- 无标题文档
查看论文信息

论文中文题名:

 泾阳南塬饱和黄土渗透-剪切试验研究    

姓名:

 武少鹏    

学号:

 18209212059    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085217    

学科名称:

 工学 - 工程 - 地质工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 地质与环境学院    

专业:

 地质工程    

研究方向:

 岩土体稳定性评价与加固技术    

第一导师姓名:

 刘飞    

第一导师单位:

  西安科技大学    

第二导师姓名:

 张晓    

论文提交日期:

 2021-06-17    

论文答辩日期:

 2021-06-02    

论文外文题名:

 Experimental Study of Saturated Loess under Permeability and Shear in South Jingyang Plateau    

论文中文关键词:

 饱和黄土 ; 渗透-剪切 ; 渗透性 ; 剪切强度    

论文外文关键词:

 Saturated loess ; Permeability-shear ; Permeability ; Shear strength.    

论文中文摘要:

                                               摘 要

黄土高原地区的黄土台塬大量的农业引水灌溉水事活动,地下水位逐渐抬高,改变了黄土台塬塬边斜坡渗流场,使坡体内部区域的土体处于渗流和剪切叠加作用,强烈影响着土体的力学和水理特性。论文以泾阳南塬饱和黄土为研究对象,通过开展饱和原状和重塑黄土的三轴渗透-剪切试验,研究不同围压状态、不同渗透压力条件下饱和黄土试样渗透特性和剪切强度性状,探讨泾阳南塬饱和黄土渗透-剪切机理,取得结论如下:

(1)三轴渗透-剪切试验过程中,饱和黄土试样渗透系数先急剧减小再减小趋势相对缓慢趋于基本不变;低围压状态下,随着轴向应变增加,饱和黄土试样渗透系数曲线降幅较大,而高围压状态下则降幅相对微小;不同渗透压力条件下饱和黄土试样渗透系数变化范围呈前大后小规律;渗透-剪切试验初期,饱和原状黄土试样渗透系数远大于饱和重塑黄土试样,随着渗透-剪切的继续进行,饱和原状黄土试样渗透系数降低幅度相对显著,最终饱和黄土试样渗透系数曲线逐渐重合。

(2)随着渗透压力增大,饱和黄土试样偏应力出现了不同程度的降低;其应力-应变曲线由三轴渗透-剪切试验初期相接近,继而出现趋于分离,不同围压状态对其分离程度影响不同;饱和黄土试样剪切强度随围压增大而显著增大,随渗透压力增大而降低;随渗透压力增大,饱和黄土试样总应力下黏聚力显著降低,而有效粘聚力降低相对较小,相同渗透压力条件下,饱和原状黄土试样黏聚力和有效黏聚力分别小于相应地饱和重塑黄土试样;饱和黄土试样内摩擦角随渗透压力增大而略有降低。

(3)饱和黄土试样三轴渗透-剪切试验中,其渗透性变化机理主要取决于剪切作用下土颗粒相互移动而处于动态调整排列,进而使其孔隙发生改变,同时,不同围压状态时渗透压力作用下水的渗透流动的动能对土颗粒的冲蚀,进而引起其结构性改变,最终影响饱和黄土渗透性;其剪切强度变化机理取决于波动的孔隙水压力对土颗粒进行持续冲蚀,可使土颗粒之间的联结遭受破坏而结构逐渐溃散,使其黏聚力显著降低,同时,水动能携裹土颗粒移动,降低了土颗粒之间相互挤压咬合的摩擦力,使其摩擦角略有降低。因此,受应力场与渗流场耦合作用,故对饱和黄土剪切强度产生劣化效应。

论文外文摘要:

                                          Abstract

A large number of agricultural water diversion and irrigation activities in the loess plateau of the Loess Plateau, the groundwater level gradually increased, changed the seepage field of the slope of the loess plateau, and made the soil in the inner region of the slope under the superimposed effect of seepage and shear. Affect the mechanical and hydraulic properties of the soil. This thesis takes the saturated loess in the southern plateau of Jingyang as the research object, and studies the permeability and shear strength properties of saturated loess samples under different confining pressures and different osmotic pressures by carrying out triaxial permeability-shear tests of saturated undisturbed and remolded loess , To discuss the permeability-shear mechanism of saturated loess in South Jingyang Plateau, and the conclusions are as follows:

(1) During the triaxial penetration-shear test, the permeability coefficient of the saturated loess sample decreases sharply first and then decreases relatively slowly and tends to be basically unchanged; in the low confining pressure state, as the axial strain increases, the saturated loess sample The permeability coefficient curve of the sample has a large decrease, while the decrease is relatively small under high confining pressure; the variation range of the permeability coefficient of the saturated loess sample under different seepage pressure conditions is large and small; at the beginning of the permeability-shear test, saturated undisturbed loess The permeability coefficient of the sample is much larger than that of the saturated remolded loess sample. As the infiltration-shearing continues, the permeability coefficient of the saturated undisturbed loess sample decreases relatively significantly, and the permeability coefficient curve of the saturated loess sample gradually overlaps.

(2) As the seepage pressure increases, the deviator stress of the saturated loess sample decreases to different degrees; the stress-strain curve approaches from the initial stage of the triaxial permeability-shear test, and then tends to separate, and the confining pressure states are different. The degree of separation is different; the shear strength of the saturated loess sample increases significantly with the increase of confining pressure, and decreases with the increase of osmotic pressure; with the increase of osmotic pressure, the cohesive force of the saturated loess sample under the total stress decreases significantly , While the effective cohesion is relatively small. Under the same seepage pressure, the cohesion and effective cohesion of the saturated undisturbed loess samples are respectively smaller than the corresponding saturated remolded loess samples; the internal friction angle of the saturated loess samples increases with the infiltration The pressure increases and decreases slightly.

(3) In the triaxial permeability-shear test of saturated loess samples, the permeability change mechanism mainly depends on the mutual movement of soil particles under shear action and dynamic adjustment of the arrangement, which in turn causes the pores to change. At the same time, different confining pressures In the state, the kinetic energy of the seepage flow of water under the action of osmotic pressure erodes the soil particles, which in turn causes its structural changes, and ultimately affects the permeability of saturated loess; its shear strength change mechanism depends on the continuous pore water pressure on the soil particles. Erosion can damage the connection between soil particles and gradually disintegrate the structure, so that the cohesion force is significantly reduced. At the same time, the water kinetic energy carries the soil particles to move, reducing the friction between the soil particles when they squeeze and bite each other. The friction angle is slightly reduced. Therefore, the coupled effect of the stress field and the seepage field will degrade the shear strength of saturated loess.

参考文献:

[1]苑莲菊,李振栓,武胜忠,等. 工程渗流力学及应用[M]. 北京:中国建材工业出版社,2001.

[2]Dexuan Zhang., Gonghui Wang., Chunyong Luo., et al. A rapid loess flowslide triggered by irrigation in China[J]. Landslides,2009,6(1):55-60.

[3]Jianqi Zhuang., Jianbing Peng., Gonghui Wang., et al. Distribution and characteristics of landslide in Loess Plateau: A case study in Shaanxi province[J]. Engineering Geology,2018,236:89-96.

[4]何杨. 高分遥感与InSAR技术在黄土滑坡识别和监测中的应用研究[D]. 西安:长安大学,2016.

[5]谌文武,刘伟,王娟,等. 渗透剪切作用下黄土的力学特征[J]. 工程科学学报, 2018,40(5):639-648.

[6]柴军瑞,崔中兴. 渗流对土体抗剪强度的影响[J]. 岩土工程技术, 2001,(1):8-10.

[7]F Melinda., H Rahardjo., K K Han., et al. Shear strength of compacted soil under infiltration condition[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004,130(8):807-817.

[8]曹玲,罗先启. 三峡库区千将坪滑坡滑带土干-湿循环条件下强度特性试验研究[J]. 岩土力学,2007,28(S1):93-97.

[9]段钊. 黄土滑坡触发机理研究-以泾河下游南岸黄土塬区滑坡为例[D]. 西安:长安大学,2013.

[10]Ali Murtaza Rasool., Jiro Kuwano. Shearing infiltration tests to study mechanical behavior and failure mechanism of shallow slopes[J]. Iranian Journal of Science and Technology,Transactions of Civil Engineering,2020,45(2),1089-1098.

[11]Meen-Wah Gui.,Yong-Ming Wu. Failure of soil under water infiltration condition[J]. Engineering Geology,2014,181:124-141.

[12]Y F Zhou., L G Tham., W M Yan., et al. Laboratory study on soil behavior in loess slope subjected to infiltration[J]. Engineering Geology,2014,183:31-38.

[13]陈学军,魏伟,黄翔. 水入渗前后重塑红黏土抗剪强度特性研究[J]. 路基工程,2016,(5):20-24.

[14]李姝. 甘肃黑方台地下水长期作用对黄土强度影响的试验研究[D]. 成都:成都理工大学,2016.

[15]李祥华. 渗流对花岗岩残积土力学特性及边坡稳定性影响研究[D]. 厦门:厦门大学,2017.

[16]李威,庄建琦,王颖. 饱和重塑黄土抗剪强度影响因素的试验研究[J]. 工程地质学报,2018,26(3):626-632.

[17]骆亚生,胡仲有,张爱军. 非饱和黄土结构性参数与其强度指标关系初探[J].岩土力学. 2009,30(4):943-948.

[18]闫亚景. 结构在非饱和黄土抗剪特性中的控制机理[D]. 北京:中国地质大学(北京),2013.

[19]Baoping Wen., Yajing Yan. Influence of structure on shear characteristics of the unsaturated loess in Lanzhou, China[J]. Engineering Geology, 2014,168:46-58.

[20]王勇. 黄土结构性特征及其对土体抗剪强度的影响[D]. 西安:西北大学,2019.

[21]刘宏泰,张爱军,段涛,等. 干湿循环对重塑黄土强度和渗透性的影响[J]. 水利水运工程学报, 2010,(4):38-42.

[22]邓华锋,肖瑶,方景成,等. 干湿循环作用下岸坡消落带土体抗剪强度劣化规律及其对岸坡稳定性影响研究[J]. 岩土力学,2017,38(9):2629-2638.

[23]慕焕东,邓亚虹,李荣建. 干湿循环对地裂缝带黄土抗剪强度影响研究[J]. 工程地质学报,2018, 26(5):1131-1138.

[24]付宏渊,吴胜军,王桂尧. 荷载作用引起砂土渗透性变化的试验研究[J]. 岩土力学,2009,30(12),3677-3681.

[25]蔺晓燕,李同录,赵纪飞,等. 甘肃黑方台黄土固结-渗透特性试验研究[J]. 水文地质工程地质,2014,41(1):41-47.

[26]李又云,张玉伟,刘保健. 逐级加载条件下低液限饱和黏土的渗透试验[J]. 公路交通科技,2017,34(4):50-57.

[27]Bo Hong., Xi-an Li., Li Wang., et al. Temporal variation in the permeability anisotropy behavior of the Malan loess in northern Shaanxi Province, China: an experimental study[J]. Environmental Earth Sciences,2019,78(15):447.

[28]李平. 饱和黄土的三轴渗透试验研究[D]. 杨凌:西北农林科技大学,2007.

[29]Hongjun Lei., Yongkang Wu., Yuzhen Yu., et al. Influence of shear on permeability of clayey soil[J]. International Journal of Geomechanics,2016,16(5):04016010.

[30]曹彭强,虞邦义,余金煌,等. 应力影响下粉质黏土的等效渗透系数计算[J]. 岩石力学与工程学报,2017,36(S1):3656-3662.

[31]杨浩明. 典型南海软粘土的渗透特性研究[D]. 武汉:武汉理工大学,2012.

[32]刘希亮,罗静,朱维申. 深部含水层渗透系数均匀试验研究[J]. 岩石力学与工程学报,2005,24(16):2989-2993.

[33]张镇飞,倪万魁,王熙俊,等. 压实黄土水分入渗规律及渗透性试验研究[J]. 水文地质工程地质,2019,46(6),97-104.

[34]王刚,游克勤,魏星,等. 压实黏土剪切带渗透特性试验研究[J]. 岩土工程学报,2019, 41(8):1530-1537.

[35]邹婷.压-剪耦合条件下土石坝心墙黏土渗透特性的试验研究[D]. 成都:西南交通大学,2017.

[36]王沛,石磊,姚远宏. 不同渗透压力条件下黏质粉土的渗透试验研究[J]. 土工基础,2018,32(5):567-570.

[37]宋林辉,黄强,闫迪,等. 水力梯度对黏土渗透性影响的试验研究[J]. 岩土工程学报,2018,40(9):1635-1641.

[38]梁广川,汪时机,李贤,等. 砂质黏性紫色土渗透特性试验研究[J]. 岩土工程学报,2018, 40(S2):220-224.

[39]房敏安. 复杂条件下砂土内部侵蚀机理及其对渗透性的影响[D]. 厦门:华侨大学,2020.

[40]R Pusch., R Weston. Microstructural stability controls the hydraulic conductivity of smectitic buffer clay[J]. Applied Clay Science, 2003,23(1-4):35-41.

[41]Enrique Romero., Paul H. Simms. Microstructure investigation in unsaturated soils: a review with special attention to contribution of mercury intrusion porosimetry and environmental scanning electron microscopy[J] Geotechnical and Geological Engineering, 2008,26(6):705-727.

[42]Amr F. Elhakim. Estimation of soil permeability[J]. Alexandria Engineering Journal,2016, 55(3):2631-2638.

[43]金盼,陈波,胡云世. 孔径分布对软黏土渗透特性的影响分析[J]. 水文地质工程地质, 2018,45(4):86-93.

[44]任晓虎,许强,赵宽耀,等. 反复入渗对重塑黄土渗透特性的影响[J]. 地质科技通报, 2020,39(2):130-138.

[45]赵宽耀,许强,张先林,等. 黑方台浅层黄土渗透特性对比试验研究[J]. 工程地质学报,2018,26(2):459-466.

[46]Xi’an Li., Lincui Li. Quantification of the pore structures of Malan loess and the effects on loess permeability and environmental significance, Shaanxi Province, China: an experimental study[J]. Environmental Earth Sciences,2017,76(15):523.

[47]李喜安,洪勃,李林翠,等. 黄土湿陷对渗透系数影响的试验研究[J]. 中国公路学报, 2017,30(6):198-208.

[48]洪勃,李喜安,王力,等. 延安Q3原状黄土渗透各向异性及微结构分析[J]. 吉林大学学报(地球科学版), 2019,49(5):1389-1397.

[49]Qianhui Liu., Yongkang Wu.,Quanming Li., et al. Modified model for hydraulic conductivity of clayey soil under shear[J]. International Journal of Geomechanics,2019,19(11):06019015.

[50]朱思哲,刘虔,包承纲,等. 三轴试验原理与应用技术[M]. 北京:中国电力出版社,2003.

[51]赵丽娅. 饱和黄土的应力应变及强度特性研究[D]. 西安:长安大学,2010.

中图分类号:

 TU411.7    

开放日期:

 2021-06-18    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式