论文中文题名: | 长江流域典型城市河流污染物降解规律及溶解性有机质特性研究 |
姓名: | |
学号: | 19204053044 |
保密级别: | 保密(1年后开放) |
论文语种: | chi |
学科代码: | 081403 |
学科名称: | 工学 - 土木工程 - 市政工程 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2022 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 水污染及防治 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2022-06-14 |
论文答辩日期: | 2022-06-07 |
论文外文题名: | Degradation patterns of pollutants and characteristics of dissolved organic matter in urban rivers in the Yangtze River Basin |
论文中文关键词: | 污染物降解系数 ; DOM ; 紫外-可见光谱 ; 三维荧光光谱-平行因子分析 ; 初期雨水径流 |
论文外文关键词: | Pollutants degradation coefficient ; DOM ; UV-Vis ; EEMs-PARAFAC ; Initial stormwater runoff |
论文中文摘要: |
九江市是长江大保护战略实施的首批试点城市之一,成都是长江流域范围内重要城市,经济发展的同时水生态环境污染严重。本研究以长江流域部分典型城市河流(沱江流域成都段、九江市十里河)为研究对象,结合现场监测与实验室分析模拟,以生化需氧量(COD)、氨氮(NH3-N)、总氮(TN)等污染物为重点考察指标,研究了长江流域部分典型城市河流污染物的降解系数,探明了溶解氧(DO)和温度(T)等影响因素与降解系数之间的关系;并采用紫外吸收光谱(UV-Vis)、三维荧光光谱-平行因子分析(EEMs-PARAFAC)等方法,分析了河流中溶解性有机质(DOM)的含量、组分以及来源的时空分布特征,并探讨分析了初期雨水径流对溶解性有机质的影响,主要结论如下: (1)当DO浓度为3~5和>7 mg/L时,COD的降解系数(K)分别为0.17057 d-1和0.40047 d-1; 分别为0.06623 d-1和0.09012 d-1; 分别为0.04743 d-1和0.10736 d-1。在<2 mg/L、3~5 mg/L和>7 mg/L条件下 分别为0.14049 d-1、0.15786 d-1和0.19106 d-1,随着DO浓度下降,K减少。当T为15 ℃、20 ℃和25 ℃时, 分别为0.10275 d-1、0.19558 d-1、0.27228 d-1, 分别为0.13459 d-1、0.18837 d-1、0.2496 d-1, 降解系数分别为0.15302 d-1、0.16978 d-1、0.19297 d-1,随着T的升高污染物的K呈升高趋势。DO浓度和T升高有利于污染物的降解。 (2)通过对阿累尼乌斯(Ar-rhenius)关系式的转化,确定温度与COD、NH3-N、TN和TP降解系数值之间的经验公式,分别为 ; ; ; 。现场原位实验中上、中游各月份COD降解系数值相对中下游采样点降解系数值较高,上、下游中5、6月份NH3-N降解系数值高于其他月份降解系数值,下游采样点表现更明显;上游6月TN降解系数较高,6月TN的降解系数值上游>中游>下游,TP则相反。原位监测降解系数与环境参数相关性分析表明氧化还原电位、T分别是COD、NH3-N降解快慢的主要影响因素。 (3)沱江流域上、下层水溶解性有机碳(DOC)变化范围分别为2.90~11.48 mg/L、2.83~6.91 mg/L、0.23~4.93 mg/L和0.88~4.78 mg/L。十里河上游6月DOC浓度变化为降解前(3.59 mg/L)高于降解后(2.66 mg/L);中游中4月降解前后DOC浓度变化不大,5月呈降解后(3.47 mg/L)低于降解前(4.15 mg/L);下游各月份DOC浓度均呈现降解后高于降解前,原因可能是水体中颗粒态有机质(POC)转化为溶解态有机质(DOC),且增加的DOC含量高于因降解减少的DOC量,使得降解后DOC含量增高。EEMs-PARAFAC分析,结果表明沱江流域成都段中荧光组分为UVA类腐殖质(C1)、类酪氨酸(C2)、类腐殖质(C3)和类色氨酸(C4),类蛋白C2是河流DOM主要成分,受内源影响较大;水体中DOM来源受陆源与内源共同影响;上下层水腐殖化指数(HIX)变化较小,腐殖化程度变化较大,表明以自生源为主。确定十里河水体中含有Ex/Em位于255/420 nm类腐殖质(C1),2类色氨酸(C2、C3)和1类酪氨酸(C4),类色氨酸(C2、C3)分别在5月和6月微生物活跃。C4整体降解前后组分占比小,变化较小。十里河荧光指数(FI)差异较小、HIX均较低,生物指数(BIX)降解前后存在部分差异,主要还是以生物内源为主。 (4)雨水径流导致十里河水中COD,NH3-N,TN和TP浓度增加。光学分析表明,初始雨水径流导致DOM在河水中的浓度增加,但DOM腐殖化程度变化不大,说明DOM主要以内源为主,初始雨水径流对其特性的影响不大。使用PARAFAC模型鉴定了DOM的三种腐殖质(类腐殖酸A、类富里酸A和类富里酸C)和两种蛋白质(类色氨酸T1和类色氨酸T2)组分。相关性分析表明,三种腐殖质样组分的来源是一致的,与蛋白质样组分C4的来源不同。水质参数(COD、NH3-N)与组分C1~C5呈显著正相关,表明组分可以较好地反映水质的各项指标。 |
论文外文摘要: |
↵ Jiujiang City is one of the first pilot cities for the implementation of the Yangtze River protection strategy, and Chengdu is an important city within the Yangtze River basin, where economic development is accompanied by serious pollution of the water ecology and environment. In this study, the degradation coefficients of pollutants in some typical urban rivers in the Yangtze River basin (Chengdu section of the Tuo River basin and Shili River in Jiujiang City) were investigated by combining field monitoring and laboratory analysis and simulation, with COD, NH3-N, TN and other pollutants as key indicators. The relationships between the influencing factors such as DO, T and degradation coefficients were explored. The content, fractions and spatial and temporal distribution characteristics of the sources of DOM in rivers were analysed UV- Vis and EEMs-PARAFAC, and the effect of initial stormwater runoff on DOM was explored and analysed. The main conclusions are as follows. (1)At 3~5 and >7 mg/L, it was 0.17057 d-1 and 0.40047 d-1, respectively. was 0.06623 d-1, and 0.09012 d-1, respectively. was 0.04743 d-1, and 0.10736 d-1, respectively. was 0.14049 d-1, 0.15786 d-1, and 0.19106 d-1 at <2 mg/L, 3~5 and >7 mg/L, respectively. As DO concentration decreases, K decreases. At 15 °C, 20 °C and 25 °C, was 0.10275 d-1, 0.19558 d-1, and 0.27228 d-1, respectively. was 0.13459 d-1, 0.18837 d-1, and 0.2496 d-1, respectively. was 0.15302 d-1, 0.16978 d-1, and 0.19297 d-1, respectively. The K of pollutants tends to increase with increasing T. The DO concentration and T increase favor the degradation of pollutants. (2)Through the transformation of the Ar-rhenius relationship, the empirical formulas between temperature and the values of COD, NH3-N, TN, and TP degradation coefficients were determined, respectively. ; ; ; . In the on-site in situ experiment, the COD degradation coefficient values of the upper and midstream months were higher than those of the middle and lower sampling points, and the NH3-N degradation coefficient values in May and June in the upper and lower reaches were higher than the degradation coefficient values in other months, and the performance of the downstream sampling points was more obvious; the TN degradation coefficient in the upstream June was higher, and the degradation coefficient value of the TN in June was higher in the upstream > the downstream of the middle >, and the opposite was true in TP. Correlation analysis between in situ monitoring degradation coefficient and environmental parameters showed that the redox potential and T were the main influencing factors of COD and NH3-N degradation, respectively. (3)The variation range of DOC in the upper and lower waters of the Tuojiang River Basin was 2.90~11.48 mg/L, 2.83~6.91 mg/L, 0.23~4.93 mg/L, and 0.88~4.78 mg/L, respectively. The DOC concentration in the upper reaches of the Shili River changed in June from before degradation (3.59 mg/L) higher than after degradation (2.66 mg/L), and the DOC concentration in the middle reaches of the midstream before and after degradation in April was not much, and the degradation rate in May was lower than that before degradation (4.15 mg/L), and the DOC concentration in all downstream months was higher than before degradation. The reason may be that POC in the water body is converted to DOC, and the increased DOC content is higher than the amount of DOC reduced due to degradation, resulting in an increase in the DOC content after degradation. EEMs-PARAFAC analysis showed that the fluorescent components in the Chengdu section of the Tuojiang River Basin were divided into UVA -like humic substances (C1), tyrosine-like (C2), humic substances (C3) and tryptophan-like (C4). The protein C2 was the main component of the river DOM and was greatly affected by endogenous sources. The DOM source in a water body is influenced by both terrestrial and endogenous sources. The HIX of upper and lower water has little change and the degree of humification varies greatly, indicating that it is mainly autologous. It was determined that the water body of the Shili River contained Ex/Em at 255/420 nm humus (C1), class 2 tryptophan (C2, C3) and class 1 tyrosine (C4), and tryptophan (C2, C3) was active in May and June, respectively. The proportion of components before and after the overall degradation of C4 is small and the change is small. The difference in FI of the Shili River is small, the HIX is low, and there are some differences before and after the degradation of BIX, mainly based on biological endogenous sources. (4)Stormwater runoff leads to increased concentrations of COD, NH3-N, TN and TP in the Shili River. Optical analysis showed that the initial rainwater runoff led to an increase in the concentrations of DOM in the river water, but the degree of DOM humification did not change much, indicating that the DOM was mainly based on internal sources, and the initial rainwater runoff had little effect on its characteristics. Three humic substances (humic acid-like A, fulvic acid-like A and fulvic acid-like C) and two protein (tryptophan-like T1 and tryptophan-like T2) of the DOM were identified using the PARAFAC model. Correlation analysis showed that the sources of the three humic-like components were consistent, different from those of protein-like component C4. The water quality parameters (COD, NH3-N) were significantly positively correlated with components C1~C5, indicating that the components could better reflect the various indicators of water quality. |
参考文献: |
[1]熊敏瑞, 李昭阳. 长江流域生态环境立法问题研究——以长江大保护为背景[J]. 生态经济, 2020, 36(10): 185–189. [6]聂竹青. 龙宝河回水区水体自净特征及水环境容量研究[D]. 重庆交通大学, 2020. [7]祖波, 周领, 李国权, 等. 三峡库区重庆段某排污口下游污染物降解研究[J]. 长江流域资源与环境, 2017, 26(1): 134–141. [8]张倩. 黄河黑山峡河段开发的水环境影响研究[D]. 中国水利水电科学研究院, 2019. [9]何伟, 白泽琳, 李一龙, 等. 水生生态系统中溶解性有机质表生行为与环境效应研究[J]. 中国科学:地球科学, 2016, 46(3): 341–355. [14]吴丰昌, 王立英, 黎文, 等. 天然有机质及其在地表环境中的重要性[J]. 湖泊科学, 2008(1): 1–12. [18]王凯. 三峡水库香溪河库湾溶解有机质动态过程及控制因素[D]. 浙江大学, 2020. [24]史常乐, 牛兰花, 成金海. 水质模型中污染物衰减系数敏感性分析[J]. 水资源与水工程学报, 2018, 29(4): 91-96+102. [29]蒲迅赤, 李克锋, 李嘉, 等. 紊动对水体中有机物降解影响的实验[J]. 中国环境科学, 1999, (6): 484-489. [31]王有乐, 周智芳, 王立京, 等. 黄河兰州段氨氮降解系数的测定[J]. 兰州理工大学学报, 2006, 32(5): 72-74. [33]杜宇红, 赵桂香. 黄河包头段氨氮降解系数的研究[J]. 内蒙古环境科学, 2009, (2): 32-36. [34]张亚丽, 申剑, 史淑娟, 等. 淮河支流污染物综合降解系数动态测算[J]. 中国环境监测, 2015, 31(2): 64-67. [35]张叶, 孟德娟, 于子铖, 等. 基于 MIKE21 的城市河流水质改善与达标分析[J]. 水电能源科学, 2020, 38(9): 48-52. [37]陈炎, 孟西林, 袁彩凤, 等. 淮河流域多闸坝河流 COD 综合衰减系数测算[J]. 重庆环境科学, 2002, 24(3): 83-85. [38]吴纪宏. 黄河干流河段污染物降解系数分析研究[J]. 人民黄河, 2006, 28(8): 36-37. [39]于海超, 陈沛源, 马金珠, 等. 葫芦河流域污染物降解规律研究[J]. 兰州大学学报(自然科学版), 2021, 57(1):33-38+46. [41]王艺娟, 姚运生. 附着性微生物对水体自净的作用及测定[J]. 生物学教学, 2002, 27(6): 32. [44]张培培, 吴艺帆, 庞树江, 等. 再生水补给河流北运河COD_(Cr)降解系数变化及影响因素[J].湖泊科学, 2019, 31(1): 99-112. [45]宋兴. 有机污染物和氨氮在辽河源头区典型水环境中迁移转化规律的模拟研究[D]. 吉林大学, 2012. [46]兰中仁. 温度对 NH_3-N 废水硝化动力学参数影响的实验研究[J]. 四川环境, 2005, 24(3): 4-7. [51]慕金波, 酒济明. 河流中有机物降解系数的室内模拟实验研究[J]. 山东科学, 1997, 10(2): 50-55. [52]张世坤, 张建军, 田依林, 等. 黄河花园口典型污染物自净降解规律研究[J]. 人民黄河, 2006, 28(4): 46-47. [53]向韬, 马延庚. 不同底物初始浓度的条件下硝酸盐污染物的自然衰减规律研究[J]. 黑龙江科技信息, 2016, (4): 152-152. [55]国家环境保护总局. 水和废水监测分析方法第4版[M]. 北京:中国环境科学出版社, 2002. [58]邱巍. 长江口竹园排污区COD降解系数的测试与分析[J]. 上海水利, 1996 (4): 33-36. [60]单铎. 北运河氨氮降解系数测算研究[D]. 北京: 首都师范大学, 2013. [61]陶威, 刘颖, 任怡然. 长江宜宾段氨氮降解系数的实验室研究[J]. 污染防治技术, 2009, 22(6): 8-9. [65]曾勇, 王西琴. 浙江西苕溪水环境容量模型与参数灵敏度分析[J]. 中国环境科学, 2010, 30(12): 1627-1632. [68]杨桐, 杨常亮, 刘卫红, 等. 滇池流域城市型河流盘龙江总磷水环境容量测算研究[J]. 环境监测管理与技术, 2011, 23(6): 26-29. [69]黄高凌, 张勇, 张杰. 污水-海水混合体系中磷和有机物的吸附过程[J]. 厦门大学学报: 自然科学版, 2001, 40(3): 751-757. [71]王晓丽. 桑沟湾养殖水域颗粒态有机物迁移转化过程的研究[D]. 青岛: 中国海洋大学, 2004. [75]张道萍, 张铃松, 孟凡生, 等. 黑龙江流域典型断面水体DOM荧光特性分析[J]. 环境科学研究, 2021, 34(5): 1099–1110. [76]靳百川, 蒋梦云, 白文荣, 等. 三维荧光光谱-平行因子法解析再生水补给人工湿地DOM的光谱特征[J]. 光谱学与光谱分析, 2021, 41(4): 1240-1245. [77]李程遥, 黄廷林, 温成成, 等. 汛期暴雨径流对饮用水水库溶解性有机质(DOM)光谱特征的影响[J]. 环境科学, 2021, 42(3): 1391-1402. [82]何杰, 朱学惠, 魏彬, 等. 基于EEMs与UV-vis分析苏州汛期景观河道中DOM光谱特性与来源[J]. 环境科学, 2021, 42(4): 1889-1990. [84]王蓉, 黄天寅, 吴玮. 典型城市河道氮、磷自净能力影响因素[J]. 湖泊科学, 2016, 28(1): 105–113. [90]韩玉麟, 魏红, 郝淼, 等. 夏季渭河西安段溶解性有机质(DOM)的特征、分布及来源分析[J]. 环境化学, 2021, 40(3): 717-728. [99]祝婕, 张健, 孟永霞, 等. 乌鲁木齐市2018年夏季降雨中溶解性有机质的光谱特征及来源解析[J]. 中国农村水利水电, 2019, (3): 16-19. [102]虞敏达, 何小松, 檀文炳, 等. 城市纳污河流有色溶解有机物时空演变特征[J]. 中国环境科学, 2016, 36(1): 133–142. [104]李璐璐, 江韬, 闫金龙, 等. 三峡库区典型消落带土壤及沉积物中溶解性有机质(DOM)的紫外-可见光谱特征[J]. 环境科学, 2014, 35(3): 933-941. [106]谷雨, 张乃明. 昆明主城区城市地表径流污染特征分析[J]. 环境工程学报, 2013, 7(7): 2587–2595. [110]黄廷林, 方开凯, 张春华, 等. 荧光光谱结合平行因子分析研究夏季周村水库溶解性有机物的分布与来源[J]. 环境科学, 2016, 37(9): 3394–3401. [112]陈永娟, 胡玮璇, 庞树江, 等. 北运河水体中荧光溶解性有机物空间分布特征及来源分析[J]. 环境科学, 2016, 37(8): 3017–3025. |
中图分类号: | X522 |
开放日期: | 2023-06-15 |