- 无标题文档
查看论文信息

论文中文题名:

 变氧环境下陕北某矿富油煤自燃特性研究    

姓名:

 王睿涵    

学号:

 22220226170    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085700    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 煤火灾害防控    

第一导师姓名:

 邓军    

第一导师单位:

 西安科技大学    

论文提交日期:

 2025-06-25    

论文答辩日期:

 2025-06-06    

论文外文题名:

 Study on Spontaneous Combustion Characteristics of Oil-Rich Coal in a Northern Shaanxi Mine under Variable Oxygen Conditions    

论文中文关键词:

 富油煤 ; 变氧浓度 ; 气体产物 ; 热效应 ; 关键活性基团    

论文外文关键词:

 Rich-oil coal ; Variable oxygen concentration ; Thermal effects ; Key active groups    

论文中文摘要:

煤层自燃对矿井安全生产构成巨大危害。富油煤以其独有的煤、油、气属性,在煤炭领域应用前景广阔,具有极高的战略价值。煤炭在较低氧环境中易煤自燃引发火灾,不仅危及矿井作业安全,还会导致生态环境破坏和能源损耗。本论文采用理论分析、实验研究相结合的方法,对陕北某矿富油煤的氧化过程气体生成、微观结构、热效应和动力学机理变化规律进行了研究,该研究成果为陕北某矿区富油煤自燃预警及煤层火灾防控提供了重要的理论依据和实践指导。主要内容如下:

利用高温程序升温实验,研究了在不同氧浓度环境下,室温至450℃升温过程中陕北某矿富油煤氧化过程气体产物变化规律。得到在富油煤氧化过程中,各气体产物的浓度、氧耗速率、一氧化碳生成速率、二氧化碳生成速率以及放热强度均呈现出随温度和氧气浓度上升而显著增加的趋势。在反应初期临界温度前,CO和CO2气体缓慢增长,超过180℃后碳氧类气体含量迅速增长。而CH4、C2H6和C2H4气体在升温初期浓度上升平缓,随后呈现快速增加趋势,最终在燃烧阶段达到最高浓度值。

采用同步热分析法对富油煤氧化过程的热效应特征进行系统分析,通过实验得到了不同升温速率和不同氧气浓度条件下氧化反应的特征温度点、放热峰强度以及总放热量等关键热力学参数的变化趋势。得到提高氧气浓度导致各特征温度参数向低温方向迁移,加速氧化反应进程;增大升温速率则使特征温度向高温区域转移。在相同升温速率下,随着氧气浓度的增加,煤样吸氧量增大,DSC曲线放热峰向低温区移动,峰值升高且放热总量增加;随着升温速率的提升,煤样放热峰向高温区域偏移且峰值强度增强。并采用KAS法和Satava-Sestak法对其受热分解及燃烧阶段进行动力学分析,得到随转化率的增大,表观活化能值呈现先上升后下降的变化规律。在不同氧气浓度气氛下,利用KAS法计算得到的富油煤受热分解及燃烧阶段活化能值与Satava-Sestak法得到的计算结果基本一致,随着氧气浓度的增加,活化能呈现逐步上升的趋势。而升温速度的加快,则会引起活化能出现先升高后降低的变化。

采用原位傅里叶变换红外光谱实验,研究了富油煤氧化过程微观结构演化特性,得到煤中官能团的含量由大到小排序依次为含氧官能团、芳香烃、脂肪烃。含氧官能团含量与氧气浓度呈现负相关关系;脂肪烃的相对含量随氧气浓度升高而先减后增;芳香烃的占比则先增后减。各活性基团的含量随氧浓度增加呈现先增后减的变化趋势,在氧气浓度条件达到9%左右时,基团含量均趋于稳定。甲基、亚甲基、C=C、C=O和C-O随着反应温度升高,吸收峰强度及含量随之增加,随着温度的上升,游离羟基和缔合氢键峰强度呈现先减弱后增强的变化规律。基于灰色关联度理论,定量分析富油煤氧化过程中微观活性官能团与气体生成及放热强度的关联性,随着氧气浓度升高,富油煤中各类官能团与耗氧量、氧化反应生成气体量及放热量之间的灰色关联系数总体呈现上升态势。富油煤氧化过程中产生的CO、CO2、CH4、C2H4、C2H6等气体与含氧官能团中的C=O伸缩振动基团表现出较强的关联性,从而证实了羰基具有较高的反应活性和易氧化性。在不同氧气浓度条件下,煤样放热量与气体生成量变化趋势一致,与放热量最为密切相关的官能团类型为碳碳和碳氧类的气体产物相关官能团。

论文外文摘要:

Spontaneous Combustion of Coal Seams Poses Significant Hazards to Mine Safety Production.Rich-oil coal, with its unique coal-oil-gas properties, holds broad application prospects in the coal industry and carries high strategic value. Coal is prone to spontaneous combustion in low-oxygen environments, triggering fires that not only endanger mine operations but also lead to ecological damage and energy loss. This study employs a combination of theoretical analysis and experimental research to investigate the gas generation, microstructure, thermal effects, and kinetic mechanisms during the oxidation process of rich-oil coal from a mine in Northern Shaanxi. The findings provide crucial theoretical foundations and practical guidance for early warning of spontaneous combustion and fire prevention in rich-oil coal seams in this mining area. The main contents are as follows:

Using high-temperature programmed heating experiments, the variation patterns of gas products during the oxidation of rich-oil coal from room temperature to 450℃ under different oxygen concentrations were studied. The results indicate that during oxidation, the concentrations of gas products, oxygen consumption rate, CO generation rate, CO2 generation rate, and heat release intensity all exhibit a significant increasing trend with rising temperature and oxygen concentration. Before the critical temperature in the early reaction stage, CO and CO2 concentrations increase slowly, but beyond 180℃, carbon-oxygen gases grow rapidly. In contrast, CH4, C2H4, and C2H6 show a gradual initial increase, followed by a sharp rise, peaking during the combustion phase.

Synchronous thermal analysis was employed to systematically examine the thermal characteristics of rich-oil coal oxidation. Key thermodynamic parameters including characteristic temperature points, exothermic peak intensity, and total heat release were obtained under varying heating rates and oxygen concentrations. The results demonstrate that higher oxygen concentrations shift characteristic temperatures toward lower values, accelerating oxidation, whereas increased heating rates shift them toward higher temperatures. Under the same heating rate, higher oxygen concentrations enhance oxygen absorption, causing the DSC curve’s exothermic peak to shift to lower temperatures with increased peak intensity and total heat release. Conversely, higher heating rates shift the exothermic peak toward higher temperatures while intensifying peak strength. Kinetic analysis using the KAS and Satava-Sestak methods revealed that the apparent activation energy first rises and then declines with increasing conversion rates. Under different oxygen concentrations, activation energy values calculated via the KAS method align closely with those from the Satava-Sestak method, showing a gradual increase with higher oxygen levels. Meanwhile, faster heating rates cause activation energy to first rise and then fall.

In-situ Fourier transform infrared spectroscopy (FTIR) was used to study the microstructural evolution of rich-oil coal during oxidation. The functional group content follows the order: oxygen-containing groups > aromatic hydrocarbons > aliphatic hydrocarbons. Oxygen-containing functional groups exhibit a negative correlation with oxygen concentration; aliphatic hydrocarbons initially decrease and then increase, while aromatic hydrocarbons show the opposite trend. Reactive group concentrations first rise and then decline with increasing oxygen levels, stabilizing at around 9% oxygen. The absorption peak intensities and contents of methyl, methylene, C=C, C=O, and C-O groups increase with rising temperature, whereas free hydroxyl and hydrogen-bonded hydroxyl groups first weaken and then strengthen. Based on grey correlation theory, a quantitative analysis was conducted to assess the relationship between reactive functional groups and gas generation heat release. As oxygen concentration increases, the grey correlation coefficients between functional groups and oxygen consumption, gas production, and heat release generally rise. Gases such as CO, CO2, CH4, C2H4, and C2H6 exhibit strong correlations with the C=O stretching vibration group, confirming the high reactivity and oxidizability of carbonyl groups. Under varying oxygen concentrations, the trends in heat release and gas generation align closely, with carbon-carbon and carbon-oxygen functional groups showing the strongest correlation with heat release.

参考文献:

[1]谢和平, 任世华, 谢亚辰, 等. 碳中和目标下煤炭行业发展机遇[J]. 煤炭学报, 2021, 46(07): 2197-2211.

[2]袁亮. 废弃矿井资源综合开发利用助力实现“碳达峰、碳中和”目标[J]. 科技导报, 2021, 39(13): 1.

[3]陈浮, 于昊辰, 卞正富, 等. 碳中和愿景下煤炭行业发展的危机与应对[J]. 煤炭学报, 2021, 46(06): 1808-1820.

[4]王德明, 邵振鲁, 朱云飞. 煤矿热动力重大灾害中的几个科学问题[J]. 煤炭学报, 2021, 46(01): 57-64.

[5]陈欢, 杨永亮. 煤自燃预测技术研究现状[J]. 煤矿安全, 2013, 44(09): 194-197.

[6]毛崎森, 刘嘉晔, 王长安, 等. 不同布井模式下富油煤原位热解传热规律数值模拟[J]. 煤炭转化, 2022, 45(06): 7-19.

[7]田华, 张晴, 谢祖锋, 等. 富油煤热解产物在粉砂介质中的吸附行为研究[J]. 环境科学学报, 2022, 42(09): 133-140.

[8]薛文海, 杜美利, 刘忠诚, 等. 萃取方式对黄陵煤分子结构特征影响[J]. 洁净煤技术, 2022, 28 (07): 96-102.

[9]唐跃刚, 郭亚楠, 王绍清. 中国特殊煤种——树皮煤的研究进展[J]. 中国科学基金, 2011, 25(03): 154-163.

[10]戚绪尧. 煤中活性基团的氧化及自反应过程[J]. 煤炭学报, 2011, 36(12): 2133-2134.

[11]JU Y, ZHU Y, ZHOU H, et al. Microwave pyrolysis and its applications to the in-situ recovery and conversion of oil from tar-rich coal: An overview on fundamentals, methods, and challenges[J]. Energy Reports, 2021, 7: 523-536.

[12]王双明, 王虹, 任世华, 等. 西部地区富油煤开发利用潜力分析和技术体系构想[J]. 中国工程科学, 2022, 24 (03): 49-57.

[13]王双明, 师庆民, 王生全, 等. 富油煤的油气资源属性与绿色低碳开发[J]. 煤炭学报, 2021, 46 (05): 1365-1377.

[14]徐精彩, 文虎, 葛岭梅, 等. 松散煤体低温氧化放热强度的测定和计算[J]. 煤炭学报, 2000, (04): 387-390.

[15]徐精彩, 文虎, 邓军, 等. 煤自燃极限参数研究[J]. 火灾科学, 2000, (02): 14-18.

[16]邓军, 徐精彩, 张辛亥. Study on major factors influence spontaneous combustion of coal[J]. 煤炭学报(英文), 2000, (1): 43-51.

[17]文虎, 徐精彩, 葛岭梅, 等. 煤低温自燃发火的热效应及热平衡测算法[J]. 湘潭矿业学院学报, 2001, (04): 1-4.

[18]文虎, 徐精彩, 李莉, 等. 煤自燃的热量积聚过程及影响因素分析[J]. 煤炭学报, 2003, (04): 370-374.

[19]肖旸, 马砺, 王振平, 等. 采用热重分析法研究煤自燃过程的特征温度[J]. 煤炭科学技术, 2007, (05): 73-76.

[20]屈丽娜. 煤自燃阶段特征及其临界点变化规律的研究[D]. 中国矿业大学(北京), 2013.

[21]张嬿妮, 邓军, 罗振敏, 等. 煤自燃影响因素的热重分析[J]. 西安科技大学学报, 2008, (02): 388-391.

[22]潘乐书, 杨永刚. 基于量热分析煤低温氧化中活化能研究[J]. 煤炭工程, 2013, 45(06): 102-105.

[23]王凯. 陕北侏罗纪煤氧化自燃特性实验研究[D]. 西安科技大学, 2013.

[24]Qi X, Li Q, Zhang H, et al. Thermodynamic characteristics of coal reaction under low oxygen concentration conditions [J]. Journal of the Energy Institute, 2017, 90(4): 544-555.

[25]石婷, 邓军, 王小芳, 等. 煤自燃初期的反应机理研究[J]. 燃料化学学报, 2004, (06): 652-657.

[26]王宝俊, 张玉贵, 秦育红, 等. 量子化学计算方法在煤反应性研究中的应用[J]. 煤炭转化, 2003, (01): 1-7.

[27]王宝俊, 凌丽霞, 章日光,等. 煤热化学性质的量子化学研究[J]. 煤炭学报, 2009, 34(09): 1239-1243.

[28]葛新玉. 基于热分析技术的煤氧化动力学实验研究[D]. 安徽理工大学, 2009.

[29]胡荣祖, 高胜利, 赵凤起, 等. 热分析动力学[M]. 北京: 科学出版社, 2008.

[30]M. V. Kök. Journal of Thermal Analysis and Calorimetry, 2008, 91(3): 763-773.

[31]M. V. Kök. Journal of Thermal Analysis and Calorimetry, 2005, 79: 175-180.

[32]李改改, 姜鹏飞, 黄佳齐, 等. 富油煤热解过程动力学参数变化规律研究[J]. 煤炭技术, 2023, 42(10): 52-56.

[33]屈丽娜, 刘星魁, 张红元. 煤自燃阶段动力学参数及特征温度点的实验研究[J]. 西安科技大学学报, 2015, 35(05): 597-601.

[34]赵婧昱. 淮南煤氧化动力学过程及其微观结构演化特征研究[D]. 西安科技大学, 2017.

[35]何启林, 王德明. 煤的氧化和热解反应的动力学研究[J]. 北京科技大学学报, 2006, (01): 1-5.

[36]余明高, 郑艳敏, 路长. 贫烟煤氧化热解反应的动力学分析[J]. 火灾科学, 2009, 18(03): 143-147.

[37]Continillo G, Galiero G Maffettone P L, et al. Characterization of chaotic dynamics in the spontaneous combustion of coal stock Piles. SymPosium (International) on Combustion, 1996.

[38]Tiit Kaljuvee, Merli Keelman, Andres Trikkel, et al. J Therm Anal Calorim, 2013, 113: 1063-1071.

[39]郭小云, 王德明, 李金帅. 煤低温氧化阶段气体吸附与解析过程特性研究[J]. 煤炭工程, 2011, (05): 102-104.

[40]金永飞, 李海涛, 岳宁芳, 等. 变氧浓度环境下煤自然发火气体预报指标优选[J]. 煤矿安全, 2014, 45(11): 27-30.

[41]金永飞, 郭军, 文虎, 等. 煤自燃高温贫氧氧化燃烧特性参数的实验研究[J]. 煤炭学报, 2015, 40(03): 596-602.

[42]Yuan L, Smith A.C. Experimental study on CO and CO2 emissions from spontaneous heating of coals at varying temperatures and O2 concentrations[J]. Journal of Loss Prevention in the Process Industries, 2013, 26(6): 1321-1327.

[43]Green U, Aizenshtat Z, Hower J C, et al. Modes of formation of carbon oxides (COx (X=1,2) ) from coals during atmospheric storage: Part 2: effect of coal rank on the kinetics[J]. Energy and Fuels, 2011, 25: 5625-5631.

[44]Carol A R, Joeseph T S, Micheal M C, et al. Further studies of coal oxidation[J]. Fue1, 1983 62(12): 1387-1932.

[45]Brain M L, Lancaster L L, MacPheet J A. Carbonyl groups from chemically and thermally promoted decomposition of peroxides on coal surfaces: Detection of specific types using photoacoustic infrared fourier transform spectroscopy[J]. Fue1, 1987, 66(7): 979-983.

[46]Rhoads, C.A., Senftle J.T., Coleman M.M., et al. Further studies of coal oxidation[J]. Fuel, 1983,62: 1387-384.

[47]董庆年, 陈学艺, 靳国强, 等. 红外发射光谱法原位研究褐煤的低温氧化过程[J]. 燃料化学学报, 1997, (04): 46-51.

[48]朱学栋, 朱子彬, 韩崇家, 等. 煤中含氧官能团的红外光谱定量分析[J]. 燃料化学学报, 1999, (04): 335-339.

[49]朱学栋, 朱子彬. 红外光谱定量分析煤中脂肪碳和芳香碳[J]. 曲阜师范大学学报, 2001, (04): 64-67.

[50]李新, 韩波, 张哲豪, 等. 不同密度分级下富油煤微观结构研究[J]. 石化技术, 2023, 30(11): 158-160.

[51]Dyrkacz G R, Bloomquist C A A. Binary solvent extractions of upper Freeport coal[J]. Energy&Fuels, 2001, 15(6): 1409-1413.

[52]季伟, 吴国光, 孟献梁, 等. 神府煤孔隙特征及活性结构对自燃的影响研究[J]. 煤炭技术, 2011, 30(04): 87-90.

[53]辛海会, 王德明, 许涛,等. 低阶煤低温热反应特性的原位红外研究[J]. 煤炭学报, 2011, 36(09): 1528-1532.

[54]张国枢, 谢应明, 顾建明. 煤炭自燃微观结构变化的红外光谱分析[J]. 煤炭学报, 2003, (05): 473-476.

[55]杨永良, 李增华, 尹文宣, 等. 易自燃煤漫反射红外光谱特征[J]. 煤炭学报, 2007, (07): 729-733.

[56]金永飞, 李海涛, 岳宁芳, 等. 变氧浓度环境下煤自然发火气体预报指标优选[J]. 煤矿安全, 2014, 45(11): 27-30.

[57]金永飞, 郭军, 文虎, 等. 煤自燃高温贫氧氧化燃烧特性参数的实验研究[J]. 煤炭学报, 2015, 40(03): 596-602.

[58]朱红青, 沈静, 王海燕, 等. 氧气浓度与煤氧化特征关系的热重实验研究[J]. 煤矿安全, 2014, 45(05): 16-19.

[59]朱红青, 沈静, 张亚光. 升温速率和氧浓度对煤表观活化能的影响[J]. 煤炭科学技术, 2015, 43(11): 49-53+106.

[60]徐永亮, 宋志鹏, 王少坤, 等. 贫氧环境对煤低温氧化特性影响研究[J]. 中国安全生产科学技术, 2016, 12(11): 82-87.

[61]辛海会. 煤火贫氧燃烧阶段特性演变的分子反应动力学机理[D]. 中国矿业大学, 2016.

[62]马李洋. 煤火前沿贫氧燃烧动力学特性及煤焦分子结构转化机理[D]. 中国矿业大学, 2020.

[63]邓军, 张嬿妮. 煤自然发火微观机理[M]. 中国矿业大学出版社, 2015.

[64]ZHANG Y, CHEN L, ZHAO J, et al. Evaluation of the spontaneous combustion characteristics of coal of different metamorphic degrees based on a temperature programmed oil bath experimental system[J]. Journal of Loss Prevention in the Process Industries, 2019, 60: 17.

[65]Roger L. B., Homer E. K.. Homer Kissinger and the Kissinger equation [J]. Thermochimica Acta, 2012, 540(20): 1-6.

[66]Šatava V. Mechanism and kinetics from non-isothermal TG traces[J]. Thermochimica Acta, 1971, 2(5): 423-428.

中图分类号:

 TD752.2    

开放日期:

 2025-06-25    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式