that there may exist six combinations of operation modes. Among them, operating L1 and Lm in CCM and L2 in DCM is deemed optimal. By analyzing the energy transfer process in the optimal operating mode, it is concluded that the additional LCD can not only transmit the forward and excitation energy, but also enhance various electrical performances. This includes achieving low-voltage turn-off of the switch, adjusting the voltage stress on the switch, and achieving low-voltage turn-on of the switch when the load is not too heavy. By analyzing the relationship between the influence of the additional LC on electrical performance, it is found that the voltage stress on the switch decreases as C2 increases, and the low-voltage turn-on performance of the switch improves as C2 and L2 decrease. To maximize electrical performance, a parameter design method has been proposed. Based on the performance requirements of the uninterruptible intrinsically safe switching power supply, a dual power supply switching circuit scheme using PMOS instead of regular diodes is proposed, which effectively reduces losses while ensuring uninterrupted output. In conjunction with the charging and discharging process of lithium batteries, a charging and discharging protection and balancing circuit is designed to ensure the safety of lithium battery charging and discharging. Finally, based on the principles of Power-i technology, the intrinsically safe protection circuit and its key parameters were designed.

Based on the proposed parameter design method, a high-power uninterruptible intrinsically safe switching power supply prototype with an output power of 48W was developed, and key electrical performance and intrinsic safety performance of the prototype were tested. The accuracy of theoretical analysis and the reliability of parameter design methods were confirmed through experimental test results.

参考文献:

[1]段文婷. 煤炭资源利用现状及可持续发展[J]. 矿业装备, 2022, (02): 134-135.

[2]邓佳楠, 郭庆瑞, 余波, 等. 新型本质安全电源保护电路设计[J]. 煤炭工程, 2024, 56(01): 21-25.

[3]GB/T 3836.18-2017. 爆炸性环境第18部分:本质安全电气系统[S]. 北京: 中国标准出版社, 2017.

[4]于月森. 本质安全型开关电源基础理论与应用研究[D]. 江苏: 中国矿业大学, 2012.

[5]郑学召, 闫兴, 郭军, 等. 煤矿救灾机器人防爆技术研究[J]. 工矿自动化, 2019, 45(09): 13-17.

[6]刘树林. 本质安全开关变换器基础理论及关键技术研究[D]. 西安: 西安科技大学, 2007.

[7]聂鸿霖, 许春雨, 宋建成, 等. 混合型本安电路短路瞬态能量分析[J]. 工矿自动化, 2023, 49(07): 120-125.

[8]IEC/TS 60079-39, Ed. 1: 爆炸性气体环境.第39部分:带电子控制火花持续时间限制的本安型系统[S]. 国际电工委员会, 2012.

[9]康骞, 许春雨, 田慕琴, 等. 基于故障电流变化率的大功率本安电源设计[J]. 工矿自动化, 2021, 49(02): 6-12.

[10]Wu H, Xing Y. Families of forward converters suitable for wide input voltage range applications[J]. IEEE Transactions on Power Electronics, 2014, 29(11): 6006-6017.

[11]Wu H, Xing Y. A family of forward converters with inherent demagnetizing features based on basic forward cells[J]. IEEE Transactions on power electronics, 2010, 25(11): 2828-2834.

[12]Park J E, Han J K, Choi S H, et al. Two-switch forward converter with an integrated buck converter for high bus voltage in satellites[J]. IEEE Transactions on Power Electronics, 2022, 38(2): 2041-2051.

[13]C. Xu, Q. Ma, P. Xu, N. Wang. Closed-loop gate drive for single-ended forward converter to reduce conducted EMI[J]. IEEE Access, 2020, 8: 123746-123755.

[14]G. Zhou, Q. Tian, H. Li. Three-port forward converters with compact structure and extended duty cycle range[J]. IEEE Transactions on Industrial Electronics, 2023, 70(1): 566-581.

[15]S.H.Lee, B.S.Lee, D.H.Kwon, et al. Two-mode low-voltage DC/DC converter with high and wide input voltage range[J]. IEEE Transactions on Industrial Electronics, 2021, 68(12): 12088-12099.

[16]Ghavidel Jalise M, Allahyari H, Shoaei A, et al. A self-driven synchronous rectification wide-range ZVS single-switch forward converter controlled using the variable inductance[J]. IET Power Electronics, 2023, 16(2): 320-332.

[17]J.H.Lee, J.H.Park, J.H.Jeon. Series connected forward-flyback converter for high step-up power conversion[J]. IEEE Transactions on Power Electronics, 2011, 26(12): 3629-3641.

[18]Z.G.Zhang, M.Y.Liao, D.R.Jiang, et al. High stepup isolated forwardfyback DC/DC converter based on resonance with pulse frequency modulation[J]. Journal of Power Electronics, 2021, 21(2): 483-493.

[19]Greenwood, Alan Norman. Intrinsically safe power supply apparatus[P]. United States Patent: 3955132. 1976-05-04.

[20]Bockhorst R W, Zimmerman W E. Intrinsically safe regulated power supply[P]. United States Patents: 4264950, 1981-04-28.

[21]Cawley J C, MD Dimartino, Fisher T J, et al. Power supply for an intrinsically safe circuit[P]. United States Patent: 4438473, 1984-3-20.

[22]Rohl W. Intrinsically safe power supply with a current regulator[P]. United States Patents: 4646219, 1987-02-24.

[23]Alexander R, Kindschuh D. Intrinsically safe battery circuit[P]. United States Patent: 4749934, 1988-01-07.

[24]Cadman G R. High efficiency intrinsically safe power supply[P]. United States Patent: 5365420, 1994-11-15.

[25]Gerlach U, Uehlken T, Johannsmeyer U. High-power intrinsic safety with "C-I-S"[J]. Ex-Magazine, 2004: 66-67.

[26]Uehlken G TH. New challenges with supply systems providing high power in type of protection intrinsic safety[J]. PTB-BAM-Kolloquium, 2007(01): 221-225.

[27]Gerlach U, Uehlken T, Junker M, et al. DART—The new dimension in intrinsic safety[C]//2008 5th Petroleum and Chemical Industry Conference Europe-Electrical and Instrumentation Applications. IEEE, 2008: 1-6.

[28]IEC TS60079-39-2015[S]. 日内瓦: 国际电工委员会, 2015.

[29]Liu S L, Wu H, Zhang Y X, et al. The analysis and design of high-power intrinsic safe forward converter based on Power-i technology[J]. IOP Conference Series: Materials Science and Engineering, 2019, 533: 1-8.

[30]Gerlach U, Johannsmeyer U, Uehiken T. "Power-i", a significantly improved approach to explosion protection by intrinsic safety"i"[C]//2016 Petroleum and Chemical Industry Conference Europe (PCIC Europe). IEEE, 2016: 1-10.

[31]章良海. 安全火花原理及应用[M]. 北京: 煤炭工业出版社, 1984.

[32]陈向东. 矿用本质安全电源[J]. 煤炭科学技术, 1997, 25(06): 35-38.

[33]郭凤仪, 李文江, 高维生, 等. KF1019矿用隔爆兼本安电源箱的设计与实现[J]. 阜新矿业学院学报(自然科学版), 1994, 16(01): 86-88.

[34]刘树林, 郝雨蒙, 李艳, 等. 基于最大功率的本安Buck变换器设计方法[J]. 电工技术学报, 2021, 36(03): 542-551.

[35]Y. Leng, D. Yu, K. Han, et al. OFDM-based intrinsically safe power and signal synchronous transmission for CC-PT-controlled buck converters[J]. IEEE Transactions on Power Electronics, 2022, 37(9): 10319-10331.

[36]刘树林, 焦水林, 刘健, 等. 输出本质安全型Boost变换器的改进电路研究[J]. 煤矿机电, 2005(05): 67-69.

[37]闫崇. 基于反激变换器的本安电源研究[D]. 合肥: 安徽理工大学, 2022.

[38]于月森, 戚文艳, 伍小杰. 软火花电路的本安特性及优化分析[J]. 煤炭学报, 2014, 39(10): 2134-2140.

[39]孟庆海, 李帅, 焦政国. 一种基于动态电弧识别及关断技术的截流型保护电路[J]. 电气技术, 2019, 20(07): 23-27.

[40]康骞. 矿用大功率本安电源的开发[D]. 太原: 太原理工大学, 2021.

[41]商立群, 贾文胜, 施围. 提高本质安全电感电路功率的方法[J]. 工矿自动化, 2003, 31(06): 20-21.

[42]李书昊. 基于GaN器件的本质安全型有源箝位反激变换器研究[D]. 江苏: 中国矿业大学, 2024.

[43]柳玉磊, 陈云碧, 桂玲玲. 浅谈提高电路本质安全性能的常用措施[J]. 电气防爆, 2007, 49(01): 3-4.

[44]Wuti V, Trakuldit S, Luangpol A, et al. A simplified analysis and design of an RCD clamp forward converter[C]//2022 8th International Conference on Engineering, Applied Sciences, and Technology (ICEAST). IEEE, 2022: 97-100.

[45]D.A.Nagarajan, D.Murthy-Bellur, M.K.Kazimierczuk. Harmonic winding losses in the transformer of a forward pulse width modulated DC-DC converter for continuous conduction mode[J]. Iet Power Electronics, 2012, 5(2): 221-230.

[46]H. Bahrami, H. Allahyari and E. Adib. A self-driven synchronous rectification ZCS PWM two-switch forward converter with minimum number of components[J]. IEEE Transactions on Industrial Electronics, 2022, 69(12): 12842-12850.

[47]Ghavidel Jalise M, Allahyari H, Shoaei A, et al. A self‐driven synchronous rectification wide‐range ZVS single‐switch forward converter controlled using the variable inductance[J]. IET Power Electronics, 2023, 16(2): 320-332.

[48]M.H.Kim, S.H.Lee, B.S.Lee, et al. Double-ended active-clamp forward converter with low DC offset current of transformer[J]. IEEE Transactions on Industrial Electronics, 2020, 67(2): 1036-1047.

[49]X.Zhang, B.Nguyen, A.Ferencz, et al. A 12- or 48-V input, 0.9-V output active-clamp forward converter power block for servers and datacenters[J]. IEEE Transactions on Power Electronics, 2020, 35(2): 1721-1731.

[50]Y. Jeong, J. Park, G. Moon. An interleaved active-clamp forward converter modified for reduced primary conduction loss without additional components[J]. IEEE Transactions on Power Electronics, 2020, 35(1): 121-130.

[51]H.Youn, J.Baek, J.Kim. Interleaved active clamp forward converter with extended operating duty ratio by adopting additional series-connected secondary windings for wide input and high current output applications[J]. IEEE Transactions on Power Electronics, 2019, 34(5): 4423-4433.

[52]Zhao W, Qian T. An improved cascading scheme to achieve wide gain range and efficiency optimization for resonant forward converter[J]. IEEE Transactions on Power Electronics, 2023, 38(8): 9998-10011.

[53]Park J N, Zaloum T R. A dual mode forward/flyback converter[C]//1982 IEEE Power Electronics Specialists conference. IEEE, 1982: 3-13.

[54]Tacca H.E. Power factor correction using merged flyback-forward converters[J]. IEEE Transactions on Power Electronics, 2000, 15(4): 585-594.

[55]X.G.Xie, J.S.Li, K.Peng, et al. Study on the single-stage forward-flyback PFC converter with QR control[J]. IEEE Transactions on Power Electronics, 2015, 31(1): 1- 11.

[56]Lee S W, Choi K S, Cho B H, et al. A center-tapped forward-flyback DC/DC converter for low power application[C]//2013 IEEE Energy Conversion Congress and Exposition. IEEE, 2013: 4882-4886.

[57]Kusuhara Y, Ninomiya T, Nakayama A, et al. Complete analysis of steady-state and efficiency considerations in a forward-flyback mixed converter[C]//2007 7th Internatonal Conference on Power Electronics. IEEE, 2007: 620-624.

[58]刘树林, 王航杰, 胡传义, 等. 附加LC的正反激组合变换器辅助电感最佳工作模态及LC参数优化设计[J]. 电工技术学报, 2022, 37(02): 389-396.

[59]Montes O A, Son S, Kim S, et al. Forward-flyback resonant converter for high-efficient medium-power photovoltaic applications[C]//2017 IEEE Applied Power Electronics Conference and Exposition (APEC). IEEE, 2017: 1223-1228.

[60]R.R.Khorasani, E.Adib, H.Farzanehfard. ZVT resonant core reset forward converter with a simple auxiliary circuit[J]. IEEE Transactions on Industrial Electronics, 2018, 65(1): 242-250.

[61]刘树林, 张海亮, 王航杰, 等.抑制输出能量倒灌的二次侧自复位正激变换器的能量传输过程分析[J]. 电工技术学报, 2020, 35(S2): 477-483.

[62]Cao J, Liu S, Yan L, et al. Research on power transmission characteristic of forward-flyback converter[C]//2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA). IEEE, 2018: 1342-1346.

[63]Hernán Emilio Tacca. Power factor correction using merged flyback-forward converters[J]. IEEE Transactions on Power Electronics, 2000, 15(4): 585-594.

[64]彭银乔, 刘树林, 吴浩, 等. 正-反激组合变换器变压器的优化设计[J]. 电工技术学报, 2020, 35(2): 470-476.

[65]刘树林, 沈一君, 刘旭, 等. 正-反激变换拓扑的功率传输分配特性及设计考虑[J]. 电工技术学报, 2023, 38(18): 5006-5016.

中图分类号:

 TM46    

开放日期:

 2027-06-26    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式