- 无标题文档
查看论文信息

论文中文题名:

 含石蜡/膨胀石墨的相变充填材料热-力学性能研究    

姓名:

 杜强强    

学号:

 20204228084    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 085213    

学科名称:

 工学 - 土木工程 - 建筑与土木工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 土木水利    

研究方向:

 可再生能源利用    

第一导师姓名:

 张小艳    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-15    

论文答辩日期:

 2023-06-05    

论文外文题名:

 Thermal-mechanical Properties of Phase Change Backfill Materials Containing Paraffin/expanded Graphite    

论文中文关键词:

 膨胀石墨 ; 定形相变材料 ; 粉煤灰 ; 热-力学性能 ; 充填体    

论文外文关键词:

 Expanded graphite ; Shape-stabilized phase change materia ; Fly ash ; Thermal-mechanical properties ; Backfill body    

论文中文摘要:

      深部矿床开采发生在高应力、高地温、高井深的独特环境中,其中高地热引起的热害严重制约了深部矿床的有效开采。通过向传统充填料浆中加入定形相变材料固化形成具有高蓄热性能的充填体,在处置矿山固体废弃物的同时也可以提取深部矿井围岩中的地热资源以达到缓解矿井热害的目的。本研究以尾砂胶结充填体为研究对象,研究并分析了石蜡/膨胀石墨定形相变材料(PA/EG-SSPCM)和粉煤灰添加比例对充填料浆流动性能以及PA/EG-SSPCM和粉煤灰添加比例、相变材料相态对充填体力学和热学性能的影响。

      采用直接浸渍法制备具有高蓄热性能的PA/EG-SSPCM,DSC测试结果表明其相变潜热值达到了203.74 J/g,在经过100次热循环实验后PA/EG-SSPCM的潜热值为192.84 J/g,其热循环损失率为5.3%,表现出了良好的热循环稳定性。

       本研究原始料浆配比下(灰砂比1:4,料浆浓度72%),添加10%、20%与未添加PA/EG-SSPCM的充填料浆相比屈服应力分别提高了7.98 Pa、21.63 Pa,塑性黏度分别提高了0.351 Pa·s、1.1745 Pa·s。在PA/EG-SSPCM添加比例为10%的条件下,添加10%、20%与添加5%粉煤灰的充填料浆相比屈服应力分别降低了3.48 Pa、10.89 Pa,塑性黏度分别降低了0.139 Pa·s、0.7513 Pa·s。流变特性测试表明,PA/EG-SSPCM添加比例越大,料浆流动性能越差,粉煤灰添加比例越大,料浆流动性能越好。

       原始料浆配比下未添加PA/EG-SSPCM的充填体抗压强度为3.62 MPa,添加10%、20%PA/EG-SSPCM时,充填体抗压强度分别降低了0.59 MPa、1.38 MPa。另外,添加10%PA/EG-SSPCM的条件下,相变材料为固相和液相时,充填体抗压强度分别为3.03 MPa和2.15 MPa。可见PA/EG-SSPCM添加比例的增大和相变材料的液化都会对充填体的抗压强度产生不利影响。PA/EG-SSPCM与充填材料之间的相容性较差导致充填体内部孔隙数量增多,削弱了充填体的抗压强度,同时,相变材料由于液化造成PA/EG-SSPCM自身强度下降,进一步导致了充填体抗压强度的下降。

       原始料浆配比下PA/EG-SSPCM添加比例为10%时,未添加粉煤灰的充填体抗压强度为3.03 MPa,分别添加5%和10%的粉煤灰时充填体抗压强度为3.15 MPa和3.04 MPa,分别增大了0.12 MPa和0.01 MPa。抗压强度增大的原因主要是由于粉煤灰中的火山灰质可以诱发水泥的二次水化反应,交叉形成更加致密的网络结构提高充填体的抗压强度。但是当粉煤灰添加量超过一定比例时反而会引起充填体抗压强度的下降。

      原始料浆配比下添加10%、20%与未添加PA/EG-SSPCM的充填体相比导热系数分别提高了0.137 W/(m·℃)、0.185 W/(m·℃),比热容也有不同程度的提高。在PA/EG-SSPCM添加比例为10%的条件下,添加5%、10%粉煤灰与未添加粉煤灰相比导热系数分别提高了0.009 W/(m·℃)、-0.01 W/(m·℃)。可见,在充填体中添加PA/EG-SSPCM可以提高充填体的比热容和导热系数,从而提升充填体的蓄热能力和蓄热/释热速率。但粉煤灰添加比例过高会对充填体的导热性能产生不利影响。

      上述分析表明:添加PA/EG-SSPCM虽然能提高充填体的比热容和导热系数,但会降低充填料浆的流动性能和充填体的抗压强度。添加粉煤灰能提高充填料浆流动性能并在一定程度上增强充填体的抗压强度和导热系数,但粉煤灰添加比例过高又会对充填体的导热系数和抗压强度产生不利影响。基于本研究的测试结果,从流变、力学、热学性能综合考虑,建议PA/EG-SSPCM和粉煤灰的添加比例均不超过10%为宜。本论文的研究结果可为相变蓄热充填料浆的配比提供理论参考,为充填体的蓄热/释热性能研究提供基础数据。

论文外文摘要:

      Deep deposit mining takes place in a unique environment of high stress, high ground temperature and high well depth, where high geothermal induced thermal damage severely restricts the effective mining of deep deposits. By curing the conventional backfill slurry with the shape-stabilized phase change material to form the backfill body with high thermal storage properties, the geothermal resources in the surrounding rocks of the deep mine can be extracted while disposing of the mine solid waste for the purpose of mitigating the heat damage in the mine. In this study, the effects of the addition of paraffin/expanded graphite shape-stabilized phase change material (PA/EG-SSPCM) and fly ash on the fluidity of the backfill slurry, as well as the effects of the addition of PA/EG-SSPCM and fly ash and the phase state of the phase change material on the mechanical and thermal properties of the backfill body were investigated and analyzed using tailing sand cemented backfill body.

      PA/EG-SSPCM with high thermal storage property was prepared by direct impregnation. The DSC test results showed that its latent heat of phase change value reached 203.74 J/g. After 100 thermal cycles, the latent heat value of PA/EG-SSPCM was 192.84 J/g and its thermal cycle loss rate was 5.3%, which showed good thermal cycle stability.

      In this study, the yield stress was increased by 7.98 Pa and 21.63 Pa and the plastic viscosities were increased by 0.351 Pa·s and 1.1745 Pa·s for 10% and 20% PA/EG-SSPCM added compared to the original slurry ratio (ash-sand ratio 1:4, slurry concentration 72%). Under the condition of 10% PA/EG-SSPCM addition, the yield stress decreased by 3.48 Pa and 10.89 Pa and the plastic viscosity decreased by 0.139 Pa·s and 0.7513 Pa·s for 10% and 20% PA/EG-SSPCM addition respectively compared to 5% fly ash addition. The greater the proportion of PA/EG-SSPCM added, the poorer the fluidity of the slurry, and the greater the proportion of fly ash added, the better the fluidity of the slurry.

      The compressive strength of the backfill body without PA/EG-SSPCM in the original slurry ratio was 3.62 MPa, but with 10% and 20% PA/EG-SSPCM, the compressive strength of the backfill body decreased by 0.59 MPa and 1.38 MPa, respectively. In addition, the compressive strength of the backfill body was 3.03 MPa and 2.15 MPa when the phase change material was solid phase and liquid phase, respectively, with 10% PA/EG-SSPCM addition. It can be seen that both the increase in the PA/EG-SSPCM addition ratio and the liquefaction of the phase change material have a negative impact on the compressive strength of the backfill body. The poor compatibility between PA/EG-SSPCM and the backfill material leads to an increase in the number of pores inside the backfill body, which weakens the compressive strength of the backfill body, while the liquefaction of the phase change material causes a decrease in the strength of PA/EG-SSPCM itself, which further leads to a decrease in the compressive strength of the backfill body.

       The compressive strength of the backfill body without the addition of fly ash was 3.03 MPa at the original slurry ratio of 10% PA/EG-SSPCM, while the compressive strength of the backfill body with the addition of 5% and 10% fly ash was 3.15 MPa and 3.04 MPa respectively, an increase of 0.12 MPa and 0.01 MPa respectively. This is mainly due to the fact that the volcanic ash in fly ash can induce a secondary hydration reaction in the cement, which crosses over to form a denser network structure to improve the compressive strength of the backfill body. However, when the amount of fly ash added exceeds a certain percentage, the compressive strength of the backfill body decreases.

      The thermal conductivity of the backfill body with 10% and 20% PA/EG-SSPCM addition increased by 0.137 W/(m·°C) and 0.185 W/(m·°C) respectively compared to the backfill body without PA/EG-SSPCM addition at the original slurry ratio, and the specific heat capacity also increased by different degrees. At a PA/EG-SSPCM addition ratio of 10%, the thermal conductivity increased by 0.009 W/(m·°C) and -0.01 W/(m·°C) for 5% and 10% fly ash additions respectively compared to no fly ash addition. It can be seen that the addition of PA/EG-SSPCM to the backfill body can increase the specific heat capacity and thermal conductivity of the backfill body, thus enhancing the heat storage capacity and heat storage/release rate of the backfill body. However, too high a proportion of fly ash addition can have a negative impact on the thermal conductivity of the backfill body.

      The above analysis shows that the addition of PA/EG-SSPCM increases the specific heat capacity and thermal conductivity of the backfill body, but reduces the fluidity of the backfill slurry and the compressive strength of the backfill body. The addition of fly ash improves the fluidity of the backfill slurry and enhances the compressive strength and thermal conductivity of the backfill body to a certain extent, but too high a proportion of fly ash can have an adverse impact on the thermal conductivity and compressive strength of the backfill body. Based on the results of this study, it is recommended that the addition ratio of PA/EG-SSPCM and fly ash should not exceed 10%, based on the rheological, mechanical and thermal properties. The results of this thesis can provide a theoretical reference for the proportioning of phase change thermal storage backfill slurry and provide basic data for the study of the thermal storage/release properties of the backfill body.

参考文献:

[1] Dong L, Tong X, Li X, et al. Some developments and new insights of environmental problems and deep mining strategy for cleaner production in mines[J]. Journal of Cleaner Production, 2019, 210: 1562–1578.

[2] 吴钦正, 刘兴全, 李桂林, 等. 我国金属矿山深部开采发展现状及对策研究[J]. 采矿技术, 2021, 21(5): 23–27.

[3] 罗娜, 杨净茹. 《中国矿产资源报告(2022)》发布[N]. 中国有色金属报, 2022: 006.

[4] 焦东明. 矿山环境保护存在的问题及治理措施分析[J]. 世界有色金属, 2020(11): 227–228.

[5] 张秀. 矿山环境质量评价与地质生态环境保护对策分析[J]. 世界有色金属, 2020(20): 187–188.

[6] 姚韦靖, 庞建勇. 我国深部矿井热环境研究现状与进展[J]. 矿业安全与环保, 2018, 45(1): 107–111.

[7] 徐宇, 李孜军, 贾敏涛, 等. 深部矿井热害治理协同地热能开采构想及方法分析[J]. 中国有色金属学报, 2022, 32(5): 1515–1527.

[8] Ranjith P G, Zhao J, Ju M, et al. Opportunities and challenges in deep mining: a brief review[J]. Engineering, 2017, 3(4): 546–551.

[9] 王军强. 崟鑫金矿岩爆与发生机理初探[J]. 矿山压力与顶板管理, 2005(4): 121-122+124.

[10] 贾文明, 姬建虎, 张明雨, 等. 深部矿井高温热害防治研究与工程应用[J]. 煤炭技术, 2020, 39(3): 88–91.

[11] 孙光华, 王玥, 任伟成. 胶结充填技术在金属矿山中的应用现状与发展趋势[J]. 有色金属(矿山部分), 2022, 74(4): 26–33.

[12] Liu L, Xin J, Huan C, et al. Pore and strength characteristics of cemented paste backfill using sulphide tailings: effect of sulphur content[J]. Construction and Building Materials, 2020, 237: 117452.

[13] 夏长念, 孙学森. 充填采矿法及充填技术的应用现状及发展趋势[J]. 中国矿山工程, 2014, 43(1): 61–64.

[14] 杨泽, 侯克鹏, 乔登攀. 我国充填技术的应用现状与发展趋势[J]. 矿业快报, 2008(4): 1–5.

[15] 刘浪, 辛杰, 张波, 等. 矿山功能性充填基础理论与应用探索[J]. 煤炭学报, 2018, 43(7): 1811–1820.

[16] 张波, 薛攀源, 刘浪, 等. 深部充填矿井的矿床-地热协同开采方法探索[J]. 煤炭学报, 2021, 46(9): 2824–2837.

[17] 郭利杰, 刘光生, 马青海, 等. 金属矿山充填采矿技术应用研究进展[J]. 煤炭学报, 2022, 47(12): 4182–4200.

[18] 刘杰. 充填采矿法的应用现状及发展[J]. 当代化工研究, 2020(7): 8–9.

[19] Lu H, Qi C, Li C, et al. A light barricade for tailings recycling as cemented paste backfill[J]. Journal of Cleaner Production, 2020, 247: 119388.

[20] Yin S, Shao Y, Wu A, et al. Assessment of expansion and strength properties of sulfidic cemented paste backfill cored from deep underground stopes[J]. Construction and Building Materials, 2020, 230: 116983.

[21] Haruna S, Fall M. Time- and temperature-dependent rheological properties of cemented paste backfill that contains superplasticizer[J]. Powder Technology, 2020, 360: 731–740.

[22] 于世超, 赵继有. 尾砂含量对商品混凝土物理性能的影响[J]. 混凝土世界, 2019(2): 90–93.

[23] 甘德清, 张雅洁, 刘志义, 等. 胶结充填体早期损伤对后期力学性能影响机制研究[J]. 岩石力学与工程学报, 2022: 1–12.

[24] Fall M, Célestin J C, Pokharel M, et al. A contribution to understanding the effects of curing temperature on the mechanical properties of mine cemented tailings backfill[J]. Engineering Geology, 2010, 114(3–4): 397–413.

[25] 唐国星, 郭利杰, 刘光生, 等. 尾砂胶结充填体抗拉强度试验及其影响因素研究[J]. 中国矿业, 2022, 31(4): 124–131.

[26] Rakhimova N R, Rakhimov R Z. Reaction products, structure and properties of alkali-activated metakaolin cements incorporated with supplementary materials – a review[J]. Journal of Materials Research and Technology, 2019, 8(1): 1522–1531.

[27] 张震, 陈超, 马姣阳, 等. 尾砂粒径对胶结充填体抗压强度的影响[J]. 华北理工大学学报(自然科学版), 2022, 44(1): 9-15+23.

[28] Li N, Lv S, Wang W, et al. Experimental investigations on the mechanical behavior of iron tailings powder with compound admixture of cement and nano-clay[J]. Construction and Building Materials, 2020, 254: 119259.

[29] 石静, 王强. 玻璃纤维增强水泥基尾砂胶结充填体力学性能试验研究[J]. 矿业研究与开发, 2022, 42(10): 51–57.

[30] 李芹涛, 褚洪涛, 任玉东. 尾砂胶结充填对井下水环境影响评价[J]. 黄金, 2017, 38(4): 40–43.

[31] 谷睿智. 全尾砂胶结充填体重金属浸出机理研究[D/OL]. 江西理工大学, 2018.

[32] 刘冬梅, 刘玉娇, 彭艳周, 等. 固硫灰基磷尾矿充填体的性能及浸出液水质[J]. 非金属矿, 2020, 43(4): 11–15.

[33] 梁志强. 新型矿山充填胶凝材料的研究与应用综述[J]. 金属矿山, 2015(6): 164–170.

[34] 张国胜, 杨晓炳, 郭斌, 等. 全尾砂充填采矿低成本新型充填胶凝材料研究与发展方向[J]. 金属矿山, 2020(7): 1–9.

[35] Behera S K, Ghosh C N, Mishra D P, et al. Strength development and microstructural investigation of lead-zinc mill tailings based paste backfill with fly ash as alternative binder[J]. Cement and Concrete Composites, 2020, 109: 103553.

[36] Tuylu S. Investigation of the effect of using different fly ash on the mechanical properties in cemented paste backfill[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2022, 37(4): 620–627.

[37] 张磊, 吕宪俊, 金子桥. 粉煤灰在矿山胶结充填中应用的研究现状[J]. 矿业研究与开发, 2011, 31(4): 22-25+129.

[38] 贾世杰, 徐洪艳, 陈辉. 粉煤灰-水泥基胶结充填体早期强度及水化机理研究[J]. 采矿技术, 2021, 21(03): 164-167+183.

[39] 董越, 杨志强, 高谦, 等. 粉煤灰掺量对铁尾砂充填材料性能的影响[J]. 广西大学学报(自然科学版), 2018, 43(1): 219–225.

[40] 李拴魁, 林原, 潘锋. 热能存储及转化技术进展与展望[J]. 储能科学与技术, 2022, 11(5): 1551–1562.

[41] 汪翔, 陈海生, 徐玉杰, 等. 储热技术研究进展与趋势[J]. 科学通报, 2017, 62(15): 1602–1610.

[42] 李威, 陈威, 王丹丹. 基于水合盐热化学储能的技术研究与进展[J]. 制冷与空调, 2017, 17(8): 14–21.

[43] 刘伟, 李振明, 刘铭扬, 等. 高温相变储热材料制备与应用研究进展[J]. 储能科学与技术, 2023, 12(2): 398–430.

[44] 李璐璐. 显热—潜热复合蓄热供暖装置优化及应用研究[D/OL]. 北京工业大学, 2021.

[45] Farid M M, Khudhair A M, Razack S A K, et al. A review on phase change energy storage: materials and applications[J]. Energy Conversion and Management, 2004, 45(9–10): 1597–1615.

[46] Li M, Shi J. Review on micropore grade inorganic porous medium based form stable composite phase change materials: preparation, performance improvement and effects on the properties of cement mortar[J]. Construction and Building Materials, 2019: 24.

[47] Zalba B, Marı́n J M, Cabeza L F, et al. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications[J]. Applied Thermal Engineering, 2003, 23(3): 251–283.

[48] 王温馨, 齐红, 丁益民. 水合盐相变储能材料的研究进展[J]. 化学通报, 2021, 84(04): 330–338.

[49] 彭犇, 岳昌盛, 邱桂博, 等. 相变储能材料的最新研究进展与应用[J]. 材料导报, 2018, 32(S1): 248–252.

[50] 孙世平, 李翔, 申月, 等. 无机水合盐相变储能材料研究进展[J]. 化工新型材料, 2022: 1–9.

[51] Gulfam R, Zhang P, Meng Z. Advanced thermal systems driven by paraffin-based phase change materials – a review[J]. Applied Energy, 2019, 238: 582–611.

[52] Wang L, Sun D. Research and progress of paraffin phase change material for energy-saving domestic and foreign[J]. Materials Review, 2010.

[53] You-Bin M O, Hui-Qun Y U, Yan-Fang L, et al. Review of paraffin wax phase change materials for thermal energy storage[J]. Modern Chemical Industry, 2016.

[54] 易秋霞. 硬脂酸脂肪酯作为温室控温相变材料的制备及性能研究[J]. 当代化工, 2017, 46(4): 577-579+583.

[55] 李兴会, 陈敏智, 周晓燕. 复合定形相变材料的封装及应用研究新进展[J]. 工程科学学报, 2020, 42(11): 1422–1432.

[56] Hong Y, Xin-Shi G. Preparation of polyethylene paraffin compound as a form-stable solid-liquid phase change material[J]. Solar Energy Materials, 2000.

[57] Sarı A. Form-stable paraffin/high density polyethylene composites as solid–liquid phase change material for thermal energy storage: preparation and thermal properties[J]. Energy Conversion and Management, 2004, 45(13–14): 2033–2042.

[58] 罗超云, 林雪春, 肖望东, 等. 不同聚烯烃包覆石蜡的定形相变材料性能比较研究[J]. 化工新型材料, 2010, 38(7): 100–102.

[59] Zhang X X, Fan Y F, Tao X M, et al. Crystallization and prevention of supercooling of microencapsulated n-alkanes[J]. Journal of Colloid and Interface ence, 2005, 281(2): 299–306.

[60] Fang G, Zhi C, Hui L. Synthesis and properties of microencapsulated paraffin composites with sio 2 shell as thermal energy storage materials[J]. Chemical Engineering Journal, 2010, 163(1–2): 154–159.

[61] 徐伟强, 袁修干, 李贞. 泡沫金属基复合相变材料的有效导热系数研究[J]. 功能材料, 2009, 40(8): 1329-1332+1337.

[62] 赵纪金, 李晓霞, 豆正伟. 不同粒径膨胀石墨的制备及其微观结构[J]. 材料科学与工程学报, 2011, 29(06): 925-928+939.

[63] Alrashdan A, Mayyas A T, Al-Hallaj S. Thermo-mechanical behaviors of the expanded graphite-phase change material matrix used for thermal management of li-ion battery packs[J]. Journal of Materials Processing Technology, 2010, 210(1): 174–179.

[64] Wang C, Feng L, Li W, et al. Shape-stabilized phase change materials based on polyethylene glycol/porous carbon composite: the influence of the pore structure of the carbon materials[J]. Solar Energy Materials & Solar Cells, 2012, 105(Complete): 21–26.

[65] 邓勇. 膨胀蛭石基复合相变储能材料的设计与性能[J]. 中国地质大学(北京), 2019.

[66] Fu L, Wang Q, Ye R, 等. A calcium chloride hexahydrate/expanded perlite composite with good heat storage and insulation properties for building energy conservation[J]. Renewable Energy, 2017, 114: 733–743.

[67] Jia W, Wang C, Wang T, et al. Preparation and performances of palmitic acid/diatomite form‐stable composite phase change materials[J]. International Journal of Energy Research, 2020, 44(6): 4298–4308.

[68] 骆峰生. 石蜡与赤藻糖醇填充石墨化泡沫炭复合储能材料的研究[D/OL]. 哈尔滨工业大学, 2011.

[69] Zhong Y, Guo Q, Li S, et al. Heat transfer enhancement of paraffin wax using graphite foam for thermal energy storage[J]. Solar Energy Materials & Solar Cells, 2010, 94(6): 1011–1014.

[70] He L, Li J, Zhou C, et al. Phase change characteristics of shape-stabilized peg/sio2 composites using calcium chloride-assisted and temperature-assisted sol gel methods[J]. Solar Energy, 2014, 103: 448–455.

[71] Qian T, Li J, Ma H, et al. The preparation of a green shape-stabilized composite phase change material of polyethylene glycol/sio2 with enhanced thermal performance based on oil shale ash via temperature-assisted sol–gel method[J]. Solar Energy Materials and Solar Cells, 2015, 132: 29–39.

[72] Tang B, Cui J, Wang Y, et al. Facile synthesis and performances of peg/sio2 composite form-stable phase change materials[J]. Solar Energy, 2013, 97: 484–492.

[73] Tang B, Wu C, Qiu M, et al. PEG/sio2–al2o3 hybrid form-stable phase change materials with enhanced thermal conductivity[J]. Materials Chemistry & Physics, 2014, 144(1–2): 162–167.

[74] Yang H, Feng L, Wang C, et al. Confinement effect of sio2 framework on phase change of peg in shape-stabilized peg/sio2 composites[J]. European Polymer Journal, 2012, 48(4): 803–810.

[75] Cheng J, Niu S, Kang M, et al. The thermal behavior and flame retardant performance of phase change material microcapsules with modified carbon nanotubes[J]. Energy, 2022, 240.

[76] Ji P, Sun H, Zhong Y, et al. Improvement of the thermal conductivity of a phase change material by the functionalized carbon nanotubes[J]. Chemical Engineering Science, 2012, 81: 140–145.

[77] Yadav C, Sahoo R R. Thermophysical properties and thermal performance evaluation of multiwalled carbon nanotube‐based organic phase change materials using T‐HISTORY method[J]. International Journal of Energy Research, 2022, 46(3): 3115–3131. DOI:10.1002/er.7368.

[78] Liang, Kuan, Shi, et al. Fabrication of shape-stable composite phase change materials based on lauric acid and graphene/graphene oxide complex aerogels for enhancement of thermal energy storage and electrical conduction[J]. Thermochimica Acta: An International Journal Concerned with the Broader Aspects of Thermochemistry and Its Applications to Chemical Problems, 2018.

[79] Tao W, Kong X, Bao A, et al. Preparation and phase change performance of graphene oxide and silica composite na2so4·10h2o phase change materials (pcms) as thermal energy storage materials[J]. Materials, 2020, 13(22): 5186.

[80] 张正国, 王学泽, 方晓明. 石蜡/膨胀石墨复合相变材料的结构与热性能[J]. 华南理工大学学报(自然科学版), 2006, 34(3): 1–5.

[81] 华建社, 张娇, 张焱, 等. 膨胀石墨/石蜡复合相变蓄热材料的热性能及定形性研究[J]. 材料导报, 2016, 30(12): 61-64+75.

[82] 赵建国, 郭全贵, 高晓晴, 等. 石蜡/膨胀石墨相变储能复合材料的研制[J]. 新型炭材料, 2009, 24(2): 5.

[83] Elgafy A, Lafdi K. Effect of carbon nanofiber additives on thermal behavior of phase change materials[J]. Carbon, 2005, 43(15): 3067–3074.

[84] Abbasi Hattan H, Madhkhan M, Marani A. Thermal and mechanical properties of building external walls plastered with cement mortar incorporating shape-stabilized phase change materials (sspcms)[J]. Construction and Building Materials, 2021, 270: 121385.

[85] Cui H, Liao W, Mi X, et al. Study on functional and mechanical properties of cement mortar with graphite-modified microencapsulated phase-change materials[J]. Energy and Buildings, 2015, 105: 273–284.

[86] Gu X, Peng L, Liu P, et al. Enhanced thermal properties and lab-scale thermal performance of polyethylene glycol/modified halloysite nanotube form-stable phase change material cement panel[J]. Construction and Building Materials, 2022, 323: 126550.

[87] Liu Y, Xie M, Gao X, et al. Experimental exploration of incorporating form-stable hydrate salt phase change materials into cement mortar for thermal energy storage[J]. Applied Thermal Engineering, 2018, 140: 112–119.

[88] Min H-W, Kim S, Kim H S. Investigation on thermal and mechanical characteristics of concrete mixed with shape stabilized phase change material for mix design[J]. Construction and Building Materials, 2017, 149: 749–762.

[89] 朱洪洲, 陈瑞璞, 苟珊, 等. 相变水泥混凝土的力学性能与低温调温性能[J]. 硅酸盐通报, 2020, 39(11): 3510–3514.

[90] 金爱兵, 巨有, 孙浩, 等. 相变储能充填体强度与热学性能[J]. 哈尔滨工业大学学报, 2022, 54(2): 81–89.

[91] Ning P, Ju F, Xiao M, et al. Study on the thermal - mechanical properties and heat transfer characteristics of heat storage functional backfill body[J]. Geothermics, 2023, 109: 102654.

[92] Zhang X, Cao T, Liu L, et al. Experimental study on thermal and mechanical properties of tailings-based cemented paste backfill with cacl2·6h2o/expanded vermiculite shape stabilized phase change materials[J]. International Journal of Minerals, Metallurgy and Materials, 2023, 30(2): 250–259.

[93] Zhang X, Xu M, Liu L, et al. Experimental study on thermal and mechanical properties of cemented paste backfill with phase change material[J]. Journal of Materials Research and Technology, 2020, 9(2): 2164–2175.

[94] 薛娜. 超细铁尾砂充填料浆流变特性研究[D/OL]. 华北理工大学, 2020.

[95] 甘德清, 常英杰, 张友志, 等. 基于剪切应力变化量的全尾砂浆触变特性分析[J]. 金属矿山, 2021(8): 24–29.

[96] 董璐, 高谦, 南世卿, 等. 粉煤灰对矿渣胶结充填材料性能的影响[J]. 金属矿山, 2012(10): 162–164.

[97] 冯金, 马昆林, 龙广成. 基于不同流变模型下粉煤灰对水泥净浆流变性能的影响[J]. 铁道科学与工程学报, 2015, 12(3): 534–539.

[98] 马昆林, 冯金, 龙广成, 等. 水泥-粉煤灰浆体流变特性及其机理研究[J]. 铁道科学与工程学报, 2017, 14(3): 465–472.

[99] 赵才智, 周华强, 柏建彪, 等. 粉煤灰全尾砂膏体充填试验研究[J]. 金属矿山, 2006(12): 4–6.

[100] 史阳光, 冯勇, 王怀义. 掺粉煤灰对不同水泥品种钢渣混凝土基本力学性能试验研究[J]. 粉煤灰综合利用, 2016(02): 15–17.

[101] 李航宇, 阎蕊珍, 闫亚杰, 等. 粉煤灰取代水泥对再生混凝土砖性能的影响[J]. 新型建筑材料, 2020, 47(02): 92-94+99.

中图分类号:

 TK529    

开放日期:

 2024-06-16    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式