- 无标题文档
查看论文信息

题名:

 低附着系数下四轮独立驱动电动汽车控制策略研究    

作者:

 张应星    

学号:

 22206227139    

保密级别:

 保密(1年后开放)    

语种:

 chi    

学科代码:

 085800    

学科:

 工学 - 能源动力    

学生类型:

 硕士    

学位:

 工学硕士    

学位年度:

 2025    

学校:

 西安科技大学    

院系:

 电气与控制工程学院    

专业:

 电气工程    

研究方向:

 电动汽车技术    

导师姓名:

 周奇勋    

导师单位:

 西安科技大学    

提交日期:

 2025-06-16    

答辩日期:

 2025-06-05    

外文题名:

 Research on Control Strategies for Four-Wheel Independent Drive Electric Vehicles Under Low-Adhesion Conditions    

关键词:

 四轮独立驱动 ; 低附着系数 ; 超螺旋滑模控制 ; 力矩协调控制    

外文关键词:

 Four-wheel independent drive electric vehicle ; Low-Adhesion Coefficient ; Super-Twisting Sliding Mode Control ; Coordinated Torque Distribution    

摘要:

在“双碳”战略背景下,经济的快速发展与节能减排的要求形成新能源汽车的双重驱动力。四轮独立驱动电动汽车因各车轮扭矩独立调节、控制精度高、响应速度快等特点,成为了电动汽车领域关注热点。传统车辆在积雪、湿滑等低附着路面行驶中遇到复杂多变的路面类型,会使车辆车轮打滑、横摆失稳、轨迹偏移,严重威胁行驶安全性。本文针对四轮独立驱动电动汽车在低附着路况下的横摆失稳问题,提出基于分层架构的电子差速控制策略,主要研究工作如下:

首先,构建四轮独立驱动电动汽车动力学模型体系。基于车辆结构特征,建立了包含车辆简化二自由度、车轮动力学以及电控系统模型,为后续稳定性控制奠定理论基础。其次,设计上层整车力矩决策控制架构。在横向控制维度,提出超螺旋滑模联合控制算法,通过横摆角速度和质心侧偏角跟踪误差的动态补偿机制实现直接横摆力矩优化;在纵向控制维度,基于模糊PID驱动防滑控制器构建纵向驱动协调体系,有效解决车轮打滑问题。最后,建立下层力矩协调分配机制。突破传统垂向载荷分配法的局限,基于轮胎稳定裕度构建轮胎负荷率最优目标函数,提出一种兼顾效率与稳定性的转矩分配算法;同时为实现高动态响应和快速转矩控制,设计了轮毂电机无磁链观测直接转矩控制系统,实现四轮转矩的实时精准分配。

建立Simulink/CarSim的联合仿真平台,通过低附着直线加速和低附着双移线复合工况的对比实验,验证了所提控制策略的有效性。仿真结果表明:滑转率抑制在0.15以下、横摆角速度跟踪误差降低10.00%、质心侧偏角跟随精度提高24.52%,有效缓解了低附工况下的失稳风险。特别是在轮胎负荷率优化方面,提出的分配策略较传统方法峰值降低30.29%。此外,通过对电机驱动系统的电流谐波、转矩响应特性的时域分析,验证了电机控制策略的有效性。

搭建四轮独立驱动电动汽车实验平台并介绍了硬件模块和软件程序。在积雪路面的实车验证中,提出的动态协调控制策略展现出显著优势:实现滑转率的抑制,横摆角速度跟踪误差减小至3.16%,质心侧偏角偏差控制在±1.12°区间,轮胎稳定裕度提升30.43%。实验数据验证了超螺旋滑模联合控制和基于轮胎负荷率的最优目标分配策略的协同控制效果,为四驱电动汽车在低附着工况下的稳定性控制提供了理论依据与工程实践参考。

外文摘要:

Under the background of "double carbon" strategy, the rapid development of economy and the requirements of energy conservation and emission reduction form the dual driving force of new energy vehicles. Four-wheel independent-drive electric vehicles, characterized by independent torque regulation, high control precision, and fast response at each wheel, have become a focal point in the electric vehicle sector. Traditional vehicles traveling on low-adhesion surfaces such as icy or wet roads often encounter complex road conditions, leading to wheel slippage, yaw instability, and trajectory deviation, which severely compromise driving safety. This research investigates the mitigation of yaw instability in four-wheel independently driven electric vehicles operating on low-friction surfaces through the development of a multi-layer electronic torque distribution control architecture. The main contributions are as follows:

Firstly, a multi-dimensional dynamics modeling framework for four-wheel independent drive electric vehicles is established. Based on structural characteristics, comprehensive control models are developed, including a 7-DOF vehicle model, a simplified 2-DOF reference model, wheel dynamics models, an electric system control model, and hub motor models, laying a theoretical foundation for stability control. Secongdly, an innovative torque decision-making architecture is designed. For lateral control applications, a super-twisting sliding mode control algorithm is proposed to replace the conventional fuzzy sliding mode cooperative control approach. This algorithm dynamically compensates for yaw rate and sideslip angle tracking errors to optimize direct yaw moment. For longitudinal control, a fuzzy PID anti-slip controller to coordinate longitudinal drive forces, effectively mitigating wheel slippage. Finally, a multi-objective torque distribution mechanism is developed. Moving beyond traditional vertical load distribution methods, an optimal tire load rate objective function is constructed based on tire stability margins, enabling a torque distribution algorithm that balances efficiency and stability. In order to achieve high dynamic response and fast torque control, a direct torque control without flux linkage observation system of hub motor is designed to achieve real-time accurate torque distribution of four wheels.

An integrated co-simulation framework combining MATLAB/Simulink and CarSim has been constructed to conduct the proposed control strategy under low-adhesion straight-line acceleration and double-lane-change scenarios. Simulation results demonstrate significant improvements: slip ratio suppression below 0.15, 10.00% reduction in yaw rate tracking error, and 24.52% enhancement in centroid sideslip angle following accuracy, effectively mitigating instability risks in low-friction scenarios. Notably, the innovative tire load rate allocation strategy achieved 30.29% peak reduction compared to conventional methods. Time-domain analyses of current harmonics and torque response characteristics further verified the effectiveness of motor drive control strategies.

A four-wheel independent drive electric vehicle experimental platform is established. Field tests on compacted snow surfaces confirmed the superiority of the dynamic coordination strategy: slip ratio stabilization, yaw rate tracking error reduced to 3.16%, centroid sideslip angle constrained within ±1.12°, and tire stability margin improved by 30.43%. Experimental data validated the synergistic effects of super-twisting sliding mode control and tire load rate-based optimal allocation strategy. This study offers innovative methodologies and practical references for active safety control in electric vehicles, with substantial theoretical significance and engineering application potential.

参考文献:

[1]仲蕊. 汽车产业碳中和之路蹄疾步稳[N]. 中国能源报, 2023-09-25(003).

[2]袁军成, 范佳甲. 中国新能源汽车“十四五”政策法规展望[J]. 质量与认证, 2020, (12): 78-80.

[3]昝雪松. 国内新能源汽车关键技术发展现状与趋势分析[J]. 内燃机与配件, 2023, (17): 112-114.

[4]曾家程, 黄飞创, 赵扬, 等. 新能源汽车技术现状及发展趋势[J]. 汽车实用技术, 2023, 48(14): 189-194.

[5]Tian J, Wang P, Zhu D. Overview of Chinese new energy vehicle industry and policy development[J]. Green Energy and Resources, 2024: 100075.

[6]林贤坤, 卢彦希, 王志福, 等. 分布式驱动车辆操纵稳定性控制综述[J]. 汽车技术, 2024, (01): 1-12.

[7]张晓林, 王保华, 邓召文, 等. 基于滑模协调控制的四轮独立电驱动车辆稳定性控制研究[J]. 现代制造工程, 2024, (01): 51-57.

[8]任晨辉. 基于底盘协同的电动轮驱动汽车横向稳定性控制[D]. 秦皇岛: 燕山大学, 2021.

[9]张征, 马晓军, 刘春光, 等. 基于分层模型的轮毂电机驱动车辆直接横摆力矩控制[J]. 农业机械学报, 2019, 50(12): 387-394.

[10]赵怡军. 我国新能源汽车技术发展的挑战与前景[J]. 时代汽车, 2023, (03): 122-124.

[11]李雪栋. 低附工况下四轮驱动电动汽车牵引力控制算法研究[D]. 合肥工业大学, 2019.

[12]杨海霞. 车辆侧倾稳定性分析与侧翻预警研究[D]. 南京: 东南大学, 2022.

[13]刘畅. 冰雪环境下基于轮胎力预测的分布式驱动电动汽车稳定性控制[D]. 吉林大学, 2022.

[14]林程, 梁晟, 宫新乐, 等. 面向极限工况的分布式驱动电动汽车动力学集成控制方法[J]. 汽车工程, 2022, 44(09): 1372-1385.

[15]尘帅, 刘铮, 卢子青. 四轮独立驱动电车行驶稳定性控制研究综述[J]. 内燃机与配件, 2025, (02): 50-52.

[16]Zhang Q, Chen J, Ihara T. Assessing regional variations in hydrogen fuel cell vehicle adoption: An integrative approach using real-world data and analytic hierarchy process in Tokyo[J]. Applied Energy, 2024, 363: 123014.

[17]Zhou H, Liu Z. Vehicle yaw stability-control system design based on sliding mode and backstepping control approach[J]. IEEE Transactions on Vehicular Technology, 2010, 59(7): 3674-3678.

[18]Ma L, Cheng C, Guo J, et al. Direct yaw-moment control of electric vehicles based on adaptive sliding mode[J]. Math. Biosci. Eng, 2023, 20(7): 13334-13355.

[19]赵健, 杜金朋, 朱冰, 等. 基于自适应动态滑模控制的智能汽车纵向巡航控制[J]. 汽车工程, 2022, 44(01): 8-16.

[20]蔡元兵. 特斯拉Model S驱动系统的结构与工作原理(一)[J]. 汽车维修与保养, 2023, (12): 51-53.

[21]Bae S, Kim Y, Choi Y, et al. Ecological adaptive cruise control of plug-in hybrid electric vehicle with connected infrastructure and on-road experiments[J]. Journal of Dynamic Systems, Measurement, and Control, 2022, 144(1): 011109.

[22]Held D, Levinson J, Thrun S, et al. Robust real-time tracking combining 3D shape, color, and motion[J]. The International Journal of Robotics Research, 2016, 35(1-3): 30-49.

[23]Molina Llorente R, Molina Llorente R. Embedded Control System Development Process: Model-Based Design and Architecture Basics[J]. Practical Control of Electric Machines: Model-Based Design and Simulation, 2020: 1-26.

[24]Fisac J F, Bronstein E, Stefansson E, et al. Hierarchical game-theoretic planning for autonomous vehicles[C]//2019 International conference on robotics and automation (ICRA). IEEE, 2019: 9590-9596.

[25]余卓平, 史彪飞, 熊璐, 等. 基于分布式驱动电动汽车的再生制动策略设计及优化[J]. 同济大学学报(自然科学版), 2020, 48(11): 1620-1628.

[26]罗禹贡, 陈锐, 胡云. 分布式电驱动车辆线控转向系统MFAC主动容错控制[J]. 机械工程学报, 2019, 55(22): 131-139.

[27]王军年, 杨斌, 王庆年, 等. 汽车转矩定向分配驱动技术发展现状综述[J]. 机械工程学报, 2020, 56(18): 92-104.

[28]宋强, 王冠峰, 商赫, 等. 基于多参数控制的分布式驱动电动汽车操纵稳定性控制策略

研究[J]. 汽车工程, 2023, 45(11): 2104-2112+2138.

[29]巫春玲, 吕晶晶, 相里康, 等. 基于变分模态分解和核极限学习机集成模型的电动汽车锂电池健康状态预测[J/OL]. 电源学报, 2025, 4(10): 1-14.

[30]汪峥. 分布式驱动电动汽车行驶状态及路面附着系数估计研究[D]. 哈尔滨工业大学, 2020.

[31]唐柳杨. 华人运通丁磊:2030年新能源车占比将超50% [N]. 第一财经日报, 2021-08-20(A09).

[32]仰望携“易四方”技术正式亮相比亚迪以颠覆性技术打造高端品牌[J]. 中国经济周刊, 2023, 846(Z1): 92-93.

[33]姚芳, 林祥辉, 吴正斌, 等. 电动汽车电子差速控制技术研究综述[J]. 自动化学报, 2021, 47(08): 1785-1798.

[34]吴斌, 付鹏. 基于模糊分数阶PID的电动汽车换挡过程转速控制[J]. 北京工业大学学报, 2022, 48(10): 1069-1077.

[35]王瑛. 基于电机转速控制的电动汽车电制动算法研究[D]. 浙江大学, 2022.

[36]高守林. 电动汽车转矩定向分配驱动桥系统动态特性分析与控制技术研究[D]. 吉林大学, 2023.

[37]Zhu W, Li G, Lu L. Research on Steering Control of Four-wheel Independent Drive Electric Vehicle[C]//2021 5th CAA International Conference on Vehicular Control and Intelligence (CVCI). IEEE, 2021: 1-8.

[38]严运兵, 易振宇, 杨勇. 低附着路面下四轮独立驱动电动汽车稳定性控制[J]. 机械设计与制造, 2022, (09): 175-179+184.

[39]李田, 赵又群, 林棻, 等. 机械弹性电动轮驱动车辆横摆稳定性协调控制[J]. 重庆理工大学学报(自然科学), 2024, 38(03): 55-63.

[40]Wang Z, Montanaro U, Fallah S, et al. A gain scheduled robust linear quadratic regulator for vehicle direct yaw moment control[J]. Mechatronics, 2018, 51: 31-45.

[41]刘红铄, 陶刚, 李德润等. 智能汽车轨迹跟踪与横摆稳定性协同控制[J]. 汽车工程学报, 2022, 12(06): 773-781.

[42]Dong J, Li J, Gao Q, et al. Optimal coordinated control of active steering and direct yaw moment for distributed-driven electric vehicles[J]. Control Engineering Practice, 2023, 134: 105486.

[43]王成, 屈小贞, 孙晓帮. 分布式驱动电动汽车的横向稳定性控制研究[J]. 现代制造工程, 2023(11): 63-69.

[44]胡建军, 肖凤, 林志强, 等. 基于模糊滑模直接横摆力矩的车辆横摆稳定性控制[J]. 同济大学学报(自然科学版), 2023, 51(06): 954-962.

[45]Hazzab A, Gouabi H, Habbab M, et al. Fuzzy sliding mode controller for direct torque control of four-wheel drive electrical vehicle[C]//2023 IEEE 14th International Conference on Power Electronics and Drive Systems (PEDS). IEEE, 2023: 1-6.

[46]王航. 分布式驱动电动汽车操纵稳定性控制策略研究[D]. 太原科技大学, 2024.

[47]邹渊, 郭宁远, 张旭东, 等. 分布式电驱动车辆力矩分配控制研究现状综述[J]. 中国公路学报, 2021, 34(09): 1-25.

[48]张一西. 四轮独立驱动电动汽车操纵稳定性关键状态参数估计及协调控制策略研究[D]. 长安大学, 2021.

[49]Yao Y, Yan Y, Peng L, et al. Longitudinal and Lateral Coordinated Control of Distributed Drive Electric Vehicles Based on Model Predictive Control[C]//2022 6th CAA International Conference on Vehicular Control and Intelligence (CVCI). IEEE, 2022: 1-6.

[50]Lin F, Wang X, Qian C, et al. Coordinated longitudinal and lateral motion control for distributed drive electric vehicles with mechanical elastic wheels[J]. IEEE Transactions on Transportation Electrification, 2023, 10(1): 523-539.

[51]冯浩. 基于稳态可达域图的车辆稳定性控制研究[D]. 长沙: 湖南大学, 2022.

[52]张志勇, 金博文. 分布式驱动电动汽车轨迹跟踪与横向稳定性协同控制[J]. 长沙理工大学学报(自然科学版), 2023, 20(06): 159-169.

[53]赵永强. 四轮轮毂驱动电动汽车扭矩优化分配方法的研究[D]. 吉林大学, 2021.

[54]Liu S, Zhang L, Zhang J, et al. Cooperative control of path tracking and driving stability for intelligent vehicles on potholed road[J]. IEEE Transactions on Intelligent Vehicles, 2023, 9(1): 2499-2508.

[55]Ahmadian N, Khosravi A, Sarhadi P. Integrated model reference adaptive control to coordinate active front steering and direct yaw moment control[J]. ISA transactions, 2020, 106: 85-96.

[56]朱文静, 李刚, 姬晓. 四轮独立驱动电动汽车驱动力矩分配方法[J]. 重庆理工大学学报(自然科学), 2022, 36(03): 41-47.

[57]郑超艺. 轮毂电机驱动汽车纵横向稳定性控制策略研究[D]. 青岛理工大学, 2021.

[58]李胜琴, 闫祥伟, 金丽彤. 分布式驱动电动汽车横摆稳定性控制策略研究[J]. 重庆理工大学学报(自然科学), 2021, 35(05): 65-73.

[59]Liu W, Liu P, Yu Y, et al. Optimal torque distribution of distributed driving AGV under the condition of centroid change[J]. Scientific Reports, 2021, 11(1): 21404.

[60]Ge Y, Chang C S. Torque distribution control for electric vehicle based on traction force observer[C]//2011 IEEE International Conference on Computer Science and Automation Engineering. IEEE, 2011, 2: 371-375.

[61]吴文娟. 基于相平面的车辆稳定性分析与协调控制研究[D]. 重庆: 重庆大学, 2021.

[62]李旭. 4WID全电汽车轮驱电机协调控制策略研究[D]. 西安理工大学, 2021.

[63]Liu W, Xia X, Xiong L, et al. Automated vehicle sideslip angle estimation considering signal measurement characteristic[J]. IEEE Sensors Journal, 2021, 21(19): 21675-21687.

[64]Chen W, Liang X, Wang Q, et al. Extension coordinated control of four wheel independent drive electric vehicles by AFS and DYC[J]. Control engineering practice, 2020, 101: 104504.

[65]马存超. 四轮独立驱动电动车电子差速系统研究[D]. 西安科技大学, 2018.

[66]许晨. 基于霍尔信号的无刷直流电机直接转矩控制系统设计[J]. 佳木斯大学学报(自然科学版), 2023, 41(04): 56-59.

[67]Zhou Q, Zhang Y, Gao K, et al. Research on Yaw Stability Control of Distributed Drive Electric Vehicle Based on Super-twisting Sliding Mode Algorithm[J]. Journal of Electrical Engineering & Technology, 2025: 1-11.

[68]袁赣南, 左志丹, 曲桂婷, 等. 二阶滑模变结构控制系统的滑模到达条件[J]. 华中科技大学学报(自然科学版), 2013, 41(06): 70-75.

[69]王子杰. 考虑驱动轮滑移的4WID高地隙喷雾机路径跟踪模型预测控制[D]. 江苏大学, 2022.

[70]褚学聪. 基于多种车辆构型的四驱轴间力矩分配策略研究[D]. 吉林大学, 2024.

[71]张春林. 基于轮胎利用率优化的电动四驱汽车纵向力控制策略研究[D]. 吉林大学, 2024.

[72]韩佳炜. 基于STM32无刷直流电机DTC算法研究及控制系统设计[D]. 河北科技大学, 2020.

[73]孙寅杰. 基于直接转矩控制的电动车用无刷直流电机控制器的设计与研究[D]. 青岛理工大学, 2019.

[74]杨建飞, 陈秋仲, 王日茗, 等. 无刷直流电机直接转矩控制系统零矢量优化[J]. 微特电机, 2022, 50(09): 13-19.

[75]王吉. 无刷直流电机零矢量直接转矩控制[D]. 哈尔滨理工大学, 2021.

[76]赵桢. 4WID/S全电汽车轮毂电机的协调控制研究[D]. 西安理工大学, 2022.

中图分类号:

 TM351    

开放日期:

 2026-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式