- 无标题文档
查看论文信息

论文中文题名:

 电动汽车锂离子电池参数辨识与荷电状态估计研究    

姓名:

 苏航    

学号:

 19205216099    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085234    

学科名称:

 工学 - 工程 - 车辆工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 机械工程学院    

专业:

 车辆工程    

研究方向:

 新能源智能网联车辆    

第一导师姓名:

 高怀斌    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-24    

论文答辩日期:

 2022-06-02    

论文外文题名:

 Research on Parameter Identification and State of Charge Estimation of Lithium-ion Battery for Electric Vehicles    

论文中文关键词:

 锂离子电池 ; 等效电路模型 ; 在线参数辨识 ; SOC估计 ; 容积卡尔曼滤波    

论文外文关键词:

 Lithium-ion battery ; Equivalent circuit model ; Online parameter identification ; SOC estimation ; Cubature Kalman Filter    

论文中文摘要:

随着能源短缺和环境污染问题的日益严重,新能源汽车尤其是电动汽车迎来了前所未有的发展机遇。电池管理系统是电动汽车最核心的技术之一,精确的电池SOC估计对于电池管理系统至关重要。本文以18650三元锂离子电池为研究对象,以提高电池SOC估计精度为出发点,进行了以下研究:

首先,分析了锂离子电池工作原理和关键性能参数,通过电压、容量和内阻等特性测试实验对电池的动态特性进行了分析。对比分析了常用的四种等效电路模型后选用二阶RC模型作为本文所用锂离子电池的等效电路模型。对电池进行HPPC测试,通过指数拟合的方法离线辨识得到了模型参数,并在MATLAB/Simulink中验证了所建立的二阶RC模型的有效性。

其次,针对在不确定性噪声环境下传统最小二乘法参数辨识精度不高的问题,提出带遗忘因子的偏差补偿递推最小二乘法进行在线参数辨识,并以电池端电压为观测值对其辨识精度进行了验证。在实现参数辨识的基础上,采用扩展卡尔曼滤波(EKF)、无迹卡尔曼滤波(UKF)和容积卡尔曼滤波(CKF)三种滤波算法分别进行SOC估计,并对三种算法的精度进行对比,结果表明基于CKF算法的估计精度最优。针对CKF算法系统噪声无法自适应更新和协方差矩阵易失去正定性可能导致算法中止的问题,将Sage-Husa自适应滤波算法和奇异值分解的方法引入其中,采用基于奇异值分解的自适应容积卡尔曼滤波算法进行电池SOC估计,提高了估计精度。

最后,将带遗忘因子的偏差补偿递推最小二乘法与基于奇异值分解的自适应容积卡尔曼滤波算法相结合,实现了电池模型参数和SOC的联合估计,进一步提高了估计精度。基于现有电池测试平台,搭建了算法硬件验证平台,对电池电压、电流采集等系统的软硬件进行了设计。结果表明,本文所提算法的硬件验证结果与仿真结果相一致,能够实现SOC的精确估计,证明了算法在嵌入式设备中的可行性和精确性。

论文外文摘要:

With the increasingly serious problems of energy shortage and environmental pollution, new energy vehicles, especially electric vehicles, have ushered in unprecedented development opportunities. The battery management system is one of the core technologies of electric vehicles, and accurate battery SOC estimation is very important for it. This paper takes the 18650 ternary lithium-ion battery as the research object, in order to improve the estimation accuracy of battery SOC, the following researches are carried out:

Firstly, the working principle and key performance parameters of lithium-ion battery are analyzed, and the dynamic characteristics of the battery are analyzed through the test experiments of voltage, capacity and internal resistance. After comparative analysis of four commonly used equivalent circuit models, the second-order RC model is selected as the equivalent circuit model of lithium-ion battery used in this paper. The HPPC test of the battery are carried out, and the model parameters are obtained by offline identification using the exponential fitting method. The effectiveness of the established second-order RC model is verified in MATLAB/Simulink.

Secondly, in order to solve the problem of low identification accuracy of traditional least squares method in uncertain noise environment, the bias compensation recursive least squares method with forgetting factor is proposed for online parameter identification, and the identification accuracy is verified by taking the battery terminal voltage as the observation value. On the basis of parameter identification, extended Kalman filter(EKF), unscented Kalman filter (UKF) and cubature Kalman filter (CKF) are used to estimate SOC respectively, and the accuracy of the three algorithms is compared. The results show that the estimation accuracy based on CKF algorithm is the best. In view of the problem that the system noise of CKF algorithm cannot be adaptively updated and the covariance matrix is easy to lose the positive definiteness, which may lead to the algorithm suspension, the Sage-Husa adaptive filtering algorithm and singular value decomposition method are introduced. The adaptive cubature Kalman filtering algorithm based on singular value decomposition is used to estimate the battery SOC, and the estimation accuracy is improved.

Finally, the bias compensation recursive least square method with forgetting factor and the adaptive cubature Kalman filter algorithm based on singular value decomposition are combined to realize the joint estimation of battery model parameters and SOC, which further improves the estimation accuracy. Based on the existing battery test platform, the hardware verification platform of the algorithm is built, and the hardware and software of the battery voltage and current acquisition system are designed. The experimental results show that the hardware verification results of the proposed algorithm are consistent with the simulation results, which can realize the accurate estimation of SOC and prove the feasibility and accuracy in embedded devices.

参考文献:

[1]公安部交通管理局2021年全国机动车保有量达3.95亿,新能源汽车同比增59.25% [EB/OL].https://www.mps.gov.cn/n2254314/n6409334/c8322353/content.html.

[2]杨宇,何则.中国海外油气依存的现状、地缘风险与应对策略[J].资源科学,2020,42(08):1614-1629.

[3]李进,战乃岩,张帅.机动车尾气污染物排放的研究[J].低碳世界,2021,11(02):22-23.

[4]左世全.解读《新能源汽车产业发展规划(2021-2035)》[J].智能网联汽车,2020(06):21-23.

[5]申伟,陆敏恂.中国新能源汽车产业的发展现状与展望[J].汽车实用技术,2020,45(22):239-242.

[6]Chen W D, Liang J, Yang Z H, et al. A review of lithium-Ion battery for electric vehicle applications and beyond[J]. Energy Procedia, 2019, 158 : 4363-4368.

[7]Hannan M A, Lipu M S H, Hussain A, et al. A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations[J].Renewable and Sustainable Energy Reviews, 2017,78:834-854.

[8]李伟.锂离子电池建模与荷电状态估计研究[D].大连理工大学,2020.

[9]Zheng L, Zhang L, Zhu J, et al. Co-estimation of state-of-charge, capacity and resistance for lithium-ion batteries based on a high-fidelity electrochemical model[J]. Applied Energy, 2016, 180: 424-434.

[10]Joker A, Rajabloo B, Desilets M, et al. Review of simplified Pseudo-two-Dimensional models of lithium-ion batteries[J].Journal of Power Sources,2016,327: 44-55.

[11]匡柯,孙跃东,任东生,等.车用锂离子电池电化学-热耦合高效建模方法[J].机械工程学报,2021,57(14):10-22.

[12]Li H,Zhang W,Yang X,et al.State of charge stimation for lithium-ion battery using an electrochemical model based on electrical double layer effect[J]. Electrochimica Acta. 2019, 326: 134966.

[13]Deng, Z W, Yang, L, Deng, H, et al. Polynomial approximation pseudo-two-dimensional battery model for online application in embedded battery management system[J]. Energy,2018,142:838-850.

[14]Yuan S F, Jiang L Y, Cheng L, et al. A transfer function type of simplified electrochemical model with modified boundary conditions and Pade approximation for Li-ion battery: Part 2. Modeling and parameter estimation[J]. Journal of Power Sources,2017,352:258-271.

[15]Han X B, Ouyang M G, Lu L G, et al. Simplification of physics-based electrochemical model for lithium ion battery on electrical vehicle. Part I: diffusion simplification and single particle model[J]. Journal of Power Sources, 2015, 278:802-813.

[16]Han X B, Ouyang M G, Lu L G, et al. Simplification of physics-based electrochemical model for lithium ion battery on electric vehicle. Part II: Pseudo-two-dimensional model simplification and state of charge estimation[J]. Journal of Power Sources, 2015, 278:814-825.

[17]杨杰,王婷,杜春雨,等.锂离子电池模型研究综述[J].储能科学与技术,2019,8(01):58-64.

[18]Bezha M, Gondo R, Nagaoka N. An Estimation Model with Generalization Characteristics for the Internal Impedance of the Rechargeable Batteries by Means of Dual ANN Model[J].Energies, 2019, 12(5),948.

[19]Sheng H M, Xiao J. Electric vehicle state of charge estimation: Nonlinear correlation and fuzzy support vector machine[J]. Journal of Power Sources. 2015, 281: 131-137.

[20]谢家乐.电动车辆动力锂电池建模及状态估计方法研究[D].哈尔滨工业大学,2019.

[21]夏飞,袁博,彭道刚,等.基于信息量准则的锂离子电池变阶RC等效电路模型建模及优化方法[J].中国电机工程学报,2018,38(21):6441-6451+6506.

[22]陈媛,何怡刚,李忠.电池变温度模型似然函数参数辨识及SOC估计[J].电子测量与仪器学报,2019,33(12):1-9.

[23]Lai X, Zheng Y J, Sun T. A comparative study of different equivalent circuit models for estimating state-of-charge of lithium-ion batteries[J]. Electrochimica Acta,2018, 566-577.

[24]Zhang C, Li K, Pei L, et al. An integrated approach for real-time model-based state-of-charge of estimation lithium-ion batteries[J]. Journal of Power Sources,2015,283:24-36.

[25]Ye M, Guo H, Cao B G.A model-based adaptive state of charge estimator for a lithium-ion battery using an improved adaptive particle filter[J]. Applied Energy. 2017, 190: 740-748.

[26]罗勇,祁朋伟,阚英哲,等.基于模拟退火算法的锂电池模型参数辨识[J].汽车工程,2018,40(12):1418-1425.

[27]Mesbahi T, Khenfri F, Rizoug N, et al. Dynamical modeling of Li-ion batteries for electric vehicle applications based on hybrid Particle Swarm-Nelder-Mead (PSO-NM) optimization algorithm[J]. Electric power systems research, 2016, 131: 195-204.

[28]田茂飞,安治国,陈星,等.基于在线参数辨识和AEKF的锂电池SOC估计[J].储能科学与技术,2019,8(04):745-750.

[29]Duong V H, Bastawrous H A, Lim K C, et al. Online state of charge and model parameters estimation of the LiFePO4 battery in electric vehicles using multiple adaptive forgetting factors recursive least-squares [J]. Journal of Power Sources, 2015, 296: 215-224.

[30]Zhang C, Allafi W, Dinh Q, et al. Online estimation of battery equivalent circuit model parameters and state of charge using decoupled least squares technique[J]. Energy,2018,142:678-688.

[31]朱瑞,段彬,温法政,等.基于分布式最小二乘法的锂离子电池建模及参数辨识[J].机械工程学报,2019,55(20):85-93.

[32]Chen C, Xiong R, Shen W. A lithium-ion battery in-the-loop approach to test and validate multiscale dual H infinity filters for state-of-charge and capacity estimation[J]. IEEE Transactions on power Electronics,2018,33(01):332-342.

[33]刘树林.电动汽车用锂离子动力电池建模与状态估计研究[D].山东大学,2017.

[34]熊瑞.动力电池管理系统核心算法[M].机械工程出版社,2018.10.

[35]Yang R, Xiong R, He H, et al. A novel method on estimating the degradation and state of charge of lithium-ion batteries used for electrical vehicles[J]. Applied Energy. 2017, 207: 336-345.

[36]郭宝甫,张鹏,王卫星,等.基于OCV-SOC曲线簇的磷酸铁锂电池SOC估算研究[J].电源技术,2019,43(07):1125-1128+1139.

[37]Chaoui H,Golbon N,Hmouz I,et al.Lyapunov-based adaptive state of charge and state of health estimation for lithium-ion batteries[J].IEEE Transactions on Industrial Electronics,2015,62(3):1610-1618.

[38]罗勇,祁朋伟,黄欢,等.基于容量修正的安时积分SOC估算方法研究[J].汽车工程,2020,42(05):681-687.

[39]丁镇涛,邓涛,李志飞,等.基于安时积分和无迹卡尔曼滤波的锂离子电池SOC估算方法研究[J].中国机械工程,2020,31(15):1823-1830.

[40]Yang N X, Zhang X W, Li G J. State of charge estimation for pulse discharge of a LiFePO4 battery by a revised Ah counting[J]. Electrochim Acta,2015,151:63-71.

[41]Chemali E, Kollmeyer P J, Preindl M, et al. State-of-charge estimation of Li-ion batteries using deep neural networks: A machine learning approach[J]. Journal of Power Sources, 2018, 400: 242-255.

[42]李泉.锂离子动力电池管理系统关键技术研究[D].湖南大学,2017.

[43]Chemali E, Kollmeyer P J, Preindl M, et al. Long short-term memory networks for accurate state-of-charge estimation of li-ion batteries[J].IEEE Transactions on Industrial Electronics,2018,65(8):

6730-6739.

[44]Mao X J, Song S J, Ding F, et al. Optimal BP neural network algorithm for state of charge estimation of lithium-ion battery using PSO with Levy flight[J]. Journal of Energy Storage, 2022, 49(1): 104139.1-104139.5.

[45]Tian Y, Lai R, Li X, et al. A combined method for state-of-charge estimation for lithium-ion batteries using a long short-term memory network and an adaptive cubature Kalman filter[J]. Appiled Energy,2020,265:114789.1-114789.14.

[46]汪玉洁.动力锂电池的建模、状态估计及管理策略研究[D].中国科学技术大学,2017.

[47]Shen Y Q.Adaptive extended Kalman filter based state of charge determination for lithium-ion batteries [J]. Electrochimica Acta, 2018, 283: 1432-1440.

[48]李昊阳.电动汽车锂电池建模及SOC估算方法研究[D].吉林大学,2020.

[49]Partovibakhsh M, Liu G. An adaptive unscented Kalman filtering approach for online estimation of model parameters and state-of-charge of lithium-ion batteries for autonomous mobile robots[J]. IEEE transactions on control systems technology, 2015, 23(01): 357-363.

[50]Li Z, Zhang P, Wang Z F, et al. State of charge estimation for Li-ion battery based on extended Kalman filter[J]. Energy Procedia,2017,105: 3515-3520.

[51]商云龙,张承慧,崔纳新,等.基于模糊神经网络优化扩展卡尔曼滤波的锂离子电池荷电状态估计[J].控制理论与应用,2016,33(02):212-220.

[52]Sun D M, Yu X L, Zhang C, et al. State of charge estimation for lithium-ion battery based on an intelligent adaptive unscented Kalman filter[J].International journal of energy research,2020,44(14): 11199-11218.

[53]魏孟,李嘉波,李忠玉,等.基于高斯过程回归的UKF锂离子电池SOC估计[J].储能科学与技术,2020,9(04):1206-1213.

[54]谢永东,何志刚,陈栋,等.自适应无迹卡尔曼滤波动力电池的SOC估计[J].北京交通大学学报,2018,42(02):129-137.

[55]Yang H, Sun X Z, An Y B, et al. Online parameters identification and state of charge estimation for lithium-ion capacitor based on improved Cubature Kalman filter[J]. Journal of Energy Storage, 2019,24:100810.1-100810.11.

[56]Peng J, Luo J, He H, et al. An improved state of charge estimation method based on cubature Kalman filter for lithium-ion batteries[J].Applied energy,2019,24:113520.1-113520.10.

[57]Shen J W, Xiong J, Shu X, et al. State of charge estimation framework for lithium-ion batteries based on square root cubature Kalman filter under wide operation temperature range[J]. International journal of energy research,2021,45(4):5586-5601.

[58]Lin C,Mu H, Xiong R, et al. A novel multi-model probability battery state of charge estimation approach for electric vehicles using H-infinity algorithm[J]. Applied Energy, 2016, 166 : 76-83.

[59]孙震.基于粒子滤波的电动汽车锂离子电池SOC估算技术研究[D].清华大学,2018.

[60]韩啸,张成锟,吴华龙,等.锂离子电池的工作原理与关键材料[J].金属功能材料,2021,28(02):37-58.

[61]刘力硕,张明轩,卢兰光,等.锂离子电池内短路机理与检测研究进展[J].储能科学与技术,2018, 7(06):1003-1015.

[62]令狐金卿.基于滤波算法和增量容量分析的动力电池状态估计研究[D].华南理工大学,2019.

[63]Li X, Wang Q, Yang Y, et al. Correlation between capacity loss and measurable parameters of Lithium-ion batteries[J]. Electrical Power and Energy Systems, 2019,110:819-826.

[64]高洋.三元材料锂离子电池老化诊断、评估与建模方法[D].北京交通大学,2019.

[65]Shen P, Ouyang M, Han X, et al. Error analysis of the model-Based State-of-Charge Observer for Lithium-Ion Batteries[J]. IEEE Transactions on Vehicular Technology, 2018, 67(9): 8055-8064.

[66]He L, Hu M K, Wei Y J. State of charge estimation by finite difference extended Kalman filter with HPPC parameters identification[J]. Science China(Technological Sciences),2020, 63(03): 410-421.

[67]黑文洁. 基于等效电路模型的锂离子电池模型参数辨识算法对比研究[D].长安大学,2018.

[68]李争光,魏娟,田海波,等.基于FF-MILS的锂离子电池模型参数辨识[J].电池,2021,51(01):46-49.

[69]王鑫.锂离子电池SOC与容量联合估计方法研究[D].吉林大学,2021.

[70]Gao S, Kang M, Li L, et al. Estimation of State-of-Charge Based on Unscented Kalman Particle Filter for Storage Lithium-Ion Battery[J]. The Journal of Engineering, 2019, 3(16):1858-1863.

[71]张大禹. 电动汽车动力电池荷电状态和容量的联合估计研究[D].长安大学,2020.

[72]程泽,杨磊,孙幸勉.基于自适应平方根无迹卡尔曼滤波算法的锂离子电池SOC和SOH估计[J].中国电机工程学报,2018,v.38;No.595(08):2384-2393+2548.

[73]Hajiyev C, Cilden-guler, D. Satellite attitude estimation using SVD-Aided EKF with simultaneous process and measurement covariance adaptation[J].Advances in Space Research,2021,68(9):3875-3890.

中图分类号:

 U469.72    

开放日期:

 2022-06-28    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式