- 无标题文档
查看论文信息

论文中文题名:

 高效半固态电化学控氧装置制备与性能研究    

姓名:

 郭晨萌    

学号:

 20211225041    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085600    

学科名称:

 工学 - 材料与化工    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 材料科学与工程学院    

专业:

 材料与化工    

研究方向:

 功能材料    

第一导师姓名:

 杨庆浩    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-19    

论文答辩日期:

 2023-06-06    

论文外文题名:

 Preparation and Performance Study of High Efficiency Semi-Solid Electrochemical Oxygen Control Device    

论文中文关键词:

 气体扩散电极 ; 碳材料 ; 碱性凝胶电解质 ; 控氧    

论文外文关键词:

 gas diffusion electrode ; carbon material ; alkaine gel electrolyte ; oxygen control    

论文中文摘要:

氧气浓度需要根据场景的不同进行调控,低氧环境则要对氧气含量进行控制,通常利用电化学方法除氧,高效安全的同时,也无其余副产物的出现。然而传统电化学控氧技术以氧还原反应为核心,除氧装置是以气体扩散电极与液体电解质为主要组成部分,电极会随着运行时长的增加而发热,并且液体电解质对于装置的密封性要求极高,稍有不慎则会出现漏液等问题,为解决这一问题,本课题通过优选制备催化剂,调整气体扩散电极各结构层的组成配方等手段,获得了更具循环稳定性的控氧装置电极组件;通过合成并应用以凝胶聚合物电解质为代表的固态电解质替代电解液;探索制备了高效半固态/全固态电化学控氧装置,有效提升了传统电化学控氧装置的安全性与环保性。

以催化性能较好的金属银负载于活性炭上制备Ag/C催化剂,高温烧结后的银原子与碳颗粒共价结合,使得催化剂粒子均匀性好,具有较好的氧还原活性。当粘结剂聚四氟乙烯质量份数为100时,活性炭为30-40份,乙炔黑质量份数为5-25份之间时制备防水透气层,此时膜层纤维化程度最高,并且均匀包覆于活性炭表面。气体扩散电极能够在电流密度为0.2 A/cm2条件下以0.809 V运行。以氢氧化钾作为电解液构建控氧装置,在密封空间内的控氧速率可达到26.77 ml·min-1

制备PAA-KOH凝胶聚合物电解质,分别改变凝胶中四种组分含量与浓度探索凝胶最佳配比,结果发现氢氧化剂为4 M,在3 g 丙烯酸中加入0.5 g 交联剂N'N亚甲基双丙烯酰胺,4 wt%的过硫酸钾水溶液为引发剂时,所制备的凝胶各项性能都最佳。聚合物的离子电导率为3.763×10-2 S·cm-1。活化能为9.949 kJ·mol-1,在与气体扩散电极组装为控氧元件后搭建控氧装置,其控氧速率为12.12 ml·min-1,低于液体电解质。经过26 min在30 L中的箱体内氧浓度可下降1%,并且能够在电流密度为0.08 A/cm2持续运行100 h,电压涨幅仅为95.79%。

论文外文摘要:

Oxygen concentration needs to be regulated according to the scenario, and the low oxygen environment is to control the oxygen content, usually using electrochemical methods for oxygen removal, which is efficient and safe without the appearance of the remaining by-products. However, the conventional electrochemical oxygen control technology is based on the oxygen reduction reaction as the core, and the oxygen removal device is composed of gas diffusion electrode and liquid electrolyte as the main components, the electrode will heat up as the operation time increases, and the liquid electrolyte requires a high sealing of the device, and the slightest mistake will lead to leakage and other problems. In order to solve this problem, the electrode assembly of oxygen control device is made more stable by selecting the catalyst and adjusting the composition of each structural layer of the gas diffusion electrode, etc. By synthesizing and applying the solid electrolyte represented by the gel polymer electrolyte to replace the electrolyte, and exploring the preparation of high-efficiency semi-solid/all-solid electrochemical oxygen control device, the safety and environmental protection of the traditional electrochemical oxygen control device are effectively improved.

Ag/C catalysts were prepared by loading metallic silver with good catalytic performance on activated carbon. The silver atoms were covalently combined with carbon particles after high temperature sintering, resulting in good uniformity of catalyst particles and better oxygen reduction activity. When the binder PTFE is 100 parts by mass, the activated carbon is 30-40 parts by mass, and the acetylene black is 5-25 parts by mass, the waterproof and breathable layer is prepared, and the membrane layer is the most fibrous and evenly coated on the surface of the activated carbon. The gas diffusion electrode was capable of operating at 0.809 V at a current density of 0.2 A·cm-2. The oxygen control device was constructed using potassium hydroxide as the electrolyte, and the oxygen control rate in the sealed space could reach 26.77 ml·min-1.

The PAA-KOH gel polymer electrolyte was prepared, and the optimum ratio of the gel was explored by varying the content and concentration of each of the four components in the gel. It was found that the best performance of the prepared gel was obtained when the hydroxide was 4 M, 0.5 g of the cross-linking agent N'N methylenebisacrylamide was added to 3 g of acrylic acid, and 4wt% of aqueous potassium persulfate was used as the initiator. The ionic conductivity of the polymer was 3.763×10-2 S·cm-1. The activation energy was 9.949 kJ·mol-1, and the oxygen control rate was 12.12 ml·min-1, which was lower than that of the liquid electrolyte, after assembling with the gas diffusion electrode as an oxygen control element to build an oxygen control device. After 26 min in 30 L in the chamber oxygen concentration can be reduced by 1%, and can be operated continuously at a current density of 0.08 A·cm-2 for 100 h with a voltage rise of only 95.79%.

参考文献:

[1] 黄永,吴磊.结合空分装置分析富氧环境的影响与危害[J].化学工程与装备,2020,No. 280(05):287-288.

[2] Dean Jay B, Stavitzski Nicole M. The O2-sensitive brain stem, hyperoxic hyperventilation, and CNS oxygen toxicity[J]. Frontiers in Physiology, 2022, 13: 921470-921470.

[3] Chen Y, Zhang R, Jiao L, et al. Metal-organic framework-derived porous materials for catalysis[J]. Coordination Chemistry Reviews, 2018, 362: 1-23.

[4] 周立群,许艺,王玉.除氧技术综述[J].精细石油化工进展,2006(10):51-56.

[5] 温术来,李向红,孙亮等.金属空气电池技术的研究进展[J].电源技术,2019,43(12): 2048-2052.

[6] Li C, Qin B, Zhang Y, et al. Single-Ion Conducting Electrolyte Based on Electro spun Nanofibers for High-Performance Lithium Batteries [J]. Advanced Energy Materials, 2019, 9(10): 1803422.

[7] Cheng X, Pan J, Zhao Y, et al. Gel Polymer Electrolytes for electrochemical Energy Storage[J]. Advanced Energy Materials, 2020, 8(7): 1702184.

[8] Chen X, Zhou Z, Karajan H.E, et al. Recent Advances in Materials and Design of Electrochemically Rechargeable Zinc-Air Batteries[J]. Small, 2019, 14(44): 1801929.

[9] Chen J, Ni B, Hu J, et al. Defective graphene aerogel-supported Bi-Co P nanoparticles as a high-potential air cathode for rechargeable Zn-air batteries[J]. Journal of Materials Chemistry A, 2019, 7(39): 22507-22513.

[10] Ma R, Lin G, Yao Z, et al. A review of oxygen reduction mechanisms for metal-free carbon-based electro catalysts[J]. Computational Materials, 2019, 5(1): 1-15.

[11] Scofield M, Liu H, Wong S. A concise guide to sustainable PEMFCs: recent advances in improving both oxygen reduction catalysts and proton exchange membranes[J]. Chem Soc Rev, 2019, 44(16): 5836-5860.

[12] 王瀛,张丽敏,胡天军.金属空气电池阴极氧还原催化剂研究进展[J].化学学报, 2015,73(04):316-325.

[13] Huang Z. F, Wang J, Peng Y, et al. Design of Efficient Bi Functional Oxygen Reduction Evolution Electro Catalyst Recent Advances and Perspectives[J]. Advanced Energy Materials, 2018, 7(23): 1700544.

[14] Zhang F, Saito T, Cheng S, et al. Microbial fuel cell cathodes with poly diffusion lavers constructed around stainless steel mesh current collectors[J]. Environmental Science Technology. 2020. 44(4): 1490-1495.

[15] Yuan Y, Zhou SG, Li Z. A new approach to in situ sediment remediation based on air-cathode microbial fuel cells[J]. Journal of Soils and Sediments, 2019, 7 (10): 1427-1433.

[16] Xin W. Power generation using adjustable Nafion/PTFE mixed binders in air-cathode microbial fuel cells[J]. Biosensors and Bioelectronics, 2018, 26(2): 946-948.

[17] 杨斯琦,刘中良,侯俊先,等.微生物燃料电池空气阴极的研究进展[J].电源技术, 2015,39(09):2031-2034.

[18] Zhang F, Merrill M D. Tokashi C, et al. Mesh optimization for microbial fuel cell cathodes constructed around stainless steel mesh current collectors [J]. Power Sources. 2021, 196: 1097-1102.

[19] Zhang F, Zhang Y, Luo C, et al. Performance study of μ-DMFC with foamed metal cathode current collector[J]. Rsc Advances. 2022, 2(7): 4145-4152.

[20] Nor Azmira S, Soorathep K, Ahmad A. Characterizations of nickel mesh and nickel foam current collectors for super capacitor application[J]. Arabian Journal of Chemistry, 2020, 13(8): 6838-6846.

[21] 李卫民,隋鑫,徐春波.铝空气电极复合工艺研究[J].船电技术, 2018,38(08):48-50.

[22] 朴明月,滕洪辉,石淑云,等.空气阴极微生物燃料电池研究进展[J].辽宁化工,2014, 43(10):1224-1229.

[23] 钟铭,李克勋,魏高升.微生物燃料电池体系空气阴极研究进展[J].发电技术,2019, 40(06):598-604.

[24] 张雨,张慧芳,安士忠.铝空气电池阳极、空气阴极及电解质材料研究进展[J].功能材料, 2020,51(08):8058-8065.

[25] Konrad E, Talal A, Simon H, et al. Fuel cell catalyst layer evaluation using a gas diffusion electrode half-cell: Oxygen reduction reaction on Fe-N-C in alkaline media[J]. Electrochemistry Communications, 2020, 116.

[26] 余琼,李明利,马兰,等.金属空气电池空气阴极的制备与性能[J].兵器材料科学与工程,2019,42(01):95-98.

[27] Elia G A, Hassoun J. A gel polymer membrane for lithium-ion oxygen battery[J]. Solid State Ionics, 2018,287: 22-27.

[28] Zhong C, Deng Y, Hu W, et al. A Review of Electrolyte Materials and Compositions for Electrochemical Super-capacitors[J]. Chemical Social Review, 2019, 44(21): 7484-7539.

[29] 王庆伟,德民.凝胶电解质的研究进展[J].化学进展,2002,(03):167-173.

[30] Wan J, Xie W, Kong X, et al. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nonporous host for lithium batteries[J]. Nature Nanotechnology, 2019, 14(7): 705-711.

[31] Shen Z, Zhong J, Jiang S, et al. Polyacrylonitrile Porous Membrane-Based Gel Polymer Electrolyte by in Situ Free-Radical Polymerization for Stable Li Metal Batteries[J]. ACS applied materials & interfaces, 2022, 15(06): 37-40.

[32] 倪冰选,焦晓宁,阮艳莉.聚合物锂离子电池用凝胶电解质的研究进展[J].天津工业大学学报,2009,28(03):48-52.

[33] N. Krishna J, K.K. Venkata, P. Narayana M, et al. Electrical Studies of Gel Polymer Electrolyte based on PAN for Electrochemical Cell Applications[J]. Materials Today: Proceedings, 2019, 3(1): 21-30.

[34] Krzysztof Artur Bogdanowicz, Dariusz Augustowski, Justyna Dziedzic, et al. Preparation and Characterization of Novel Polymer-Based Gel Electrolyte for Dye-Sensitized Solar Cells Based on poly and poly(acrylonitrile-co-butadiene) imethylsiloxane bis (3-aminopropyl) Copolymers[J]. Materials, 2020, 13(12): 2721.

[35] Fatemeh Hakkak, Mehdi Rafizadeh, Ali Asghar Sarabi, et al. Optimization of ionic conductivity of electro spun polyacrylonitrile/poly (vinylidene fluoride) (PAN/PVDF) electrolyte using the response surface method[J]. Ionics, 2021, 21(7): 1945-1957.

[36] 胡方圆,王琳,王哲,等.聚合物固态电解质的研究进展[J].高分子材料科学与工程,2021, 37(02):157-167.

[37] Na R, Huo G Z, Zhang S L, et al. A novel poly (ethylene glycol)-grafted poly (arylene ether ketone) blend micro-porous polymer electrolyte for solid-state electric double layer capacitors formed by incorporating a chitosan-based LiClO4 gel electrolyte[J]. Journal of Materials Chemistry A, 2019, 26(4): 18116.

[38] Ge Menghan, Zhou Xiaoyu, Qin Yinping, et al. A composite PEO electrolyte with amide-based polymer matrix for suppressing lithium dendrite growth in all-solid-state lithium battery[J]. Chinese Chemical Letters, 2022, 33(8): 3894-3898.

[39] Rajendran S, Mahendran O, Kannan R. lonic conductivity studies in composite solid polymer electrolytes based on mathematical[J]. J. Phys. Chem. Solids, 2022, 63: 303-307.

[40] 康树森,杨程响,杨泽林,等.旋涂法制备PEO-PAN-PMMA三组分共混凝胶聚合物电解质[J].化学学报,2020,78(12):1441-1447.

[41] V. M.-W. Huang, V. Vivier, I. Frateur, et al. The Global and Local Impedance Response of a Blocking Disk Electrode with Local CPE Behavior[J]. Journal of the Electrochemical Society, 2017, 154(48): 89-98.

[42] Yang C, Lin S. Preparation of alkaline PVA-based polymer electrolytes for Ni-MH and Zn-air batteries[J] Apply. Electrochemical., 2022, 33: 777-784.

[43] Zhu X, Yang H, Cao Y, Ai X. Preparation and electrochemical characterization of the alkaline polymer gel electrolyte polymerized from acrylic acid and KOH solution [J]. Electrochemical. Acta, 2020, 49: 2533-2539.

[44] 吴李国,章悦庭,胡绍华.聚乙烯醇水凝胶的制备及应用进展[J].东华大学学报(自然科学版),2015(06):114-118.

[45] Hu J, Li T, Wei B. Bidirectional Correlation between Mechanics and Electrochemistry of Poly (vinyl alcohol)-Based Gel Polymer Electrolytes[J]. The Journal of Physical Chemistry Letters, 2017, 8(24): 6106-6112.

[46] Gaikwad A M, Zamarayeva A M, Rousseau J, et al. Highly stretchable alkaline batteries based on an embedded conductive fabric[J]. Advanced Materials, 2022, 24(37): 5071-5076.

[47] Chen Y, Dong K, Liu Z, et al. Double network hydrogel with high mechanical strength: Performance, progress and future perspective[J]. Science China, 2022, 55(08): 2241-2254.

[48] Li W, Cui Y. A self-healing polyacrylic acid-based hydrogel electrolyte for flexible quasi-solid-state electrochromic device[J]. Solar Energy Materials and Solar Cells, 2023, 36(09): 250.

[49] M. F. Gaele, F. Migliardini, T. M. Di Palma. Dual solid electrolytes for aluminium-air batteries based on polyvinyl alcohol acidic membranes and neutral hydrogels[J]. Journal of Solid State Electrochemistry, 2021, 25(4): 1-10.

[50] Fan L, Zhong J, Zhang J, et al. Improving the energy density of quasi-solid-state supercapacitors by assembling two redox-active gel electrolytes[J]. International Journal of Hydrogen Energy, 2019, 41(13): 5725-5732.

[51] 曹楚南.电化学阻抗谱导论[M].北京:科学出版社,2008.

[52] 史美伦.交流阻抗谱原理及其应用[M].北京:国防工业出版社,2001.

[53] Orazem, Tribollet, B.电化学阻抗谱[M]. 北京:化学工业出版社,2014.

[54] 朱明骏,袁振善,桑林,等.金属空气电池的研究进展[J].电源技术,2012,36(12):1953-1955.

[55] Fu J, Cano Z P, Park M G, et al. Electrically rechargeable zinc-air batteries: Progress, challenges, and perspectives[J]. Advanced Materials, 2017, 29(06): 25-28.

[56] Kumar S, Selvaraj C, Scanlon L, et al. Ag nanoparticles-anchored reduced graphene oxide catalyst for oxygen electrode reaction in aqueous electrolytes and also a non-aqueous electrolyte for Li-O2 cells[J]. Physical Chemistry Chemical Physics, 2020, 16(41): 22830-22840.

[57] Bian J, Cheng X, Meng X, et al. Nitrogen-doped NiCo2O4 microsphere as an efficient catalyst for flexible rechargeable zinc-air batteries and self-charging power system[J]. ACS Applied Energy Materials, 2019, 2(3): 2296-2304.

[58] Li Z, Wang Z, Zhang S, et al. Research progress of MOFs and its derivatives as electrode materials for lithiumion batteries[J]. Energy Storage Science and Technology, 2020, 9(1):18-24.

[59] Wang J, Wu H, Gao D, et al. High-density iron nanoparticles encapsulated within nitrogen-doped carbon nanoshell as efficient oxygen electrocatalyst for zinc-air battery[J]. Nano Energy, 2018, 13:387-396.

[60] Miao Z, Hu P, Nie C, et al. ZrO2 Nanoparticles Anchored on Nitrogen-Doped Carbon Nanosheets as Efficient Catalyst for Electrochemical CO2 Reduction[J]. Journal of Energy Chemistry, 2019, 38: 114-118.

[61] Niu X, Zhou S, Pan D, et al. Insight into the role of debris in the formation of polytetrafluoroethylene film via molecular dynamic simulation of debris adhesion[J]. Polymer Engineering & Science, 2022, 62(11): 3672-3683.

[62] 张林,李玉海.聚四氟乙烯的性能与应用现状[J].科技创新导报,2017,(04):111-112.

[63] 汪萍.聚四氟乙烯的烧结工艺技术[J].工程塑料应用,2011,(03):19-21.

[64] Tomczyk P, Mosiaek M. Investigation of the oxygen electrode reaction in basic molten carbonates using electrochemical impedance spectroscopy[J]. Electrochim. Acta, 2021, 46(19): 3023-3032

[65] Palacios I, Castillo R, Vargas R A. Thermal and transport properties of the polymer electrolyte based on poly (vinyl alcohol)-KOH-H2O[J]. Electrochemical Acta, 2022, 48(14): 2195-2199.

[66] Cheng H, Li M L, Su C Y, et al. Cu-Co Bimetallic Oxide Quantum Dot Decorated Nitrogen-Doped Carbon Nanotubes: A High-Efficiency Bi functional Oxygen Electrode for Zn-Air Batteries[J]. Advanced Functional Materials, 2017, 27(30),69-75.

[67] 余鹏,梁媛媛,胡星琪.交联剂对吸水树脂性能的影响[J].化工新型材料,2015(05):47-48.

[68] Moore Robert B. Ion-Conduction within the Fibrous Framework of an Electro spun PEO Gel Electrolyte[J]. Meeting Abstracts, 2015, 01(38): 2051-2051.

[69] Akhtar Muhammad Faheem, Ranjha Nazar Muhammad, Hanif Muhammad. Effect of ethylene glycol dimethacrylate on swelling and on metformin hydrochloride release behavior of chemically crosslinked pH-sensitive acrylic acid-polyvinyl alcohol hydrogel[J]. Daru journal of Faculty of Pharmacy, Tehran University of Medical Sciences, 2015, 23(1): 41.

[70] Megat Hasnan Megat Muhammad Ikhsan, Mohd Noor Ikhwan Syafiq, Nayan Nafariza, et al. Enhancement of spin Setback effect of reverse spin crossover Fe (II) micellar charge transport using PMMA polymer electrolyte[J]. Applied Organometallic Chemistry, 2021, 35(8): 90-98.

[71] Min Hyo Jun, Jung Joo Hwan, Kang Miso, et al. Synthesis of Starch-g-PAN Polymer Electrolyte Membrane and Its Application to Flexible Solid Super-capacitors[J]. Membrane Journal, 2019, 29(3): 164-172.

[72] Zhang Bin, Chen Xiaoming, Wu Wen-wen, et al. Outstanding discharge energy density and efficiency of the bilayer nanocomposite films with BaTiO3-dispersed PVDF polymer and polyetherimide layer[J]. Chemical Engineering Journal, 2022, 446(2): 101-108.

[73] Wang T, Kou Z, Mu S, et al. 2D Dual-Metal Zeolite-Imidazole-Framework-(ZIF)-Derived Bifunctional Air Electrodes with Ultrahigh Electrochemical Properties for Rechargeable Zinc-Air Batteries[J]. Advanced Functional Materials, 2018, 28(5): 81-89.

[74] Sakuda A, Hayashi A, Tatsumisago M. Interfacial Observation between LiCo-O2 Electrode and Li2S-P2S5 Solid Electrolytes of All-Solid-State Lithium Secondary Batteries Using Transmission Electron Microscopy[J]. Chemistry of Materials, 2020, 22, 949-956.

[75] 宋文生,李国芝,卢敏,等.强碱性固体凝胶电解质电性能研究[J].化工科技,2016 (06):26-28.

[76] K. Xu. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. Chemical Reviews, 2018, 104: 4303-4417.

[77] 崔建勋,赵科,陈广普,等.六羟甲基三聚氰胺-聚乙烯醇1788固化体系的研究[J].粘接,2015,36(10):68-71.

[78] Zou Xinxi. Super-Absorbent Materials[J]. Chemical Industry Press, 2021, 57: 408-415.

[79] N. Jagjit. Handbook of solid state batteries[M]. World Scientific, 2017.

[80] V. Di Noto, S. Lavina, G. A. Giffin, et al. Polymer electrolytes: present, past and future[J]. Electrochimica Acta, 2019, 57: 4-13.

中图分类号:

 TQ151.4    

开放日期:

 2023-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式