- 无标题文档
查看论文信息

论文中文题名:

 乡村振兴背景下农村碳排放预测 及减排路径研究    

姓名:

 谭媛媛    

学号:

 21202097040    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 120100    

学科名称:

 管理学 - 管理科学与工程(可授管理学、工学学位) - 管理科学与工程    

学生类型:

 硕士    

学位级别:

 管理学硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 管理学院    

专业:

 管理科学与工程    

研究方向:

 资源与环境管理    

第一导师姓名:

 索瑞霞    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-13    

论文答辩日期:

 2024-06-06    

论文外文题名:

 Research on carbon emission forecast and emission reduction path of agriculture and rural areas in China under the background of rural vitalization    

论文中文关键词:

 乡村振兴 ; 农村碳排放 ; 情景预测:灰色模型 ; BP神经网络 ; 碳减排路径    

论文外文关键词:

 Rural vitalization ; Rural carbon emissions ; Scenario prediction ; Grey model ; BP neural network ; Carbon emission reduction pathways    

论文中文摘要:

      十九大以来,农村农业绿色低碳发展不仅是全面推进乡村振兴、促进农业农村现代化进程的必然要求,也是“碳达峰、碳中和”愿景实现的必经之路。但《中华人民共和国气候变化第三次两年更新报告(2023)》显示,我国农业活动产生的温室气体排放量占全国温室气体排放总量的6.1%,现已成为我国第三大温室气体排放源。乡村经济产业和农村居民生活碳排放的急剧上升对农村农业绿色发展、乡村振兴战略目标的实现带来较大阻力,二者既是不可忽视的温室气体排放源,也是蕴含巨大减排与抵消潜力的碳汇系统。因此,本文将基于乡村振兴战略助推农业农村现代化转型发展及固碳减排的现实要求,明确农村碳排放历史变化趋势,探寻农村碳减排的关键点,比较设计乡村全面振兴与农村碳减排均衡发展的最优路径,为有效控制和减少农村碳排放提供建议参考。

       本文以全国31省(市、自治区)(不含港、澳、台地区)为研究对象,基于排放系数法建立农村碳排放测算模型,从农业生产活动(种植业、林业、畜牧业、渔业)四个层次测算我国2012-2021年的农村碳排放总量及强度,并从时序、区域两方面综合分析农村碳排放的历史变化特征,结果表明近10年中,农村净碳排放总量呈现“上升—下降—上升”的三阶段变化特征,碳排放强度呈现明显波动下降趋势,各地区农村碳排放总量及碳排放结构存在较大区别;其次,基于LMDI模型建立农村碳排放影响因素分解模型,依据各影响因素分解贡献值分析其对农村碳排放的作用方向及大小,结果发现农业经济水平与城镇化水平对农村碳排放具有驱动促进作用,农业生产效率、农业产业结构、农村人口规模具有明显抑制作用,这3个因素在全国各地区的碳减排覆盖面和抑制强度方面还存在一定差距;之后,将灰色模型与遗传算法优化的BP神经网络相结合构建农村碳排放趋势预测模型,以情景分析法为基础,设计3种情景模式:历史趋势发展情景、乡村振兴政策规划情景、乡村振兴政策调控情景,对比预测2022-2030年间农村碳排放量的未来变化趋势,结果发现三种情景下农村碳排放总量预测结果存在一定差异,乡村振兴政策规划情景和乡村振兴政策调控情景对于减少农村碳排放具有积极作用,且调控情景下农村碳排放量的下降程度明显快于历史趋势发展情景和规划情景,这表明未来随着乡村振兴政策战略的强化实施与宏观调控的进一步加强,我国农村碳减排的成效将会逐步显现。

       最后,基于我国农村发展实际,从乡村振兴的产业、人才、文化、生态和组织这5个视角出发,设计乡村振兴背景下助力农村碳减排的相应路径。一是产业方面:转变农业发展模式,培育数字农业新质生产力;二是人才方面:提升农民综合素质,培养绿色发展人才;三是文化方面:加强农村文化建设,弘扬绿色生活方式;四是生态方面:加强农村生态文明建设,保护修复农村生态系统;五是组织方面:加强政策引导与组织监管,完善农村碳减排监测体系,助力乡村全面振兴与农村碳减排均衡发展。

论文外文摘要:

      Since the 19th National Congress of the Communist Party of China, the green and low-carbon development of rural agriculture has not only been an inevitable requirement for comprehensively promoting the revitalization of the countryside and the modernization of agriculture and rural areas, but also the necessary path to realize the vision of “carbon peak and carbon neutral”. However, as per the Third Biennial Update Report on Climate Change in the People’s Republic of China (2023), the greenhouse gas emissions from agricultural activities account for 6.1% of the total national greenhouse gas emissions, and has now become the third largest source of greenhouse gas emissions. With the surge of carbon emissions from rural economic industries and residents’ lives, the realization of the strategic objectives of rural agricultural green development and rural regeneration has faced significant resistance. Together with being the unavoidable sources of greenhouse gas emissions, the two also form carbon sink systems that contain enormous potential for emission reduction and offsetting. Therefore, according to the realistic requirements of the rural revitalization strategy to promote the transformation and development of agricultural and rural modernization, this paper clarifies the historical trend of rural carbon emission, explores the key points of rural carbon reduction, comparatively designs the optimal path for balanced development of rural comprehensive revitalization and carbon reduction, and provides recommendations for effectively controlling and reducing rural carbon emissions.

        Taking 31 provinces(excluding Hong Kong, Macao, and Taiwan) as the research object, this paper establishes a rural carbon emission measurement model based on the emission coefficient method, measuring the total amount and intensity of rural carbon emissions from 2012 to 2021 at four levels of agricultural production activities (planting, forestry, animal husbandry, and fishery), and comprehensively analyzes the historical changes of rural carbon emissions from both temporal and regional perspectives. The results show that in the past decade, the net carbon emissions in rural areas have exhibited a three-stage pattern of “rise-fall-rise”, with an obvious fluctuating decline trend in carbon emission intensity, and there are significant differences in the rural carbon emission structure among various regions. Secondly, based on the LMDI model, a decomposition model of rural carbon emissions influencing factors is formed. The contribution value of each influencing factor is analyzed to determine its direction and magnitude of effect on rural carbon emissions, which finds that the development level of the agricultural economy and urbanization promote rural carbon emissions, while agricultural production efficiency, agricultural industrial structure and rural population, still have a gap in the coverage and suppression intensity of carbon emission reduction in all regions of the country. Subsequently, combining the grey model with the back propagation neural network model optimized by genetic algorithm, a rural carbon emission trend prediction model is constructed in this paper, and based on the scenario analysis method, three scenarios are designed: historical trend development scenario, rural revitalization policy planning scenario and rural revitalization policy regulation scenario. The future trends of rural carbon emissions for 2022 to 2030 under each scenario are compared. The results show that there are certain differences in the predicted total amount of rural carbon emissions under the three scenarios. The planning and regulation scenario of rural revitalization policy has a positive effect on reducing rural carbon emissions, with the decline of rural carbon emissions under the regulation scenario being significantly faster than that under the historical trend and planning scenario, which indicates that with the strengthening of the implementation of rural revitalization policy strategy and the further strengthening of macro-control in the future, the effectiveness of rural carbon emission reduction in China will gradually emerge.

        Finally, based on the actual situation of rural development in China, this paper designs corresponding pathways to support rural carbon emission reduction from the perspectives of rural revitalization. (1) From the aspect of industry: transforming the agricultural development mode and cultivating the new productivity in digital agriculture. (2) From the aspect of talent: enhancing the comprehensive quality of farmers and nurturing talents for green development talents. (3) From the aspect of culture: strengthening the rural culture construction and promoting a green lifestyle. (4) From the aspect of ecology: improving rural ecological civilization construction, protecting and repairing the rural ecosystem. (5) From the aspect of organization: reinforcing policy guidance and organizational supervision, improving the monitoring system for rural carbon emission reduction, and assisting the balanced development between comprehensive revitalization and rural carbon emission reduction.

参考文献:

[1]习近平.高举中国特色社会主义伟大旗帜为全面建设社会主义现代化国家而团结奋斗[N].人民日报,2022-10-26(1).

[2]吕之望,马铃,贾伟等.2024中国农业农村发展趋势报告发布——推进乡村全面振兴[N].经济日报,2024-01-19(11).

[3]胡钰,林煜,金书秦.农业面源污染形势和“十四五”政策取向——基于两次全国污染源普查公报的比较分析[J].环境保护,2021,49(1):31-36.

[4]汝醒君,汪臻.中国农村居民生活用能碳排放影响因素研究[J].生态经济,2017,33(1):73-76.

[5]中华人民共和国国务院.中共中央国务院关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见[N].人民日报,2021-10-25(1).

[6]中华人民共和国国务院.“十四五”推进农业农村现代化规划[N].人民日报,2022-02-12(1).

[7]中华人民共和国农业农村部.农业农村部国家发展改革委关于印发《农业农村减排固碳实施方案》的通知[J].中华人民共和国农业农村部公报,2022,20(7):15-19.

[8]Mosier A R, Duxbury J M, Freney J R, et al. Mitigating agricultural emissions of methane[J]. Climatic Change, 1998, 40(1):39-80.

[9]Johnson M F, Franzluebbers A J, Weyers S L, et al. Agricultural opportunities to mitigate greenhouse gas emissions[J]. Environmental Pollution, 2007, 150(1):107-124.

[10]Dyer J A, Kulshreshtha S N, Mcconkey B G, et al. An assessment of fossil fuel energy use and CO2 emissions from farm field operations using a regional level crop and land use database for Canada[J]. Energy, 2010, 35(5):2261-2269.

[11]Smith P, Bustamante M, Ahammad H, et al. Agriculture, forestry and other land use (AFOLU)[M]// IPCC. Climate change 2014: mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom and New York: Cambridge University Press, 2014:811-922.

[12]Mendelsohn R, Sohngen B. The net carbon emissions from historic land use and land use change[J]. Journal of Forest Economics, 2019, 34(3):263-283.

[13]Johnson M, Edwards R, Frenk C A, et al. In-field greenhouse gas emissions from cookstoves in rural Mexican households[J]. Atmospheric Environment, 2008, 42(6):1206-1222.

[14]Gon Alves C, Alves C, Pio C. Inventory of fine particulate organic compound emissions from residential wood combustion in Portugal[J]. Atmospheric Environment, 2012, 50(1):297-306.

[15]Sen A, Mandal T K, Sharma S K, et al. Chemical properties of emission from biomass fuels used in the rural sector of the western region of India[J]. Atmospheric Environment, 2014, 99(1):411-424.

[16]Miehe R, Scheumann R, Jones M C, et al. Regional carbon footprints of households: A German case study[J]. Environment, Development and Sustainability, 2016, 18(2):577-591.

[17]Hazrat Y, Azka A, Amdadullah B, et al. Investigating household sector’s non-renewables, biomass energy consumption and carbon emissions for Pakistan[J]. Environmental science and pollution research international, 2021, 28(30):40824-40834.

[18]陈红霞,雷佳.农村一二三产业融合水平测度及时空耦合特征分析[J].中国软科学,2021,36(S1): 357-364.

[19]卢京宇,郭俊华.三产融合促进农民农村共同富裕:逻辑机理与实践路径[J].农业经济问题,2023,44(11):105-117.

[20]王敬敏,施婷.中国农村碳排放统计监测指标体系的构建[J].统计与决策,2013,29(2):34-37.

[21]韦惠兰,杨彬如.中国农村碳排放核算及分析:1999-2010[J].西北农林科技大学学报(社会科学版),2014,14(3):10-15.

[22]丁宝根,赵玉,邓俊红.中国种植业碳排放的测度、脱钩特征及驱动因素研究[J].中国农业资源与区划,2022,43(5):1-11.

[23]许恩银,王维枫,聂影等.中国林业碳贡献区域分布及潜力预测[J].中国人口·资源与环境,2020,30(5):36-45.

[24]顾沈怡,邱子健,詹永冰等.我国畜牧业碳排放时空特征与趋势预测[J].农业环境科学学报,2023,42(3):705-714.

[25]狄乾斌,陈小龙,苏子晓等.“双碳”目标下中国海洋渔业碳排放效率区域差异及碳减排潜力研究[J].海洋环境科学,2023,42(1):29-37.

[26]段昕妤,罗明灿,陈国兰等.西部农村家庭碳足迹及影响因素研究——以云南省陆良县为例[J].西部林业科学,2020,49(3):141-146.

[27]杨旺舟.中国农村居民食品消费碳排放的时空格局及其影响因素[J].中国环境管理,2022,14(3):112-117.

[28]宋丽美,徐峰.乡村振兴背景下农村人居环境碳排放测算与影响因素研究[J].西部人居环境学刊,2021,36(2):36-45.

[29]李国柱,代爱林,孙进欣.吉林省居民生活消费的间接碳排放特征及影响因素[J].水土保持通报,2017,37(3):146-151.

[30]Daiva M, Dalia P, Valdemaras M. Logarithmic mean divisia index decomposition based on kaya identity of GHG emissions from agricultural sector in Baltic States[J]. Energies, 2022, 15(3):1-26.

[31]Hosseinzadeh R. Indirect effect of household consumption on CO emission in Iran[J]. International Journal of Environmental Science and Technology, 2023, 20(8):8571-8578.

[32]Ditta A, Ayub M, Raza K, et al. Environmental impact of economic growth: Empirical evidence from Pakistan[J]. iRASD Journal of Economics, 2021, 3(3):305-317.

[33]Muhammad I, Azlan Z, Salma M, et al. Relationship between household dynamics, biomass consumption, and carbon emissions in Pakistan[J]. Sustainability, 2022, 14(11):6762-6777.

[34]张军莉,刘丽萍.国内区域碳排放预测模型应用综述[J].环境科学导刊,2019,38(4):15-21.

[35]韦玉琼,龙飞,岳欣冉.乡村振兴背景下农村碳排放变动及减排策略[J].农业经济问题,2022,43(9):62-73.

[36]何艳秋,陈柔,吴昊玥等.中国农业碳排放空间格局及影响因素动态研究[J].中国生态农业学报,2018,26(9):1269-1282.

[37]史俊晖,戴小文.我国省域农业隐含碳排放及其驱动因素时空动态分析[J].中国农业资源与区划,2020,41(8):169-180.

[38]邱子健,靳红梅,高南等.江苏省农业碳排放时序特征与趋势预测[J].农业环境科学学报,2022,41(3):658-669.

[39]肖晰文,刘春红,刘再森等.三峡库区(湖北段)农业碳排放特征、驱动因素与趋势预测[J].中国农业资源与区划,2023,44(9):212-222.

[40]胡永浩,张昆扬,胡南燕等.中国农业碳排放测算研究综述[J].中国生态农业学报(中英文),2023,31(2):163-176.

[41]Ahmad A K, Bingjing M, Ullah S K, et al. Agri-food evolution and carbon emissions in Chinese residential consumption: A life cycle analysis of urban-rural disparities and socioeconomic influences[J]. Environmental Impact Assessment Review, 2024, 105, 107387.

[42]罗浩轩.中国农业农村碳排放趋势测算及实现碳中和政策路线图研究[J].广西社会科学,2023,39(2):121-131.

[43]Amira R, Han H, Abdelhak A, et al. Energy use and energy-related carbon dioxide emissions drivers in Egypt’s economy: Focus on the agricultural sector with a structural decomposition analysis[J]. Energy, 2022, 258, 124821.

[44]Sabah A, Mohammed A, Khadeem G R, et al. Assessing the spatiotemporal changes, associated carbon stock, and potential emissions of mangroves in Bahrain using GIS and remote sensing data[J]. Regional Studies in Marine Science, 2022, 52, 102282.

[45]邱青彬,杨玉秀,牛梦姣等.基于GIS的河南省沿黄区域农业面源污染分析[J].河南农业大学学报,2023,57(4):558-569.

[46]徐丽,曲建升,吴金甲等.中国农牧业碳排放时空变化及预测[J].生态与农村环境学报,2019,35(10):1232-1241.

[47]唐菁,易露,曾庆均.长江经济带农业碳补偿率的时空演进特征及碳补偿潜力预测[J/OL].环境科学:1-21,2024-04-01.

[48]高晨曦,卢秋萍,欧年青等.“双碳”目标下河南省农业碳排放影响因素及预测研究[J].中国生态农业学报(中英文),2022,30(11):1842-1851.

[49]邓路,袁圣博,白萍等.基于机器学习算法的新疆农业碳排放评估及驱动因素分析[J].中国生态农业学报(中英文),2023,31(2):265-279.

[50]黄和平,李紫霞,黄靛等.“双碳”目标下江西省农业碳排放量测算、影响因素分析与预测研究[J].生态与农村环境学报,2024,40(2):179-190.

[51]Schneider A U, McCarl A B. Implications of a carbon-based energy tax for U.S. agriculture[J]. Agricultural and Resource Economics Review, 2005, 34(2):265-279.

[52]Marit, E, Kragt, et al. Assessing costs of soil carbon sequestration by crop-livestock farmers in Western Australia[J]. Agricultural Systems, 2012, 112(1):27-37.

[53]Burney J A, Davis S J, Lobell D B. Greenhouse gas mitigation by agricultural intensification[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(26):12052-12057.

[54]Balafoutis A, Beck B, Fountas S, et al. Precision agriculture technologies positively contributing to GHG emissions mitigation, farm productivity and economics[J]. Sustainability, 2017, 9(8): 1339-1367.

[55]Hongxu S, Ming C. How does agricultural industrial structure upgrading affect agricultural carbon emissions? Threshold effects analysis for China[J]. Environmental science and pollution research international, 2023, 30(18):52943-52957.

[56]何艳秋,陈柔,朱思宇等.策略互动和技术溢出视角下的农业碳减排区域关联[J].中国人口·资源与环境,2021,31(6):102-112.

[57]曾贤刚,余畅,孙雅琪. 中国农业农村碳排放结构与碳达峰分析[J]. 中国环境科学, 2023, 43(4): 1906-1918.

[58]张保留,吕连宏,吴静等.农村居民生活碳达峰路径及对策[J].环境科学研究,2021,34(9):2065-2075.

[59]付帮杰.粮食主产区农业碳排放动态变化与减排潜力研究[D].河南: 华北水利水电大学,2020.

[60]闵继胜,胡浩.中国农业生产温室气体排放量的测算[J].中国人口·资源与环境,2012,22(7):21-27.

[61]李倩,付伟,李梦柯.云南省农业碳排放影响因素与情景预测分析[J].西南林业大学学报(社会科学),2023,7(3):75-81.

[62]任洪杰,李辉尚,冯祎宇.基于时空视角的广东省农业碳排放动态演化特征及发展趋势研究[J].中国生态农业学报(中英文),2023,31(8):1287-1300.

[63]张余,姜博,赵映慧等.东北地区城市土地利用碳排放效应研究[J].环境科学与技术,2022,45(7):209-217.

[64]高源,付忠伟,张兆敏.中国海洋渔业碳排放减排潜力及预测[J].广东海洋大学学报,2022,42(3):39-44.

[65]曲福田,卢娜,冯淑怡.土地利用变化对碳排放的影响[J].中国人口·资源与环境,2011,21(10):76-83.

[66]吴天.黄河流域九省区土地利用碳排放及预测研究[D].河南: 河南农业大学,2022.

[67]徐皓,张祝利,张建华等.我国渔业节能减排研究与发展建议[J].水产学报,2011,35(3):472-480.

[68]严立冬,张亦工,邓远建.绿色农业理论体系与组织管理方法初探[J].中南财经政法大学学报,2007,50(6):57-61.

[69]李晓燕,王彬彬.低碳农业:应对气候变化下的农业发展之路[J].农村经济,2010,28(3):10-12.

[70]王青,郑红勇,聂桢祯.低碳农业理论分析与中国低碳农业发展思路[J].西北农林科技大学学报(社会科学版),2012,12(3):1-7.

[71]王火根,翟宏毅.农业循环经济的研究综述与展望[J].华中农业大学学报(社会科学版),2016,36(4):59-66+129-130.

[72]顾肃.可持续发展的伦理价值反思[J].学术界,2023,38(7):42-49.

[73]黄明辉,李巍,陆中桂等.黄河流域城市群碳足迹及隐含碳转移研究[J/OL].中国环境科学:1-10,2024-04-01.

[74]张金鑫,王红玲.中国畜牧业碳排放地区差异、动态演进与收敛分析——基于全国31个省(市)1997-2017年畜牧业数据[J].江汉论坛,2020,63(9):41-48.

[75]岳冬冬,王鲁民,阮雯等.中国海洋捕捞渔业温室气体排放时序分析与因素分解[J].长江流域资源与环境,2014,23(8):1057-1063.

[76]田云,张俊飚,李波.中国农业碳排放研究:测算、时空比较及脱钩效应[J].资源科学,2012,34(11):2097-2105.

[77]李玉玲,李世平,祁静静.陕西省土地利用碳排放影响因素及脱钩效应分析[J].水土保持研究,2018,25(1):382-390.

[78]杨奎,张宇,赵小风等.乡村土地利用结构效率时空特征及影响因素[J].地理科学进展,2019,38(9):1393-1402.

[79]胡向东,王济民.中国畜禽温室气体排放量估算[J].农业工程学报,2010,26(10):247-252.

[80]吴强,张园园,张明月.中国畜牧业碳排放的量化评估、时空特征及动态演化:2001-2020[J].干旱区资源与环境,2022,36(6):65-71.

[81]王鑫,钟伟,樊菲等.碳达峰背景下海洋捕捞渔船减排路径研究[J].工业安全与环保,2023,49(12):99-103+106.

[82]中华人民共和国农业农村部.《农业部办公厅关于印发国内机动渔船油价补助用油量测算参考标准的通知》(农办渔[2010]1号)[EB/OL].(2010-03-02)[2023-3-10].http://www.moa.gov.cn/govpublic/YYJ/201006/t20100606_1538704.htm.

[83]李雪,刘子飞,赵明军等.我国水产养殖与捕捞业“双碳”目标及实现路径[J].中国农业科技导报,2022,24(11):13-26.

[84]胡婉玲,张金鑫,王红玲.中国农业碳排放特征及影响因素研究[J].统计与决策,2020,36(5):56-62.

[85]李林亚.河南省农业碳排放特征及碳中和水平研究[D].四川: 四川农业大学,2022.

[86]朱舰伟,刘卫柏,刘金丹.内蒙古自治区农业碳排放时序变化与影响因素研究[J].湖南师范大学自然科学学报,2023,46(1):20-28.

[87]李绵德,周冬梅,朱小燕等.河西走廊2000-2020年农业碳排放时空特征及其影响因素[J].农业资源与环境学报,2023,40(4):940-952+989.

[88]蔡苗苗,赵明,吴开亚.上海市城市化水平对碳排放的影响[J].安徽农业大学学报,2017,44(1):81-86.

[89]高飞.MATLAB智能算法超级学习手册[M].北京:人民邮电出版社,2014:498.

[90]杨俊祺,范晓军,赵跃华等.基于PSO-BP神经网络的山西省碳排放预测[J].环境工程技术学报,2023,13(6):2016-2024.

[91]李金超,鹿世强,郭正权.中国省际碳排放预测及达峰情景模拟研究[J].技术经济与管理研究,2023,44(3):21-25.

[92]王树芬,高冠龙,李伟等.2000-2020年山西省农业碳排放时空特征及趋势预测[J].农业环境科学学报,2023,42(8):1882-1892.

[93]中华人民共和国国家发展和改革委员会.《“十四五”推进农业农村现代化规划》[EB/OL].(2022-03-25)[2023-10-15]https://www.ndrc.gov.cn/fggz/fzzlgh/gjjzxgh/202203/t20220325_1320217.html?eqid=8d1ab443000983160000000264902f5f.

[94]袁方成,陈泽华.新时代新型城镇化的要素结构及其优化路径[J].华中师范大学学报(人文社会科学版),2020,59(3):20-29.

[95]施晓燕,赵有益,王音璠等.黄河流域资源型城市碳达峰情景模拟研究[J].西北师范大学学报(自然科学版),2024,60(1):106-114.

[96]中国社会科学院宏观经济研究中心课题组,李雪松,陆旸等.未来15年中国经济增长潜力与“十四五”时期经济社会发展主要目标及指标研究[J].中国工业经济,2020,38(4):5-22.

[97]张延群,万海远.我国城乡居民收入差距的决定因素和趋势预测[J].数量经济技术经济研究,2019,36(3):59-75.

[98]张朝辉,张靖雅,于师琪.多情景视角下丝绸之路经济带沿线省份碳达峰预测[J/OL].生态经济:1-16,2024-04-01.

[99]王琴梅,杨军鸽.数字新质生产力与我国农业的高质量发展研究[J].陕西师范大学学报(哲学社会科学版),2023,52(6):61-72.

[100]中国信息通信研究院.中国数字经济发展研究报告(2023年)[EB/OL].(2023-04-27)[2024-3-15].http://www.caict.ac.cn/kxyj/qwfb/bps/202304/t20230427_419051.htm.

中图分类号:

 F327    

开放日期:

 2024-06-13    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式